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a b s t r a c t

Multilevel techniques are efficient approaches for solving the large linear systems
that arise from discretized partial differential equations and other problems. While
geometric multigrid requires detailed knowledge about the underlying problem and its
discretization, algebraic multigrid aims to be less intrusive, requiring less knowledge
about the origin of the linear system. A key step in algebraic multigrid is the choice of
the coarse/fine partitioning, aiming to balance the convergence of the iteration with its
cost. In work by MacLachlan and Saad (2007), a constrained combinatorial optimization
problem is used to define the ‘‘best’’ coarse grid within the setting of a two-level
reduction-based algebraic multigrid method and is shown to be NP-complete. Here,
we develop a new coarsening algorithm based on simulated annealing to approximate
solutions to this problem, which yields improved results over the greedy algorithm
developed previously. We present numerical results for test problems on both structured
and unstructured meshes, demonstrating the ability to exploit knowledge about the
underlying grid structure if it is available.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Multigrid and other multilevel methods are well-established algorithms for the solution of large linear systems
f equations that arise in many areas of computational science and engineering. Multigrid methods arise from the
bservation that basic iterative methods, such as the (weighted) Jacobi and Gauss–Seidel iterations, effectively eliminate
nly part of the error in an approximation to the solution of the problem, and that the complementary space of errors
an be corrected from a coarse representation of the problem. While geometric multigrid has been shown to be highly
ffective for problems where a hierarchy of discrete models can be built directly, many problems benefit from the use of
lgebraic multigrid (AMG) techniques, where graph-based algorithms and other heuristics are used to define the multigrid
ierarchy directly from the matrix of the finest-grid problem.
First introduced in the early 1980’s [1,2], AMG is now widely used and available in standard libraries, such as

ypre [3,4], PETSc [5,6], Trilinos [7,8], and PyAMG [9]. While there are many variants of AMG (as discussed below), the
ommon features of AMG algorithms are the use of graph-based algorithms to construct a coarse grid from the given
ine-grid discretization matrix (possibly with some additional information, such as geometric locations of the degrees
f freedom for elasticity problems [10]) followed by construction of an algebraic interpolation operator from the coarse
rid to the fine grid. Both of these components have received significant attention in the literature, with an abundance
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of schemes for creating the coarse grid and for determining the entries in interpolation. In this paper, we focus on the
coarse-grid correction process, adopting a combinatorial optimization viewpoint on the selection of coarse-grid points in
the classical AMG setting.

One of the primary differences between so-called classical (Ruge-Stüben) AMG and (smoothed) aggregation approaches
s in how the coarse grid itself is defined [11]. In aggregation-based approaches, coarse grids are defined by clustering
ine-grid points into aggregates (or subdomains), while, in classical AMG, a subset of the fine-grid degrees of freedom
points) is selected in order to form the coarse grid. In the original method [2,12], this was accomplished using a greedy
lgorithm to construct a maximal independent set over the fine-grid degrees of freedom as a ‘‘first pass’’ at forming
he coarse-grid set, which is then augmented by a ‘‘second pass’’ algorithm that ensures suitable interpolation can be
efined from the final coarse grid. Many alternative strategies to forming the coarse grid have been proposed over the
ears, particularly for the parallel case, to overcome the inherent sequentiality of the original algorithm [4,13–16]. Other
pproaches, for example based on redefining the notion of strength of connection [17–20] or use of compatible relaxation
rinciples [21,22], have also been proposed.
Much of this work has been motivated by the failure of the classical AMG heuristics to yield robust solvers for difficult

lasses of problems, such as the Helmholtz equation, convection-dominated flows, or coupled systems of PDEs. While
uch research has tried to generalize these heuristics to give sensible algorithms for broader classes of problems, another
pproach is to consider methods that abandon these heuristics in favor of algorithms that are directly tied to rigorous
ultigrid convergence theory. In recent years, two main classes of AMG algorithms have arisen in this direction. One class
f methods arises in the aggregation setting, where well-chosen pairwise aggregation algorithms coupled with suitable
elaxation can yield convergence guarantees for symmetric, diagonally dominant M-matrices [23,24]. The second class of
ethods are those based on reduction-based AMG principles, where there is a direct connection between properties of the

ine-grid submatrix and the guaranteed convergence rate of the scheme [25–28]. Reduction-based multigrid methods [29]
re a generalization of cyclic reduction [30], in which conditions on the coarse/fine partitioning are relaxed so that while
he exact Schur complement may not be sparse, it can be accurately approximated by a sparse matrix. This notion is
ade rigorous by MacLachlan et al. [25], who propose a theoretical framework to analyze convergence based on diagonal
ominance of the fine-grid submatrix (in contrast to the fine-grid submatrix being diagonal in the classical setting of
yclic reduction), and extended to Chebyshev-style relaxation schemes by Gossler and Nabben [28]. While the theoretical
uarantees offered by such methods are attractive, these approaches suffer from two key limitations. First, the classes
f problems for which convergence rates are guaranteed are limited (requiring diagonal dominance and/or M-matrix
tructure). Second, the guaranteed convergence rates of stationary iterations are generally poor in comparison to methods
ased on classical heuristics. An active area of research (disjoint from the goals of this paper) is addressing the first
imitation [31], while the second can be ameliorated by the use of Krylov subspace methods to accelerate stationary
onvergence. We note that there are other families of theoretical analysis of AMG algorithms [32], including theory tailored
o heuristic approaches, such as compatible relaxation [22]. Much of this theory, however, is of a confirmational and not a
redictive nature, i.e., the convergence bounds rely on properties of the output of heuristics for choosing coarse grids and
nterpolation operators, and not on the inputs to these processes, such as the system matrix and algorithmic parameters.
hus, while it provides guidance in the development of heuristic methods, it does not provide the concrete convergence
ounds offered by pairwise-aggregation or AMGr methods.
While the pairwise aggregation methodology [23,24] provides practical algorithms to generate coarse grids that satisfy

heir convergence guarantees, this is a notable omission in the work of MacLachlan et al. [25] and much of the work on
MGr. MacLachlan and Saad [26,27] identify that the choice of optimal coarse grids for AMGr can be quantified as the
olution of an NP-complete integer linear programming problem. They use this formulation to guide construction of a
amily of greedy coarsening algorithms that aim to maximize the size of the fine-grid set subject to maintaining a fixed
evel of diagonal dominance in the fine-grid submatrix (and, consequently, the resulting convergence bound on the AMG
ethod). While the greedy algorithm was tested on a range of problems in [26], these problems were limited primarily to
ilinear finite-element discretization on structured grids, with only a few matrices outside this class. When we assessed its
erformance on a broader class of problems, we exposed some simple test cases where it dramatically fails to perform well,
uch as standard five-point finite difference discretization, motivating further work in this area. In this paper, we follow
he theory and framework for AMGr [25,26], but aim to overcome some limitations of the underlying greedy coarsening
lgorithm. In particular, we develop a new coarsening algorithm based on simulated annealing to partition the coarse
nd fine points. Numerical results show that this algorithm achieves smaller coarse grids (than the greedy approach)
hat satisfy the same diagonal-dominance criterion. Hence, these grids lead to moderately more efficient (two-level)
lgorithms, by reducing the size of the coarse-grid problem without changing the convergence bound guaranteed by the
heory. We emphasize that this work is presented more as a proof-of-concept than as a practical coarsening algorithm, due
o the high cost of simulated annealing. In related work, we have shown that the ‘‘online’’ cost of the approach proposed
ere can be traded for a significant ‘‘offline’’ cost using a reinforcement learning approach [33]. However, a necessary next
tep in the work proposed here is in investigating more cost-effective alternatives to these methods.
This paper is arranged as follows. In Section 2, AMG coarsening and the existing greedy coarsening algorithm for

MGr are discussed. The new coarsening algorithm based on simulated annealing is outlined in Section 3. Numerical
xperiments are given in Section 4, demonstrating performance of this approach on both isotropic and anisotropic
roblems, discretized on both structured and unstructured meshes. Concluding remarks and potential future research
re discussed in Section 5.
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2. AMG coarsening

Geometric multigrid is known to be highly effective for many problems discretized on structured meshes. However, it
s naturally more difficult to make effective coarse grids (and effective coarse-grid operators) for problems discretized on
nstructured meshes. AMG was developed specifically to address this, automating the formation of coarse-grid matrices
ithout any direct mesh information. The first coarsening approach in AMG, often called classical or Ruge-Stüben (RS)
oarsening, was developed by Brandt, McCormick, and Ruge [1,2] and later by Ruge and Stüben [12]. We summarize this
pproach below, primarily to allow comparison with the reduction-based AMG method [25,29] and the greedy coarsening
pproach proposed by MacLachlan and Saad [26] that is the starting point for the research reported herein.
AMG algorithms make use of a two-stage approach, where a setup phase precedes the cycling in the solve phase.

ommon steps in AMG setup phase include recursively choosing a coarse grid and defining intergrid transfer operators.
he details of these processes depend on the specifics of the AMG algorithm under consideration, with both point-based
nd aggregation-based approaches to determining the coarse grid, and a variety of interpolation schemes possible for
oth of these.

.1. Classical coarsening

As in geometric multigrid, the coarse grid in AMG is selected so that errors not reduced by relaxation can be accurately
pproximated on coarse grids. In an effective scheme, these errors are interpolated accurately from coarse grids that
ave substantially fewer degrees of freedom than the next finer grid, thus significantly reducing the cost of solving the
oarse-grid residual problem.
In classical AMG, for an n × n matrix A, the index set Ω = {1, . . . , n} is split into sets C and F , with Ω = C ∪ F and

C ∩ F = ∅. Each degree of freedom (DoF) or point i ∈ C is denoted a C-point and a point j ∈ F is denoted an F-point.
This splitting is constructed by considering the so-called strong connections in the graph of matrix between the fine-level
variables. Given a threshold value, 0 < θ ≤ 1, the variable uj is said to strongly influence ui if −Aij ≥ θmaxk̸=i{−Aik},
where Aij is the coefficient of uj in the ith equation. The set of points that strongly influence i, denoted by Si, is defined
as the set of points on which point i strongly depends. The set of points that are strongly influenced by i is denoted by
STi . Two heuristics are followed in RS coarsening to select a coarse grid:

H1 : For every F-point, i, every point j ∈ Si should either be a coarse-grid point or should strongly depend on at least
one point in C that also strongly influences i.

H2 : The set of C-points should be a maximal subset of all points, where no C-point strongly depends on another C-point.

In practice, strong enforcement of both of H1 and H2 is not always possible; the classical interpolation formula relies on
H1 being strongly enforced, while H2 is used only to encourage the selection of small, sparse coarse grids.

