
2 

Performance Analysis and Optimal Node-aware 

Communication for Enlarged Conjugate Gradient Methods 

SHELBY LOCKHART , University of Illinois at Urbana-Champaign, USA 

AMANDA BIENZ , University of New Mexico, USA 

WILLIAM GROPP and LUKE OLSON , University of Illinois at Urbana-Champaign, USA 

Krylov methods are a key way of solving large sparse linear systems of equations but suffer from poor strong 
scalability on distributed memory machines. This is due to high synchronization costs from large numbers of 
collective communication calls alongside a low computational workload. Enlarged Krylov methods address 
this issue by decreasing the total iterations to convergence, an artifact of splitting the initial residual and 
resulting in operations on block vectors. In this article, we present a performance study of an enlarged Krylov 
method, Enlarged Conjugate Gradients (ECG), noting the impact of block vectors on parallel performance 
at scale. Most notably, we observe the increased overhead of point-to-point communication as a result of 
denser messages in the sparse matrix-block vector multiplication kernel. Additionally, we present models to 
analyze expected performance of ECG, as well as motivate design decisions. Most importantly, we introduce a 
new point-to-point communication approach based on node-aware communication techniques that increases 
efficiency of the method at scale. 

CCS Concepts: • Mathematics of computing → Mathematical software performance ; Solvers • Com- 

puting methodologies → Distributed algorithms ; 

Additional Key Words and Phrases: Parallel, communication, node-aware, sparse matrix, collectives 

ACM Reference format: 

Shelby Lockhart, Amanda Bienz, William Gropp, and Luke Olson. 2023. Performance Analysis and Optimal 
Node-aware Communication for Enlarged Conjugate Gradient Methods. ACM Trans. Parallel Comput. 10, 1, 
Article 2 (March 2023), 25 pages. 
https://doi.org/10.1145/3580003 

T

u

c

s

S

N

A

p

D

P

p

t

h

r

©

2

h

his material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, 

nder award numbers DE-NA0003963 and DE-NA0003966. This research is part of the Blue Waters sustained-petascale 

omputing project, which is supported by the National Science Foundation (awards OCI0725070 and ACI-1238993) and the 

tate of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for 

upercomputing Applications. This material is based in part upon work supported by the Department of Energy, National 

uclear Security Administration, under award number DE-NA0002374. 

uthors’ addresses: S. Lockhart, W. Gropp, and L. Olson, University of Illinois at Urbana-Champaign, Department of Com- 

uter Science, Urbana, Illinois 61801, USA; emails: {sll2, wgropp, lukeo}@illinois.edu; A. Bienz, University of New Mexico, 

epartment of Computer Science, Albuquerque, New Mexico 87131, USA; email: bienz@unm.edu. 

ermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee 

rovided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and 

he full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be 

onored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, 

equires prior specific permission and/or a fee. Request permissions from permissions@acm.org . 

2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 

329-4949/2023/03-ART2 $15.00 

ttps://doi.org/10.1145/3580003 

ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 

https://orcid.org/0000-0003-4938-6111
https://orcid.org/0000-0002-8891-934X
https://orcid.org/0000-0003-2905-3029
https://orcid.org/0000-0002-5283-6104
https://doi.org/10.1145/3580003
mailto:permissions@acm.org
https://doi.org/10.1145/3580003
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580003&domain=pdf&date_stamp=2023-03-29


2:2 S. Lockhart et al. 

1

A  

l  

t  

m  

w  

c  

c  

p  

a  

t
 

t  

o  

p  

c  

o  

b  

g  

r
 

j  

t  

T  

w  

o  

o

 

 

 

 

 

 

 

 

T

2

T  

p  

l  

r  

h  

A

 INTRODUCTION 

 significant performance limitation for sparse solvers on large-scale parallel computers is the
ack of computational work compared to the communication overhead [ 29 ]. The iterative solu-
ion to large, sparse linear systems of the form Ax = b often requires many sparse matrix-vector
ultiplications and costly collective communication in the form of inner products; this is the case
ith the conjugate gradient (CG) method and with Krylov methods in general. In this article, we

onsider so-called enlarged Krylov methods [ 21 ], wherein block vectors are introduced to improve
onvergence, thereby reducing the amount of collective communication in exchange for denser
oint-to-point communication in the sparse matrix