2.2. Greedy coarsening and underlying optimization

While the classical coarsening algorithm has proven effective for many problems when coupled with suitable
construction of the interpolation operator [12], the process provides few guarantees in practice. Indeed, there is an
inherent disconnect between the selection of any single coarse-grid point and the impact on the quality of the resulting
interpolation operator. This has motivated coupled approaches to selecting coarse grids and defining interpolation,
including reduction-based AMG, or AMGr.

Reduction-based multigrid was proposed by Ries et al. [29], building on earlier work aiming to improve multigrid
convergence for the standard finite-difference (FD) Poisson problem. The fundamental idea of reduction-based multigrid
lies in defining the multigrid components to approximate those of cyclic-reduction algorithms [30]. In particular, one way
to interpret cyclic reduction is as a two-level multigrid method with idealized relaxation, interpolation, and restriction
operators. Suppose that the coarse/fine partitioning is already determined, and consider the reordering of the linear system
Ax = b according to the partition, writing

A =
[

AFF −AFC
−ACF ACC

]
x =

[
xF
xC

]
b =

[
bF
bC

]
.

n exact algorithm for the solution of Ax = b in this partitioned form is given by

1. yF = A−1FF bF ,
2. Solve

(
ACC − ACFA−1FF AFC

)
xC = bC + ACFyF ,

3. xF = yF + A−1FF AFCxC .

his can be turned into an iterative method for solving Ax = b in the usual way, by replacing the right-hand side vector,
b, by the evolving residual, and computing updates to a current approximation, x(k), giving

1. x(k+1/2)
F = x(k)F + A−1FF

(
bF − AFFx

(k)
F + AFCx

(k)
C

)
,

2. Solve
(
A − A A−1A

)
y = b + A x(k+1/2)

− A x(k),
CC CF FF FC C C CF F CC C

3
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3. x(k+1)C = x(k)C + yC ,
4. x(k+1)F = x(k+1/2)

F + A−1FF AFCyC .

In this form, this remains an exact algorithm: given any initial guess, x(0), we have the solution x = x(1). A truly iterative
ethod results from approximating the three instances of A−1FF in the above algorithm, namely

Â−1FF ≈ A−1FF ÂC ≈ ACC − ACFA−1FF AFC WFC ≈ A−1FF AFC , (1)

leading to the following iteration:

1. x(k+1/2)
F = x(k)F + Â−1FF

(
bF − AFFx

(k)
F + AFCx

(k)
C

)
,

2. Solve ÂCyC = bC + ACFx
(k+1/2)
F − ACCx

(k)
C ,

3. x(k+1)C = x(k)C + yC ,
4. x(k+1)F = x(k+1/2)

F +WFCyC .

In multigrid terminology, the first step can be seen as a so-called F-relaxation step, where we approximate A−1FF using
some simple approximation, such as with weighted Jacobi or Gauss–Seidel. The second step is a coarse-grid correction
step, where the residual after F-relaxation is restricted by injection, and the coarse-grid correction, yC , is computed by
solving a linear system with an approximation, ÂC , of the true Schur complement, ACC − ACFA−1FF AFC . The final two steps
correspond to an interpolation of the coarse-grid correction, writing the interpolation operator P =

[ WFC
I

]
, for some

approximation of the ideal interpolation operator, WFC ≈ A−1FF AFC . If the approximation in the first step is sufficiently
poor that a significant residual is expected to remain at the F-points after relaxation, it is also reasonable to augment
the restriction in the second step, using either the transpose of interpolation or some better approximation to an ideal
restriction operator than just injection.

As written above, the algebraic form of reduction-based multigrid retains the key disadvantage of classical AMG — there
is little connection between the algorithmic choices (of the coarse/fine partitioning, and the approximations of AFF , of the
Schur complement, and of the idealized interpolation and restriction operators) with the resulting convergence of the
algorithm. To address these limitations, MacLachlan et al. [25] proposed a reduction-based AMG algorithm (AMGr) that
attempts to connect convergence with properties of AFF . In particular, they presented a two-level convergence theory with
a convergence rate quantified by the approximation of AFF ≈ DFF , with the expectation that application of D−1FF to both a
vector and to AFC is computationally feasible. In what follows, we use the standard notation that matrices A ⪰ B when
xTAx ⪰ xTBx for all vectors x.

Theorem 2.1 ([25]). Consider the symmetric and positive-definite matrix A =
[ AFF −AFC
−ATFC ACC

]
such that AFF = DFF + E , with

DFF symmetric, 0 ⪯ E ⪯ ϵDFF , and
[ DFF −AFC
−ATFC ACC

]
⪰ 0, for some ϵ ≥ 0. Define relaxation with error-propagation operator

R =
(
I−σ

(
D−1FF 0
0 0

)
A
)
for σ = 2/(2+ϵ), interpolation P =

[
D−1FF AFC

I

]
, and coarse-level correction with error-propagation operator

T = I − P(PTAP)−1PTA. Then the multigrid cycle with ν pre-relaxation sweeps, coarse-level correction, and ν post-relaxation
sweeps has error propagation operator MG2 = Rν

· T · Rν which satisfies

∥MG2∥A ≤

(
ϵ

1+ ϵ

(
1+

(
ϵ2ν−1

(2+ ϵ)2ν

)))1/2

< 1. (2)

If a partitioning and approximation, DFF , of AFF are found that satisfy the assumptions given above, then this theorem
establishes existence of an interpolation operator, P , giving multigrid convergence with a direct tie to the approximation
parameter, ϵ. In this theory, tight spectral equivalence between DFF and AFF is required to ensure good performance of
the solver. This leads to the goal of constructing the fine-grid set so that there is a guarantee of tight spectral equivalence
between DFF and AFF .

To meet that goal, MacLachlan and Saad [26] proposed to partition the rows and columns of the matrix A in order to
nsure the diagonal dominance of AFF , so that DFF could be chosen as a diagonal matrix. In particular, a diagonal dominance
actor is introduced for each row i, defined as

θi =
|Aii|∑
j∈F |Aij|

,

With this, AFF is said to be θ-diagonally dominant if θi ≥ θ for all i ∈ F , where θ > 1/2 measures the diagonal dominance
of AFF . If AFF is θ-diagonally dominant, then it is shown that the diagonal matrix, DFF , with (DFF )ii = (2− 1

θ
)aii for all i ∈ F

eads to 0 ⪯ E ⪯ 2−2θ
2θ−1DFF , giving a θ-dependent convergence bound if the other assumptions of Theorem 2.1 are satisfied.

Furthermore, if A is symmetric, positive-definite, and diagonally dominant, then this prescription for DFF guarantees that
ll conditions of Theorem 2.1 are satisfied, so long as AFF is θ-diagonally dominant.
In addition to establishing this connection between the diagonal dominance parameter θ and the convergence

arameter, ϵ, MacLachlan and Saad [26] posed the partitioning algorithm as an optimization problem for given θ > 1/2,
sking for the largest F-set such that θ ≥ θ for every i ∈ F . Such a θ-dominant A guarantees good equivalence between
i FF

4
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a diagonal matrix, DFF , and AFF , and the largest such F-set would make the coarse-grid problem smallest. This leads to an
optimization problem of the form

max
F⊂Ω
|F |,

subject to |Aii| ≥ θ
∑
j∈F

|Aij|, ∀i ∈ F .
(3)

The greedy algorithm [26] for Eq. (3) selects rows and columns of the matrix A for AFF in a greedy manner to ensure
the diagonal dominance of AFF , as described in Algorithm 1. Here, the set U contains all the DoFs that are unpartitioned
(not yet assigned to be coarse or fine points). Initially, all degrees of freedom are assigned to U , while the F and C sets
are empty. The rows that directly satisfy the diagonal dominance criterion are initially added to the F-set (and removed
from U). If there are no diagonally dominant DoFs in the U set, then the point having the least diagonal dominance is
made a C-point. This selection may make some other points in U diagonally dominant, whereupon these DoFs are added
to the F-set and removed from U , and the process is repeated until the set U becomes empty.

Algorithm 1 Greedy coarsening algorithm

1: function greedy-coarsening(A, θ )
2: U ← {1, 2, . . . , n}, F ← ∅, C ← ∅
3: for i← 1, . . . , n do
4: θ̂i ←

|Aii|∑
j∈F∪U |Aij|

5: if θ̂i ≥ θ then
6: F ← F ∪ {i}, U ← U \ {i}
7: while U ̸= ∅ do
8: j← argmini∈U {θ̂i}

9: U ← U \ {j}, C ← C ∪ {j}
10: for i ∈ U ∩ Adj(j) do ▷ Adj(j) = {k : Ajk ̸= 0}
11: θ̂i ←

|Aii|∑
k∈F∪U |Aik|

2: if θ̂i ≥ θ then
3: F ← F ∪ {i}, U ← U \ {i}
4: Return F , C

We note that there is a slightly counter-intuitive connection between the quality of solution to Eq. (3) and the
convergence of the multigrid method. ‘‘Bad’’ solutions to Eq. (3), meaning those with satisfied constraints but that are far
from optimality, have much bigger C-sets than ‘‘good’’ solutions do and, consequently, the resulting two-level convergence
can be much better than that guaranteed by the theoretical bounds. Extreme examples of this occur when the set F is
an independent set, so that AFF is a diagonal matrix, and the resulting two-grid method is exact. While such cases can be
treated by the analysis in [26], they rely on a posteriori measurement of the largest θ for which the constraints in Eq. (3)
hold, rather than the a priori bound that is given by the initial choice of the value of θ for which we try to solve Eq. (3). Thus,
our goal in optimizing Eq. (3) is to improve complexities of the resulting algorithm (by making the F-set larger), subject
to the same two-level convergence bound fixed a priori by our choice of θ . We note that this is further complicated by
the complex relationship between two-level and multilevel convergence and complexities. In particular, when coarsening
rates are slow (corresponding to ‘‘bad’’ solutions of Eq. (3)), two-level convergence is generally a bad predictor of multilevel
convergence (since good two-level convergence relies on an assumption of exact solution of large coarse-grid matrices).
We present the supporting numerical results to explore this connection in Section 4.2, but note that the work proposed
here seeks specifically to improve the quality of solution to Eq. (3), by finding larger F-sets that satisfy the constraints for
a specified value of θ .

While the convergence bound for AMGr is attractive, it has several shortcomings. First and foremost is the strict
assumption on diagonal dominance needed for the convergence guarantee to be valid — we explore cases where this
is not the case below in Sections 4.3 and 4.4, and see that these problems are, indeed, more difficult to handle in this
framework. Second, we emphasize that while the convergence bound obtained in Theorem 2.1 depends only on ϵ (and,
thus, is independent of mesh size if the coarse grid is generated by Algorithm 1 or the techniques introduced below
with constant θ ). These bounds are generally worse than the observed convergence for standard AMG approaches. Using
θ = 0.56, as we do for all examples below, gives ϵ = 22/3, and the convergence bound for ν = 1 in Eq. (2) is 0.977. While
this can be improved by using either more relaxation per cycle or by accelerating convergence with a Krylov method, we
consider only stationary cycles here, accepting poorer convergence factors in exchange for a direct relationship to the
convergence theory summarized above. We note that this is also similar to the stationary convergence bound for the
method in Napov and Notay [23], which is 0.93 for problems that satisfy the assumptions therein.
5
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3. Simulated annealing

The optimization problem in Eq. (3) is a combinatorial optimization problem. Because such problems arise in many
reas of computational science and engineering, significant research effort has been devoted to developing algorithms
or their solution, both of general-purpose type (e.g., branch and bound techniques) and for specific problems (e.g., the
raveling salesman problem) [34]. For many problems, the size of the solution space makes exhaustive brute-force
lgorithms infeasible; for some such problems, branch and bound techniques may be successful in paring down the
olution space to a more manageable size. In many cases, however, there are no feasible exact algorithms, and stochastic
earch algorithms, such as simulated annealing (SA), genetic algorithms, or tabu search methods, can be employed [35].
n this work, we apply SA algorithms to approximate the global minimum of the optimization problem in Eq. (3).

Simulated annealing (SA) is a probabilistic method used to find global optima of cost functions that might have a large
umber of local optima. The SA algorithm randomly generates a state at each iteration and the cost function is computed
or that state. The value of the cost function for a state determines whether the state is an improvement. If the current
tate improves the value of the objective function, it is accepted to exploit the improved result. The current state might
lso be accepted, with some probability less than one, even if it is worse than the previous state, however the probability
f accepting a bad state decreases exponentially with the ‘‘badness’’ of the state. The purpose of (sometimes) accepting
nferior states, known as ‘‘exploration’’, is to avoid being trapped in local optima, and the inferior intermediate states
re considered in order to give a pathway to a globally better solution. The total number of iterations of SA depends
n an initial ‘‘temperature’’ and the rate of decrease of that temperature. The temperature also affects the probability of
ccepting a bad state, with the exploration phase of the algorithm becoming less probable as the temperature decreases,
o ensure convergence to a global optimum.

.1. Idea and generic algorithm

Consider the set F of fine points to be the current state. To find F that maximizes a fitness function z(F ), such as
z(F ) = |F | in Eq. (3), simulated annealing proceeds as shown in Algorithm 2. The temperature T starts at an initial value
and decays by a factor α ∈ (0, 1) at each iteration (the ‘‘cooling schedule’’). A key choice when using simulated annealing
is a method for choosing a neighbor state F̃ that is close to the current state F . In the case of optimizing the choice of a
subset F ⊂ Ω , a straightforward choice is to choose F̃ by randomly adding or removing an element from F . Finally, the
function P(z, z̃, T ) is the probability of accepting a move from a current state with fitness z to the new state with fitness
z̃. The standard acceptance function is

P(z, z̃, T ) =
{
1 if z̃ > z,
exp

(
−(z − z̃)/T

)
otherwise.

(4)

This probability function always accepts transitions that raise the fitness, and sometimes accepts transitions that decrease
the fitness. Occasionally accepting fitness-decreasing transitions is essential to escape local maxima in the energy
landscape, with the chance of such transitions being controlled by the current temperature. By analogy with the physical
annealing of metals, at high temperatures we will accept almost all fitness-decreasing transitions, allowing exploration of
the fitness landscape, but as the temperature cools we will accept fewer of these transitions, until we eventually become
trapped near a fitness maximum.

Algorithm 2 Generic simulated annealing (SA) algorithm
1: Initialize F to a random state and T to an initial temperature
2: for nsteps iterations do
3: Randomly pick a neighbor state F̃ of F
4: if rand(0, 1) < P(z(F ), z (̃F ), T ) then
5: F ← F̃
6: T ← αT
7: Return F

Much work has been devoted to the design of optimal transition probability functions [36] and cooling schedules [37]
in simulated annealing algorithms. While it can be shown that simulated annealing converges to the global maximum
with probability one as the cooling time approaches infinity [38], in practice the performance depends significantly on
the selection of the neighbors F̃ of the current state F . A common heuristic for choosing neighbors is to select states with
similar fitness, which is more efficient because we are less likely to reject such transitions, although this is in tension
with the desire to escape from steep local maxima.

There are also different algorithmic possibilities for the handling of constraints on the state F . Given a constraint
subset of allowable states, one common method of enforcing the constraint is to pick only neighbor states F̃ that are in
the constraint subset. This method is appropriate if the constraint subset is connected and constraint-satisfying neighbors
6
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can always be found, and it is easy to see that this algorithm inherits all theoretical properties of the unconstrained version.
An alternative method, which we will use in Section 3.2, is to allow constraint-violating neighbors to be selected but keep
a record of the highest-fitness constraint-satisfying state visited. This method is advantageous when constraint-violating
paths in state space allow rapid transitions between (possibly disconnected) areas in the constraint subset. This algorithm
also preserves the global guarantees of convergence under the condition that the global maximum is constraint satisfying.

3.2. Adaptation to coarse/fine partitioning

While it is possible to apply SA directly to the optimization problem in Eq. (3), preliminary experiments show that
his is inefficient, due to the global coupling of the degrees of freedom in the optimization problem. To overcome this,
e consider a domain decomposition approach to solving the optimization problem, where we first divide the discrete
et of degrees of freedom into (non-overlapping) subdomains (the construction of which is considered in detail in the
ollowing subsection) and apply SA to the subdomain problems. These subdomain problems are not independent, therefore
nformation is exchanged about the tentative partitioning on adjacent subdomains; this is accomplished in either an
dditive (Jacobi-like) or multiplicative (Gauss–Seidel-like) manner. For sufficiently small subdomains, however, SA can
fficiently find near-optimal solutions to localized versions of the optimization in Eq. (3), and we focus on this process
elow.
SA is run on each subdomain to partition its DoFs into (local) C- and F-sets. As the suitability of this partitioning in a

global sense naturally depends on decisions being made on adjacent subdomains, we must be careful to consider what
happens to DoFs in the global mesh adjacent to those in the subdomain. If these subdomains already have their own
tentative C/F partitions computed (as is expected to be the case on all but the first sweep through the domain), then
this partitioning is considered fixed, and used to guide decisions on the current subdomain. If no tentative partitioning
has yet been computed on a neighboring subdomain, then the points in the neighboring subdomain that are connected
to some DoFs of the current subdomain are considered to be F-points, while all other DoFs in the neighboring subdomain
are considered to be C-points. These assumptions are used only for the purposes of computing the partitioning on the
current subdomain, to apply hard constraints on the partitioning.

Specifically, if Ω = {1, 2, . . . , n} is the global set of degrees of freedom, partitioned into s disjoint subdomains as
Ω = ∪s

k=1Ωk, then the optimization problem to be solved on subdomain k is given as

max
Fk⊂Ωk
|Fk|,

subject to |Aii| ≥ θ
∑
j∈F

|Aij|, ∀i ∈ F̄k,

where information from other subdomains enters in the constraint, both as additional points for which the constraint
must be satisfied and in the right-hand side of the constraint where we sum over j ∈ F (and not j ∈ Fk). Here, Fk is the
current set of points in Ωk that are in the F-set, and we define Ck = Ωk \ Fk to be the complementary C-set. Further, we
use F̄k and F to denote the sets of tentative F-points in Ωk and Ω , respectively, where the standard ‘‘closure’’ notation,
Ωk, denotes the set of points j, such that either j ∈ Ωk or Aij ̸= 0 for some i ∈ Ωk. In the localized optimization problem
above, the set F̄k contains both the points in Fk and any point j ∈ Ωk\Ωk such that either j is in the Fℓ-set in a neighboring
ubdomain, Ωℓ, that has a tentative partition or j ∈ Ωℓ for a neighboring subdomain, Ωℓ, that does not yet have a tentative
partition. We note that a key part of this localization is that we make choices to optimize the partitioning on the local
set, Ωk, but consider the impacts of these choices on the global F-set, not only on the local set, Fk. Thus, when we localize
to subdomain Ωk, we consider the constraints on F̄k, including all points in Ω where the choice of Fk could possibly lead
to a constraint violation.

Within an annealing step on a given subdomain, Ωk, we take the current tentative set Fk as the initial guess for
the partitioning, with the exception of the first step, where we take Fk = ∅ for all i ∈ Ωk (to ensure we start from
a configuration that satisfies the constraint). As a benchmark for the annealing process, we initialize n(k)

F as the largest
ize of a constraint-satisfying F-set seen so far on Ωk (taken to be zero on the first iteration), and zk to be the number
f constraint-satisfying F-points in the current set F̄k. At each annealing step on Ωk, we swap points in and out of Fk,
ither increasing, decreasing, or maintaining its size, with equal probability. The basic algorithm for these swaps is given
n Algorithm 3, where we take the sets Fk and Ck as input, along with values nF and nC giving the numbers of points to
wap from Ck to Fk and vice-versa. We note that there are two possible ways to do this swap, either selecting the elements
rom Fk and Ck independently and then moving the elements, or first moving the selected elements from Fk and, then,
electing the elements from the updated set Ck to move. We follow the first way as preliminary experiments suggested
hat it gives slightly better results.

Algorithm 4 shows the complete annealing algorithm, with inputs given by the matrix, A, its decomposition into s
ubdomains, {Ωk}

s
k=1, the initial temperature, T , and its decay rate, α, as well as the number of SA steps to run for each

egree of freedom in A, nper DoF and for each degree of freedom in each cycle, nper DoF per cycle. In each cycle, annealing
s run on every subdomain, with an ordering determined as discussed below. The main annealing step on Ωk, as given
n Algorithm 5, then takes the form of selecting whether to increase, decrease, or maintain the size of Fk, checking if the
elected action is possible, and performing it if it is. To increase the size of F , we first check that C has sufficient entries
k k

7
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Algorithm 3 swapFC(Fk, Ck, nF , nC )

1: F̃k ← Fk
2: C̃k ← Ck
3: Randomly select nC points from Fk, remove the points from F̃k, and add the points to C̃k
4: Randomly select nF points from Ck, remove the points from C̃k, and add the points to F̃k
5: Return F̃k, C̃k

to move. If so, we increase the size of Fk by selecting x+ y entries of Ck to move to Fk and y entries of Fk to move to Ck,
for pre-determined values of x and y (typically x = 1, y = 0, although these values could also be drawn from a suitable
distribution). If the decision is made to swap points, we check that both Fk and Ck have sufficient points to swap, then
swap x points from each set into the other (typically x = 1). Finally, if the decision is made to decrease the size of Fk, we
check that it has points to remove, then move x+ y points from Fk to Ck and y points from Ck to Fk (ensuring x+ y > 0;
ypically x = 1, y = 0). Finally, we measure the fitness of the resulting tentative F-set and decide whether or not to
ccept it before decrementing the temperature by the relative factor α and the number of further annealing steps to take
y one.

Algorithm 4 annealing-on-Ω(A, {Ωk}
s
k=1, T , α, nper DoF, nper DoF per cycle)

1: F ← ∅, Fk ← ∅ for all k = 1, . . . , s
2: Ck ← Ωk for all k = 1, . . . , s
3: n(k)

F ← 0, zk ← 0 for all k = 1, . . . , s
4: ncycle ← nper DoF/nper DoF per cycle
5: for i← 1, . . . , ncycle do
6: for k← 1, . . . , s do
7: nsteps ← nper DoF per cycle × |Ωk|

8: Fk, Ck, n
(k)
F , zk, F , T ← annealing-on-Ωk(Fk, Ck, n

(k)
F , zk, F , T , α, nsteps)

9: C ← Ω \ F
10: Return F , C

Algorithm 5 annealing-on-Ωk(Fk, Ck, n
(k)
F , zk, F , T , α, nsteps)

1: for nsteps iterations do
2: Randomly generate r ∈ {0, 1, 2} with equal probability
3: if r = 0 & |Ck| ≥ x+ y then
4: F̃k, C̃k ← swapFC(Fk, Ck, x+ y, y)
5: if r = 1 & min(|Fk| , |Ck|) > x then
6: F̃k, C̃k ← swapFC(Fk, Ck, x, x)
7: if r = 2 & |Fk| ≥ x+ y then
8: F̃k, C̃k ← swapFC(Fk, Ck, y, x+ y)
9: Construct tentative F̄k, C̄k from F̃k, C̃k, and F

10: Fk, Ck, n
(k)
F , z, F ← accept(Ωk, F̃k, C̃k, F̄k, n

(k)
F , z, T , F )

1: T ← αT
2: Return Fk, Ck, n

(k)
F , zk, F , T

The fitness score of a given (tentative) partition over Ωk is directly calculated as the number of points in the set
that satisfy the diagonal dominance criterion, as outlined in Algorithm 6. In the acceptance step of the algorithm, given
as Algorithm 7, we compute the fitness score for the tentative F̄k and compare it to that of the current (last accepted) set
F̄k. If the fitness score increases or remains same, then we automatically accept the step and update Fk, Ck, and z. In this
case, we additionally check if all points in the current F̄k-set are constraint satisfying and if this set increases the value of
n(k)
F . If so, we update the value of n(k)

F (and update the global F-set). If z̃ < z, then the step is accepted with a probability
hat decreases with temperature and z − z̃, but the additional check need not be done.
Algorithm 6 fitness(F̄k)

1: Calculate diagonal dominance for each DoF in the set F̄k
2: z̃ ← the number of points that meet the diagonal dominance criterion
3: Return z̃
8
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Algorithm 7 accept(Ωk, F̃k, C̃k, F̄k, n
(k)
F , z, T , F )

1: z̃ ← fitness(F̄k)
2: if z̃ ≥ z then
3: z ← z̃, Fk ← F̃k, Ck ← C̃k

4: if z̃ =
⏐⏐F̄k⏐⏐ & z̃ ≥ n(k)

F then
5: n(k)

F ← z̃
6: F ← (F \Ωk) ∪ F̃k
7: else
8: Randomly generate x ∈ [0, 1]
9: if x < e(−(z−z̃)/T ) then
0: z ← z̃, Fk ← F̃k, Ck ← C̃k

1: Return Fk, Ck, n
(k)
F , z, F

3.3. Localization and Gauss–Seidel variants

In Section 4, we consider both structured-grid and unstructured-grid problems; consequently, we consider both
eometric and algebraic decompositions of Ω into {Ωk}

s
k=1. An important advantage of algebraic partitioning, however,

s that it can be used to generate deeper multigrid hierarchies, since geometric partitioning can only be used to generate
single coarse level (which has unstructured DoF locations and, thus, does not naturally lead to further geometric
artitioning). Here, we outline both strategies.
For structured grids, we can consider geometric decomposition of the fine grid into subdomains. For problems with

eliminated) Dirichlet boundary conditions, we typically satisfy the diagonal dominance criterion already at all points
djacent to a Dirichlet boundary, so these points are taken as F-points from the beginning and not included in the
ecomposition into subdomains. A natural strategy is to subdivide the remaining points into square or rectangular
ubdomains of equal size (modulo boundary/corner cases). We consider this in Section 4 for both finite-difference (FD)
nd bilinear finite-element (FE) discretizations on uniform meshes. When the number of points (in one dimension) to
e decomposed is not evenly divided by the given subdomain size (in one dimension), the right-most and bottom-
ost subdomains on the mesh are of smaller size, given by the remainder in that division. On structured grids, we can
onsider either a lexicographical Gauss–Seidel iteration over the subdomains or a four-colored Gauss–Seidel iteration.
n preliminary experiments, the four-colored Gauss–Seidel iteration outperformed the lexicographical strategy by a small
argin, so we use this. While the nature of the cycling is not explicitly encoded in the loop over subdomains in Algorithm
, we assume that the subdomain indexing in {Ωk} is consistent with the cycling strategies discussed here.
On both structured and unstructured grids, we also consider algebraic decomposition using Lloyd aggregation to define

he subdomains. Lloyd aggregation, proposed by Bell [39] and given in Algorithm 8, is a natural application of Lloyd’s
lgorithm [40] to subdivide the DoFs of a matrix into well-shaped subdomains. Given a desired number of subdomains
or average size per subdomain), the unit-distance graph of the matrix is constructed and one ‘‘center’’ point for each
ubdomain is randomly selected. Each (tentative) subdomain is then selected as the set of points that are closer to
he subdomain center point than to any other subdomain center, using a modified form of the Bellman-Ford algorithm
Algorithm 9). Then, for each subdomain, the center point is reselected (again using a modified form of the Bellman-Ford
lgorithm), as the current centroid of the subdomain (a DoF having maximum distance from the subdomain boundary,
reaking ties arbitrarily). This process is repeated (reforming subdomains around the new centers, then reassigning
enters) until the assignment to subdomains (denoted by the ‘‘membership vector’’, m) has converged.

Algorithm 8 lloyd-aggregation(A, Vc)
1: repeat
2: d,m← modified-bellman-ford(A, Vc)
3: B← ∅
4: for i, j such that |Ai,j| > 0 do
5: if mi ̸= mj then
6: B← B ∪ {i, j}
7: d, x← modified-bellman-ford(A, B)
8: Vc ← {i ∈ Ω : di > dj ∀mi = mj}

9: until no change in Vc and m
10: Return m

In the algebraic case, a multicolored Gauss–Seidel iteration strategy is slightly more complicated, since we would
need to compute a coloring of the subdomains; hence, we simply use lexicographical Gauss–Seidel to iterate between
9
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Algorithm 9 modified-bellman-ford(A, Vc)
1: di = ∞ for all i = 1, . . . , |Ω| ▷ shortest-path distance from node i to nearest center
2: mi = −1 for all i = 1, . . . , |Ω| ▷ cluster index (membership) containing node i
3: for c ∈ Vc do
4: dc ← 0
5: mc ← c
6: while True do
7: done← True
8: for i, j such that |Ai,j| > 0 do
9: if di + dij < dj then
0: dj ← di + dij
1: mj ← mi
2: done← False
3: if done then
4: Return d,m

subdomains, noting that the advantage of the four-color iteration in the structured case is quite small. While the results
in this paper are generated using a serial implementation and lexicographical Gauss–Seidel, the algorithm could easily be
parallelized using a multicolored Gauss–Seidel iteration.

3.4. Benchmark results

A natural comparison is with that of the greedy strategy [26], which we provide in the following numerical results. For
he structured-grid discretizations, we have also explored optimization ‘‘by hand’’, meaning pencil-and-paper analysis of
trategies that try and maximize the size of the global F-set while satisfying the constraint.
For the five-point finite-difference stencil of the Laplacian on a uniform 2D mesh, for any value 1

2 < θ < 4
7 , the diagonal

ominance criterion will be satisfied if every F-point has at least one C-neighbor. An optimal strategy [33] for this case
rises by dividing the fine mesh into ‘‘X-pentominos’’, sets of five grid points with one center point and its four cardinal
eighbors, plus edge/corner cases where only a subset of an X-pentomino is needed. Then, the C-set can be selected as
he center points of each X-pentomino (or subset of one), with the remaining points assigned to the F-set. In an ideal case
e.g., with periodic boundary conditions, or minimal edge cases), this leads to an F-set with size equal to 4/5 of the size
f Ω . Such a coarsening is shown in the left panel of Fig. 1. Note that some points adjacent to Dirichlet BCs are naturally
hosen as coarse points in this strategy, despite their inherent diagonal dominance, because they are center points of an
-pentomino that includes just one point in the region away from the boundary. These could be equally well treated by
aking the interior point in these X-pentominos a C-point and leaving the center point on the boundary as an F-point,
ut there is no advantage to doing so.
For the nine-point bilinear finite-element discretization of the Laplacian on a uniform 2D mesh, for any value of θ

ess than 4/7, the diagonal dominance criterion will be satisfied if every F-point has at least two C-neighbors. Here, we
artition the points (again except those adjacent to a Dirichlet boundary) into square subdomains of size 3 × 3, and select
wo points consistently in each subdomain as C-points. In an ideal case, where we can fill the domain with 3 × 3 ‘‘bricks’’,
his leads to an F-set with 7/9 of the size of Ω . Such a coarsening is shown in the right panel of Fig. 1. When the domain
annot be filled perfectly with 3 × 3 bricks, the remaining square/rectangular regions still require one or two C points to
e selected, reducing the optimal size of the resulting F set.

4. Results

In the results below, unless stated otherwise, we set the initial (global) temperature at T = 1, and compute the
reduction rate, α, so that αnts = 0.1, where nts is the total number of annealing steps to be attempted. Thus, these
experiments end when the global temperature reaches 0.1. In addition, for each problem, we determine nts by fixing
a total number of steps per DoF in the system, and report results based on the allotted number of steps per DoF, nper DoF.
his work is further subdivided into Gauss–Seidel sweeps by fixing values of the number of annealing steps per DoF per
weep, nper DoF per cycle, with the number of sweeps determined as the ratio of total steps per DoF to steps per DoF per
weep, as on Line 4 of Algorithm 4.
We first consider structured-grid experiments for both the finite-difference (five-point) and bilinear finite element

nine-point) discretizations of the Laplacian, using a 32 × 32 mesh to explore how much work is needed to determine
ear-optimal partitions using both geometric and algebraic divisions into subdomains. Using these experiments to identify
‘best practices’’, we then explore how the coarsening algorithm performs as we change the problem size, move from
tructured to unstructured finite-element meshes, and isotropic to anisotropic operators.
10
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Fig. 1. Splitting of C- and F- points for 11 × 11 meshes from optimization ‘‘by hand’’. At left, X-pentomino coarsening for five-point FD scheme. At
right, 3 × 3 brick coarsening for nine-point FE scheme. At left, we color by the X-pentominos and at right, we color by the 3 × 3 bricks. C-points
are represented by the black circles.

4.1. Structured-grid discretizations with geometrically structured subdomains

We start by considering the five-point finite-difference stencil on a fixed (uniform) 32 × 32 mesh, and consider the
effects of changing both the size of the Gauss–Seidel subdomains and the distribution of work in the algorithm. As a
measure of quality of the results, we consider the maximum of the ratio |F |/|Ω| over all constraint-satisfying F-sets
generated in a single run of the annealing algorithm. As a comparison, for this problem, the best optimization ‘‘by hand’’
of the size of the F-set yields |F |/|Ω| = 0.8047, as depicted by the black lines in Fig. 2, while the greedy algorithm [26]
yields |F |/|Ω| = 0.561 (not depicted because it is far from the data shown here). We vary three algorithmic parameters in
Fig. 2, the total number of SA steps per DoF, with values ranging from 5000 to 2 000 000, the number of SA steps per DoF
in a single sweep of Gauss–Seidel on each subdomain, and the size of the subdomains used in the Gauss–Seidel sweeps.

We can draw three conclusions from the data presented in Fig. 2. First, we note that if the subdomains are ‘‘too small’’,
then there is little benefit in investing substantial work in the SA process, as shown in the top row for 2 × 2 and 3 × 3
subdomains. Here, while there is clearly a small benefit to increasing the number of SA steps per DoF per sweep from 1
to about 10, there is little improvement beyond those results, and little correlation between the quality of partitioning
generated and the total amount of work invested. This occurs consistently in the numerical results throughout this paper:
for small subdomain sizes, each subdomain seems to have too little freedom to make adjustments into better global
configurations while still satisfying local constraints. Secondly, when we consider larger subdomains (as in the bottom
row), we see that doing more work overall does, indeed, pay off, particularly for the largest subdomains (6 × 6, at bottom
right). This is also consistently observed; in particular, that for larger subdomains we see both better overall configurations
(if sufficient work is performed) and improvements with larger work budgets. Finally, for the largest subdomains, we see
a clear benefit to doing relatively few SA steps per DoF per cycle. Thus, in further results, we generally fix the number of
SA steps per DoF per cycle to be relatively small, either 1 or 5.

A key question is how to balance the parameters in the SA algorithm to achieve reasonable performance at an
acceptable cost. To examine this, we fix the total number of annealing steps per DoF and consider the best partitioning
achieved by varying the subdomain size in the left panel of Fig. 3. Here, we run for a number of different values of the
number of SA steps per DoF per Gauss–Seidel sweep, and take the best partitioning observed over these grids for each
subdomain size (noting that the optimal choice varies with subdomain size, typically being larger for small subdomain
sizes and smaller for large subdomain sizes, see Table A.10 in Appendix for full details). When using 200 000 SA steps
per DoF, there is a clear maximum in the graph for 4 × 4 subdomains, although the relative difference in quality in
not substantial; however, when using 2 000 000 SA steps per DoF, we see continued improvement in the quality of the
partitioning up to the 6 × 6 subdomain case. In the right panel of Fig. 3, we look more closely at the convergence of
the results with increasing numbers of SA steps per DoF for the case of 6 × 6 subdomains, again taking the best results
obtained for different values of the number of SA steps per DoF per Gauss–Seidel sweep, see Table A.11 in Appendix for
full details. Here, we see a clear improvement in the results up to O(105) SA steps per DoF, and continued improvement
up to 2 000 000 SA steps per DoF. We recall that we fix the SA temperature reduction rate, α, so that α→ 1 as the number
of SA steps increases, yielding the same total reduction in T for each experiment. Thus, the results in Fig. 3 are consistent
with the expected behavior of SA, that we can achieve results arbitrarily close to the global maximizer of our functional
but only if we take many steps and slowly ‘‘cool’’ the SA iteration. For a more practical algorithm, we emphasize the
behavior at lower numbers of SA steps/DoF, noting that we achieve results within 5% of the best-known solution already
with only 3000 steps / DoF, and within 2% at around 50 000 steps/DoF.
11
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Fig. 2. Maximum value of |F |/|Ω| with number of annealing steps per DoF per GS sweep for different numbers of annealing steps per DoF for
the 32 × 32 uniform-grid five-point finite-difference discretization. Each panel shows a different size of geometrically chosen subdomain: 2 × 2
top-left), 3 × 3 (top-right), 4 × 4 (bottom-left), 6 × 6 (bottom-right).

Fig. 3. Left: Change in |F |/|Ω| with subdomain size for the 32 × 32 uniform-grid five-point finite-difference discretization, using geometric
ubdomains, with 5000, 200 000, and 2 000 000 total SA steps per DoF. Right: Change in maximum number of F-points with number of total
A steps per DoF for this problem using 6 × 6 subdomains.

A natural question that arises from the right-hand panel of Fig. 3 is whether the best meshes obtained occur early or
ate in the annealing process. That is, while we clearly see benefit from slow ‘‘cooling’’ of the annealing process (many SA
teps per DoF), it is important to identify when the optimal results are obtained during the annealing process. Fig. 4 shows
he annealing history for a sample run, on the 32 × 32 uniform grid five-point finite-difference stencil, with 2 000 000
A steps per DoF (for a total of almost 2 × 109 annealing steps). At right, we see the temperature decay, following an
xponential curve from T = 1.0 at the first step to T = 0.1 at the final step. At left, we plot the changes in the ratio |F |/|Ω|

compared to the optimized by hand mesh for this grid (also shown). For comparison, the ratio from the greedy algorithm
12
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Fig. 4. Change in |F |/|Ω| (left) and temperature (right) with number of annealing steps for the 32 × 32 uniform-grid finite-difference discretization
f the Laplacian. At left, the case of SA with five SA steps per DoF per GS sweep using 6 × 6 subdomain size is shown, along with greedy as a
aseline. Note that the vertical axis on the left plot uses a mixed log-linear scale for clarity, with a break at −10−2 .

Fig. 5. Change in |F |/|Ω| with SA steps per DoF for a fixed temperature decay rate (left) and temperature (right) for the 32 × 32 uniform-
grid finite-difference discretization of the Laplacian. Here, one SA step per DoF per sweep is used, and the temperature decay rate is fixed, with
α = 0.1(1.0/(200000×32×32)) . The circles in the right figure show the stopping temperatures for the annotated SA steps per DoF.

is also shown. We see that after an initial rapid improvement in the value of the ratio, there is a secondary period where
performance improves notably but steadily, up to between 5× 108 and 109 total annealing steps. This demonstrates that
many annealing steps are, indeed, needed to reach the best partitioning seen here, although a good partitioning is still
found after many fewer steps.

Thus far, we have only considered the choice of α prescribed at the beginning of this section, with the decay rate chosen
to yield a fixed temperature decay by a factor of 10 over the total number of SA steps given. In contrast, Fig. 5 considers
fixing the decay rate to be that used for 200 000 SA steps per DoF, α = 0.1(1.0/(200000×32×32)), but then running between
4 times fewer and 2.5 times more total SA steps, with one SA step per DoF per cycle, yielding final temperature values
between 0.5623 and 0.0032. At left of Fig. 5, we observe little correlation between the total number of SA steps per DoF
and the resulting value of |F |/|Ω|, with all values between 0.79 and 0.80, comparable to those seen for similar SA budgets
in Fig. 3. While this appears to offer an opportunity for saving some cost in the SA algorithm (by using fewer Gauss–
Seidel sweeps to get comparable results), we note that using 50 000 SA steps per DoF is already prohibitively expensive
for an ‘‘online cost’’ for this algorithm, requiring more than 30 min to compute the partitioning for this relatively small
problem.

We next address the nature of the grids generated by annealing, and whether they resemble grids that could be
selected geometrically for this problem. Fig. 6 shows two of the grids generated, along with the subdomains used in
their generation. These represent the ‘‘best’’ grids found by the annealing procedure, with ratios of |F |/|Ω| of around
0.795. While these grids yield competitive ratios, there is no clear global geometric pattern, nor obvious relationship to
the best optimized by hand grid shown in Fig. 1. Furthermore, there are no clear improvements of these grids that could
be readily made, such as single coarse points that could be omitted without leading to constraint violations. This suggests
that the energy landscape for this problem is likely dominated by locally optimal configurations that are separated by
states with constraint violations and/or sharp changes in energy.
13
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Fig. 6. Grid partitioning for 32 × 32 uniform grid with five-point FD stencil using two million SA steps per DoF. At left, the partitioning is generated
using primarily 4 × 4 subdomains, with 25 SA steps per DoF per cycle. At right, the partitioning is generated using 6 × 6 subdomains, with 5 SA
teps per DoF per cycle. The grid at left has 814 F-points, while that at right has 816.

Fig. 7 shows how the performance of the annealing algorithm scales with problem size, for both the geometric choice of
ubdomains for the finite-difference discretization discussed so far, and for the finite-element discretization. In addition,
n algebraic selection (discussed below) is added for comparison. All methods (including the optimization by hand)
erform relatively well for small meshes, but degrade as the mesh size increases. The amount of work needed to achieve
hese results with the annealing algorithm also increases with grid size. For the 8 × 8 mesh, using a single (global)
ubdomain, equally-good partitions to the optimization by hand can be found with just 2000 annealing steps per DoF (and
ewer when more subdomains are used). For the 16 × 16 mesh, more work and larger subdomains are needed to achieve
such performance. As noted above, with small subdomains even using 200 000 annealing steps per DoF does not achieve
performance equal to the by-hand partitioning on the 16 × 16 mesh. For larger subdomains, the algorithm does equal the
esults of the by-hand partitioning, but with increasing work as subdomain size increases: for 4 × 4 subdomains, 10 000
nnealing steps per DoF are needed, while 50 000 annealing steps per DoF are needed for 5 × 5 subdomains. For 6 × 6

subdomains, even using 200 000 annealing steps per DoF, we could not recover results matching the by-hand partitioning,
although we speculate that this would have occurred with even more work invested. For larger domain sizes, the results
shown in Fig. 7 represent the best results found for a given grid over all runs with varying subdomain sizes, total SA steps
per DoF, and SA steps per DoF per GS sweep. While these best results are, in general, achieved with the largest allocations
of SA steps per DoF tried in our experiments, the marginal benefit of considering such large amounts of work to generate
the coarsenings are quite low. Here, in all cases where we invested the computational effort to explore the question, we
found less than a 1% improvement in |F |/|Ω| when increasing beyond O(105) SA steps per DoF (and, in many cases, the
improvement was only by one or two F-points).

For the nine-point finite-element stencil, we see similar results to those reported above and, consequently, do not
include figures detailing the individual experiments in as much detail. Most notably, the best partitioning that we achieve
by hand is a slightly worse in this case (as detailed in Section 3.4), and the partitioning using the greedy algorithm is better
than in the FD case, yielding |F |/|Ω| = 0.752. At left of Fig. 8, we show an analogous figure to Fig. 2 for the case of 5 × 5
subdomains. Here, we observe the same stratification. However, we are able to recover the same quality of partitioning as
the best by-hand partitioning using 5× 5 subdomains and 2 000 000 SA steps per DoF. Also note that we see the same mild
dependence on the number of SA steps per DoF per sweep as we did in the FD case. The right panel of Fig. 8 shows how
the quality of partitioning changes with subdomain size and total work budget, with SA steps per DoF per sweep reported
in Table A.14 in Appendix. Similarly to the FD case, there is an improvement in performance with additional work for
larger subdomain sizes, but that improvement stagnates with additional work for smaller subdomain sizes. Sample grids
generated for the finite-element case, including coloring to indicate subdomain choice, are shown in Fig. 9.

Finally, we verify that the result two-level AMGr algorithms are at least as effective as predicted in theory, by measuring
asymptotic convergence factors (ρ), grid complexities (Cgrid, equal to the ratio of sum of the number of DoFs on each level
of the hierarchy to that on the finest level), and operator complexities (Cop, equal to the ratio of the sum of the number
f nonzero entries in the system matrix on each level of the hierarchy to that on the finest level). We approximate ρ

y running the cycle with a random initial guess, x(0), and zero right-hand side, and then compute
(x(k) /

x(0))1/k,
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Fig. 7. Change in |F |/|Ω| with mesh size for FD (left) and FE (right) discretizations.

Fig. 8. Quality of coarsening for the 32 × 32 uniform-grid nine-point finite-element discretization, using geometric subdomains. Left: Maximum
value of |F |/|Ω| with number of annealing steps per DoF per GS sweep for different numbers of annealing steps per DoF using 5 × 5 geometric
ubdomains. Right: Change in |F |/|Ω| with subdomain size and total number of SA steps per DoF.

Fig. 9. Grid partitioning for 32 × 32 uniform grid with nine-point FE stencil using two million SA steps per DoF. At left, the partitioning is generated
using 5 × 5 subdomains, with one SA step per DoF per cycle. At right, the partitioning is generated using 6 × 6 subdomains, also with one SA step
er DoF per cycle. The grid at left has 814 F-points, while that at right has 811.
15
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Table 1
Performance of two-level AMGr on test matrices from discretizations of the 2D Laplacian.
Scheme Grid size Geometric subdomains Algebraic subdomains

ρ Cgrid Cop ρ Cgrid Cop

8 × 8 0.85 1.16 1.12 0.85 1.16 1.12
16 × 16 0.86 1.19 1.18 0.86 1.19 1.18

FD 32 × 32 0.88 1.20 1.20 0.88 1.21 1.20
64 × 64 0.89 1.22 1.22 0.88 1.22 1.22

128 × 128 0.89 1.22 1.23 0.88 1.22 1.23

8 × 8 0.70 1.16 1.15 0.70 1.16 1.15
16 × 16 0.63 1.20 1.22 0.63 1.20 1.22

FE 32 × 32 0.67 1.21 1.23 0.69 1.21 1.25
64 × 64 0.71 1.21 1.25 0.72 1.22 1.27

128 × 128 0.71 1.22 1.27 0.71 1.22 1.27

Fig. 10. Change in maximum number of F-points with subdomain size for algebraic subdomain selection on 32 × 32 meshes. Left and right figures
re for FD and FE schemes, respectively, showing the largest value of |F |/|Ω| attained over experiments with fixed subdomain size and varying the
otal number of SA steps per DoF and SA steps per sweep, as in the geometric subdomain case.

here x(k) is the approximation (to the true solution, which is the zero vector) after k cycles. Because the convergence
actors of AMGr are somewhat larger than those for classical AMG, we take k = 800 to ensure that we sample the
symptotic behavior suitably. Table 1 reports this data for two-level cycles for both the FD and FE discretizations, for
oth the geometric subdomain choice considered here and the algebraic subdomain choice discussed next. Considering
he geometric subdomain choice, we see grid-independent convergence factors of about 0.9 for the FD case and 0.7 for
he FE case. While these are notably worse than are observed for typical multigrid methods for these problems, they
re consistent with the existing results for AMGr and, in particular, conform with the convergence rate bound from
heorem 2.1 of 0.977 for θ = 0.56 and ν = 1. Notably, neither the convergence factor nor the measured complexities
egrade substantially with problem size. We note that, in subsequent work, we have improved convergence of AMGr for
hese and other model problems [41].

.2. Structured-grid discretizations with algebraically chosen subdomains

We next consider partitioning the structured-grid problems using an algebraic choice of the subdomains based on Lloyd
ggregation. Fig. 10 shows the change in the maximum number of F-points (scaled by the total number of DoFs) with the
hange of the subdomain size for both the FD and FE discretizations (left and right, respectively). Similarly to the case of
eometric partitioning, we see relatively poor performance for small subdomain sizes, regardless of the work allocated
o the SA process. For larger subdomain sizes, we see improving results with number of SA steps per DoF, as seen above.
lso as seen above, the optimal subdomain size varies with total work allocation, increasing as we increase the amount
f work per DoF, but even with 2 000 000 SA steps per DoF, we do not see the best performance with largest subdomains
or the FE discretization. Considering variation in problem size, Fig. 7 shows that, as in the geometric subdomain case,
e see some decrease in performance as problem size grows, but that this decrease seems to (mostly) plateau at larger
roblem sizes. In comparison with the geometric subdomain choice, we see some small degradation in performance with
lgebraically chosen subdomains, particularly in the FD case, but it is small in comparison with the optimality gap between
he optimization by hand solutions and those generated by SA.

Performance of the resulting two-grid cycles is tabulated in Table 1, where we see very comparable convergence factors,
s well as grid and operator complexities, as in the geometric subdomain case. Table 2 tabulates convergence factors for
16
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Table 2
Performance of three-level and multilevel AMGr on test matrices from discretizations of the 2D Laplacian.
Scheme Grid size Three-level cycles Multilevel cycles

ρV ρW Cgrid Cop ρV ρW Cgrid Cop

32 × 32 0.92 0.90 1.25 1.26 0.93 0.90 1.26 1.27
FD 64 × 64 0.93 0.91 1.27 1.28 0.94 0.91 1.28 1.31

128 × 128 0.94 0.91 1.28 1.30 0.95 0.92 1.30 1.35

32 × 32 0.76 0.72 1.25 1.31 0.76 0.72 1.26 1.31
FE 64 × 64 0.76 0.73 1.27 1.35 0.77 0.73 1.28 1.37

128 × 128 0.79 0.75 1.28 1.37 0.79 0.75 1.29 1.41

Table 3
Performance of multilevel AMGr on test matrices from discretizations of the 2D Laplacian using 200 and 2000 SA steps per DoF.
Scheme Grid size 200 SA steps per DoF 2000 SA steps per DoF

ρV ρW Cgrid Cop ρV ρW Cgrid Cop

32 × 32 0.89 0.86 1.42 1.62 0.91 0.88 1.33 1.44
FD 64 × 64 0.89 0.88 1.46 1.86 0.92 0.88 1.37 1.51

128 × 128 0.91 0.88 1.48 2.08 0.93 0.89 1.38 1.58

32 × 32 0.72 0.68 1.34 1.52 0.73 0.71 1.29 1.40
FE 64 × 64 0.74 0.70 1.37 1.65 0.76 0.70 1.32 1.49

128 × 128 0.77 0.70 1.38 1.76 0.76 0.72 1.33 1.56

three-level V- and W-cycles (denoted ρV and ρW , respectively), along with three-level grid and operator complexities.
For the FD case, we see some degradation in convergence when using V-cycles, while W-cycles give convergence factors
similar to those in the two-level case. For the FE problem, there is less degradation for V-cycles, but still W-cycles are
required to get convergence factors comparable to the two-level case. As we have increased the depth of the multigrid
hierarchy, the grid and operator complexities in Table 2 are naturally larger than those in Table 1, but the growth in these
complexity measures is consistent with optimally scaling multigrid methods. Performance of multilevel V- and W-cycles
is also shown in Table 2, where coarsening is continued until the number of nodes falls below 100, yielding a four-level
cycle for the 32× 32 grid, five-level cycle for 64× 64, and six-level cycle for 128× 128. The resulting convergence factors
or both FD and FE cases remain similar to those for three-level cycles, while complexity measures grow consistently with
he number of levels.

For the multilevel results in Table 2, we use 200 000 SA steps per DoF in all cases, except on the finest meshes for
he 32 × 32 and 64 × 64 grids, where 2 000 000 SA steps per DoF were used. (Similar results are also seen without these
‘extra’’ steps on these problems, however.) For the 64 × 64 mesh, using 200 000 SA steps per DoF on all levels takes
about 18 h of ‘‘offline’’ time to compute the coarse meshes, in comparison to ‘‘online’’ solution times of only 0.003 s
for a V-cycle and 0.011 s for a W-cycle. Table 3 presents results for the same experiment, but using only 200 and 2000
SA steps per DoF, to investigate how performance is changed when using ‘‘bad’’ solutions to the optimization problem
in Eq. (3). Here, we see slight improvements in convergence factors in comparison to those in Table 2; however, using
fewer annealing steps leads to much larger grid and operator complexities than observed above. We note here that using
fewer annealing steps also leads to results that are more heavily influenced by the random nature of the SA process;
here, we report complexities from runs used to generate W-cycle convergence factors, which vary slightly from those of
an independent run to generate V-cycle convergence factors, but by no more than 0.01 in Cgrid and 0.05 in Cop.

For our final isotropic, structured-grid test problem, we consider the FE discretization of the two-dimensional isotropic
diffusion problem, −∇ · K (x, y)∇u(x, y) = f (x, y), in the domain [0, 1] × [0, 1] with Dirichlet boundary conditions and
piecewise constant (‘‘jumping’’) coefficient, K (x, y). To determine K (x, y), we select 20% of the elements at random, and set
K (x, y) = 10−8 in these elements, with value 1 in the remaining 80% of the elements, matching one of the test problems
from [26]. We partition the nodes using 200 000 SA steps per DoF, and show the first coarse mesh chosen using 1 SA
step per DoF per sweep for the 31 × 31 grid in Fig. 11. Convergence factors and grid and operator complexities for
multilevel V- and W-cycles are shown in Table 4. We note, in particular, that these results are quite comparable to those
shown in Table 2 for the case of K (x, y) = 1 everywhere. In comparison to the results presented in [26], we see larger
convergence factors here (0.78 for the 127 × 127 grid, in comparison to 0.59 reported there), but with lower complexities
(Cop = 1.42 here, compared to 1.75 there).

4.3. Anisotropic problems on structured grids

Next, we consider the two-dimensional anisotropic diffusion problem, −∇ · K (x, y)∇u(x, y) = f (x, y), in the domain
[0, 1] × [0, 1] with Dirichlet boundary conditions. We choose the tensor coefficient K (x, y) = QMQ T , where Q =[
cos(θ ) − sin(θ )

]
, and M =

[
δ 0

]
. The parameters 0 < δ ≤ 1 and θ specify the strength and direction of anisotropy in
sin(θ ) cos(θ ) 0 1
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Fig. 11. Partitioning for the isotropic problem on a 31 × 31 uniform grid with jumping coefficients, generated using 200 000 SA steps per DoF, 1
SA step per DoF per GS sweep, and subdomains with an average of 36 points per subdomain. C-points are represented by the black circles.

Table 4
Performance of multilevel AMGr on test matrices from discretizations of
the 2D Laplacian with jumping coefficients.
Scheme Grid size ρV ρW Cgrid Cop

31 × 31 0.73 0.71 1.27 1.33
FE 63 × 63 0.76 0.73 1.29 1.38

127 × 127 0.78 0.76 1.29 1.42

the problem, respectively, with θ = 0 giving the anisotropic problem −δuxx−uyy = f and θ = π/2 giving −uxx−δuyy = f .
For 0 < θ < π/2, the axis of the small diffusion coefficient in the problem rotates clockwise from being in the positive
x-direction for small θ to the positive y-direction for θ ≈ π/2. Anisotropic problems cause difficulty for the greedy
coarsening algorithm [26], where large grid and operator complexities and poor algorithmic performance were overcome
by augmenting the coarse grids with the second pass of the Ruge-Stüben coarsening algorithm and using classical AMG
interpolation in place of the AMGr interpolation operator. We emphasize that both the FD and FE discretizations of
this problem result in non-diagonally dominant system matrices and, consequently, the convergence guarantee from
Theorem 2.1 does not apply in this setting. We include these problems, nonetheless, both to stress-test our approach
and highlight the need for further research in this direction.

As an example of a problem in this class, we fix δ = 10−6 and θ = π/3. Fig. 12 shows the coarse-grid points
selected for the bilinear finite-element discretization of the problem on a uniform 32 × 32 mesh. At left, we see that
the partitioning generated by the SA algorithm correctly detects that this is an anisotropic problem with strong coupling
primarily in the x-direction and weak coupling primarily in the y-direction, producing grids that are consistent with semi-
coarsening, with some regions of coarsening along diagonals. Unfortunately, however, this grid leads to poor convergence
using AMGr interpolation. As in the original experiments by MacLachlan and Saad [26], each fine-grid point has multiple
coarse-grid neighbors (leading to an increase in operator complexity, due to the nonzero structure of D−1FF AFC ), but since

A is no longer diagonally dominant in the anisotropic case, the assumption that
[

DFF −AFC
−AT

FC ACC

]
is positive semi-definite

is violated, and the resulting performance is poor. To overcome this failure, we augment the coarse-grid set using the
second-pass algorithm from Ruge-Stüben AMG, using the classical strength of connection parameter of 0.30 to determine
strong connections in the graph. At right of Fig. 12, we show the resulting graph, which now satisfies the requirement
that every pair of strongly connected F-points has a common C-neighbor (which is clearly not satisfied in the partitioning
at left). Unfortunately, this comes at a heavy cost, as the grid at right now has many more C-points than we would like.
Below, we verify that these grids lead to effective multigrid hierarchies, when coupled with classical AMG interpolation,
but note the increased grid and operator complexities in these hierarchies. A key question for future work (addressed
in [41]) is whether we can determine algebraic interpolation operators for grids such as those at left that lead to effective
AMGr performance.
18
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Fig. 12. Grid partitioning for an anisotropic diffusion problem with δ = 10−6 and θ = π/3, discretized on a 32 × 32 mesh using the bilinear FE
tencil. The initial partitioning, at left, is generated using algebraic subdomains averaging 20 points per subdomain, using 2 000 000 SA steps per
oF and 1 SA step per DoF per GS sweep, and has 664 F-points and 360 C-points. At right is the grid augmented using the second pass of the
lassical AMG algorithm, resulting in 343 F-points and 681 C-points.

Table 5
Performance of two-level AMGr for the anisotropic diffusion problem with δ = 10−6 and θ = π/3 on structured meshes.
Scheme Grid size Geometric partitioning Algebraic partitioning

ρ Cgrid Cop ρ Cgrid Cop

32 × 32 0.58 1.70 2.09 0.57 1.70 2.09
FD 64 × 64 0.58 1.71 2.11 0.58 1.71 2.11

128 × 128 0.60 1.72 2.12 0.63 1.72 2.12

32 × 32 0.62 1.65 2.02 0.61 1.67 2.00
FE 64 × 64 0.61 1.67 2.09 0.62 1.67 2.08

128 × 128 0.61 1.67 2.11 0.61 1.67 2.12

Table 6
Performance of three-level AMGr for the anisotropic diffusion problem with
δ = 10−6 and θ = π/3 on structured meshes.
Scheme Grid size ρV ρW Cgrid Cop

32 × 32 0.72 0.57 2.16 3.13
FD 64 × 64 0.76 0.60 2.16 3.20

128 × 128 0.80 0.66 2.18 3.26

32 × 32 0.74 0.61 2.06 2.86
FE 64 × 64 0.81 0.69 2.07 3.05

128 × 128 0.89 0.82 2.05 3.10

Tables 5 and 6 present convergence factors and grid and operator complexities for two- and three-level cycles,
respectively. For geometric partitioning, we use 200 000 SA steps per DoF with one or two SA steps per DoF per cycle and
5 × 5 or 6 × 6 subdomains (depending on what worked best for a given problem, reported in Table A.16 in Appendix).
Similar choices are made using algebraic partitioning, although we see slight improvements using 2 000 000 SA steps
per DoF for some problems. For the three-level tests, we uniformly use 200 000 SA steps per DoF, with 1 SA step per
DoF per GS sweep, and algebraic subdomains with average size of 36 points. In Table 5, we again see that there is
relatively little difference in results generated using geometric and algebraic choices of the Gauss–Seidel subdomains.
Notably, both choices lead to effective cycles for both the finite-difference and finite-element discretizations, albeit at the
cost of increased grid and operator complexities. Table 6 again shows degradation in performance moving from two-grid
to three-grid V-cycles, but that three-grid W-cycles mostly recover comparable convergence to the two-level case, with
some notable degradation for the finite-element operator.
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Fig. 13. Partitioning for the isotropic problem on the unstructured mesh with 1433 points, generated using 1 000 000 SA steps per DoF, 5 SA steps
per DoF per GS sweep, and subdomains with an average of 20 points per subdomain.

4.4. Discretizations on unstructured grids

We next consider two diffusion problems with homogeneous Dirichlet boundary conditions on unstructured trian-
gulations of square domains, discretized using linear finite elements. First, we consider an isotropic diffusion operator
(−∇ · ∇u = f ) on [−1, 1]2, generated by taking an initially unstructured mesh, refining it a set number of times and,
then, smoothing the resulting mesh. We consider three levels of refinement for this example, resulting in meshes with
1433, 5617, and 22 241 DoFs. The SA-based partitioning scheme appears to perform similarly well in this setting, with a
splitting found for the smallest mesh shown in Fig. 13. While we no longer have hand-generated estimates of the optimal
coarsening factors, we note that the SA-based partitioning scheme outperforms the greedy algorithm, generating F-sets
ith 1106, 4241, and 16 604 points, for these three grids, respectively, in comparison to F-sets of 1024, 3916, and 15 079
oints. As above, this improvement comes at a cost: the offline time to partition the 5617 DoF problem using 200 000
A steps per DoF is over 12 h for the two-level scheme. Two- and three-level convergence factors, as well as grid and
perator complexities for these systems are given in Table 7. Here, we observe that these results are quite similar to
hose seen for the structured-grid discretizations above, with some degradation in convergence seen for the three-level
-cycle results, but not in the W-cycle results. Here, the three-level results are computed using 200 000 SA steps per DoF,
ith 1 SA step per DoF per GS sweep, on subdomains with an average of 36 points per subdomain. Slight modifications to
hese parameters yield small improvements in two-level results; as a result, we use these choices in the table and report
hem in Table A.17 in Appendix.

We next consider the anisotropic diffusion operator (again with Dirichlet boundary conditions) considered above, with
= 0.01 and θ = π/3, on an unstructured triangulation of the unit square taken from Brannick and Falgout [22], matching
he problem labeled 2D-M2-RLap in that paper. As in Brannick and Falgout [22], we consider three levels of refinement of
he mesh, with 798, 3109, and 12 273 DoFs, respectively. Fig. 14 shows two different partitions for this mesh. At left, we
ive the partitioning generated using the SA-based partitioning algorithm proposed here, and at right we give the splitting
fter a second pass of the Ruge-Stüben coarsening algorithm where strength of connection is computed using the classical
trength parameter of 0.55. As with the structured-grid case above, we found the second pass is needed to achieve good
onvergence factors for the anisotropic problem, but that it does so at the expense of coarsening at a much slower rate.
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Table 7
Performance of two- and three-level AMGr for isotropic problem on unstructured meshes.
#DoF Two-level cycle Three-level cycles

ρ Cgrid Cop ρV ρW Cgrid Cop

1433 0.66 1.23 1.31 0.78 0.65 1.28 1.39
5617 0.71 1.25 1.32 0.79 0.70 1.30 1.42
22241 0.75 1.25 1.33 0.84 0.75 1.32 1.45

Fig. 14. Partitioning for the anisotropic problem on an unstructured mesh containing 798 points. The partitioning at left was generated using 500 000
A steps per DoF, with 1 SA step per DoF per GS sweep, on subdomains with an average size of 36 points per subdomain, yielding 524 F-points and
74 C-points. At right, this partitioning is augmented by the second pass of classical AMG coarsening, resulting in 263 F-points and 535 C-points.

Table 8
Performance of two-level and three-level AMGr for anisotropic problem on unstructured meshes.
#DoF Two-level cycle Three-level cycles

ρ Cgrid Cop ρV ρW Cgrid Cop

798 0.69 1.67 1.82 0.84 0.71 2.11 2.41
3109 0.75 1.67 1.87 0.84 0.75 2.09 2.52
12273 0.82 1.67 1.89 0.90 0.83 2.08 2.56

Convergence factors, grid complexities, and operator complexities for these problems are reported in Table 8. As above,
the complexities are higher for the anisotropic operators than the isotropic (due to the use of the second pass). Here,
we observe degradation in convergence with grid refinement, although again with less degradation for W-cycles than
V-cycles. The three-level results are computed with the same parameters as for the isotropic problem above, with more
SA steps per DoF used for the two-level results, as this yielded slight improvements. While the performance reported
in Table 8 is far from optimal, we note that the convergence factors for the larger two meshes are better than those
reported for compatible relaxation [22], while the operator complexities are comparable to those reported therein for
BoomerAMG [4]. We again emphasize that these anisotropic diffusion problems do not satisfy the convergence bounds
stated above and, consequently, are included to stress-test the framework presented here; improved results for this
problem are presented in [41].

4.5. Convection–diffusion problems on structured grids

For our final tests, we consider the upwind finite-difference discretization of two singularly perturbed convection–
iffusion equations. While these problems lead to non-symmetric discretization matrices (and, as such, Theorem 2.1
o longer applies), they represent a plausible set of test problems for reduction-based methods due to their ‘‘nearly
riangular’’ M-matrix structure [31]. In particular, we consider the solution of the convection–diffusion equation,

−ε∆u+ b · ∇u = f ,
21
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Table 9
Performance of two-level AMGr for convection–diffusion problems on structured meshes.
ε N Grid-aligned Non-grid-aligned

ρ Cgrid Cop ρ Cgrid Cop

16 0.617 1.50 1.93 0.617 1.34 1.65
10−3 32 0.617 1.50 2.01 0.617 1.36 1.71

64 0.617 1.51 2.02 0.617 1.36 1.74

16 0.617 1.50 1.93 0.617 1.34 1.63
10−4 32 0.617 1.50 1.97 0.617 1.36 1.71

64 0.617 1.51 2.03 0.617 1.36 1.74

16 0.617 1.50 1.92 0.617 1.33 1.63
10−5 32 0.617 1.51 2.00 0.617 1.36 1.71

64 0.617 1.51 2.03 0.617 1.36 1.73

Fig. 15. Partitioning for convection–diffusion problems on uniform grids, for the grid-aligned case, at left, and the non-grid-aligned case, at right.
n both cases, we depict the partitioning for ε = 10−5 and N = 32, generated using 200 000 SA steps per DoF.

ith homogeneous Dirichlet boundary conditions, for two choices of the convection direction:

grid-aligned convection b =
[
1
0

]
,

non-grid-aligned convection b =
[
2
3

]
.

We discretize these problems on uniform N×N meshes with the standard 5-point finite-difference for the diffusion term,
and a first-order upwind finite-difference discretization for the convection terms. In all experiments, we use 200 000

SA steps per DoF to generate the partitioning, and generate the AMGr interpolation operator by computing
[
D−1FF AFC

I

]
.

We construct the restriction operator by taking
[
ACFD−1FF I

]
. Table 9 reports measured asymptotic convergence factors,

along with grid and operator complexities for these problems, showing insensitivity to both problem size and the
singular perturbation parameter, ε. Fig. 15 shows two sample partitioning, one for each convection direction, illustrated
at ε = 10−5 for N = 32.

5. Conclusions and future work

While existing heuristics for coarse-grid selection within AMG offer reliable performance for a wide class of problems,
there remains much interest in both improving our understanding of AMG convergence and developing new approaches
22
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that offer guarantees of convergence for even wider classes of problems. We believe a promising, yet under-explored, area
of research is in the extension of reduction-based AMG approaches, that have been shown to be effective for both isotropic
diffusion problems [25,26] and more interesting classes of problems, such as some hyperbolic PDEs [31]. In this paper, we
propose a new coarsening algorithm for AMGr, based on applying simulated annealing to the optimization problem first
posed by MacLachlan and Saad [26]. We choose SA as it is a widely used optimization technique that can be applied
to combinatorial optimization problems. Other techniques are certainly possible (e.g., genetic algorithms or particle
swarm optimization), and it may be that those techniques lead to improved performance. For isotropic problems on both
structured and unstructured meshes, we find that the SA-based partitioning approach outperforms the original greedy
algorithm, sometimes dramatically, while sharing some of the existing limitations of the AMGr framework, particularly
for anisotropic problems. We believe that the performance difference between the greedy and SA-based algorithm is,
simply, due to the complex nature of the optimization problem at hand. The greedy algorithm makes the best ‘‘local’’
choice at each stage, but those local choices force poor global configurations. In particular, the greedy approach has no
opportunity to undo a choice already made, while the SA approach allows that to happen. Nonetheless, we see this as an
important proof-of-concept, showing that randomized search and other derivative-free optimization algorithms can be
successfully applied to the combinatorial optimization problems in AMG coarsening.

The main drawback of this approach is the high computational cost of simulated annealing. For example, computing
single coarse grid for a 32 × 32 mesh with 200 000 SA steps per DoF required around 2.5 h on a modern workstation,

primarily for evaluating the fitness functional in the optimization, with expected scaling in problem size and number
of SA steps per DoF. Two key questions that this raises are whether the fitness functional can be approximated in a
more efficient manner (e.g., using a value neural network) and whether other optimization techniques that rely on fewer
samplings of the fitness functional can be applied. Both of these are topics of our current research.

This research also exposes a known weakness of the AMGr methodology (and, to our knowledge, one of all AMG-like
algorithms with guarantees on convergence rates) when applied to problems that are not diagonally dominant (such as
finite-element discretization of anisotropic diffusion equations). Another current research direction is identifying whether
the diagonal choice of DFF can be generalized to yield better convergence (while retaining a guaranteed convergence rate),
and whether such changes can be accommodated within the optimization problems solved here. Preliminary results in
this direction are presented in [41].
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Appendix. Additional data

In this section, we provide some additional tables to provide more complete data on the experiments reported above
(see Tables A.12, A.13 and A.15).

Table A.10
Number of SA steps per DoF per sweep used for numerical results in left-hand panel
of Fig. 3.
SA steps/DoF 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

5000 50 20 100 2 1
200 000 10 1 25 5 2
2 000 000 – – 25 20 5

Table A.11
Number of SA steps per DoF per sweep used for numerical results in right-hand panel of Fig. 3.
SA steps/DoF: 3000 5000 7500 10 000 50 000 100 000 200 000 500 000 2 000 000

SA steps/DoF/cycle: 1 1 1 2 1 2 2 2 5
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Table A.12
Number of SA steps and SA steps per DoF per sweep used for numerical results in left-hand panel of Fig. 7.
Partitioning FD Discretization

8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

SA steps per DoF 1000 10 000 2 000 000 2 000 000 200 000 200 000
Geometric SA steps per DoF per cycle 1 100 5 1 1 1

Subdomain size 2 × 2 4 × 4 6 × 6 6 × 6 6 × 6 6 × 6

SA steps per DoF – – 2 000 000 2 000 000 200 000 –
Algebraic SA steps per DoF per cycle – – 2 1 1 –

Subdomain size – – 36 36 36 –

Table A.13
Number of SA steps and SA steps per DoF per sweep used for numerical results in right-hand panel of Fig. 7.
Partitioning FE Discretization

8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

SA steps per DoF 1000 200 000 2 000 000 1 000 000 200 000 200 000
Geometric SA steps per DoF per cycle 25 25 50 100 1 1

Subdomain size 2 × 2 3 × 3 4 × 4 3 × 3 5 × 5 5 × 5

SA steps per DoF – – 2 000 000 200 000 2 000 000 –
Algebraic SA steps per DoF per cycle – – 1 1 1 –

Subdomain size – – 25 25 25 –

Table A.14
Number of SA steps per DoF per sweep used for numerical results in
right-hand panel of Fig. 8.
SA steps/DoF 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

5000 20 10 5 1 1
200 000 10 2 50 20 2
2 000 000 – – 50 1 1

Table A.15
Number of SA steps and SA steps per DoF per sweep used for numerical results in Fig. 10.
# of nodes per aggregate 2 5 8 11 14 16 25 36

FD:
SA steps per DoF 200 000 7500 100 000 200 000 200 000 1 000 000 500 000 2 000 000
SA steps per DoF per cycle 10 10 20 5 50 25 1 2

FE:
SA steps per DoF 7500 200 000 2 000 000 200 000 200 000 200 000 2 000 000 2 000 000
SA steps per DoF per cycle 5 100 20 50 1 1 1 1

Table A.16
Number of SA steps per DoF and SA steps per DoF per sweep and subdomain sizes used for two-level numerical results in Table 5.
Partitioning FD Discretization FE Discretization

32 × 32 64 × 64 128 × 128 32 × 32 64 × 64 128 × 128

SA steps per DoF 200 000 200 000 200 000 200 000 200 000 200 000
Geometric SA steps per DoF per cycle 1 1 1 2 1 1

Subdomain size 6 × 6 6 × 6 6 × 6 5 × 5 5 × 5 5 × 5

SA steps per DoF 200 000 200 000 200 000 2 000 000 200 000 2 000 000
Algebraic SA steps per DoF per cycle 1 1 1 1 1 2

Subdomain size 16 36 36 20 36 36

Table A.17
Number of SA steps per DoF and SA steps per DoF per sweep and subdomain sizes used for two-level numerical results
in Tables 7 and 8.

Table 7 Table 8

1433 5617 22241 798 3109 12273

SA steps per DoF 1 000 000 2 000 000 200 000 500 000 2 000 000 200 000
SA steps per DoF per cycle 5 2 1 1 2 1
Subdomain size 20 36 36 36 36 36
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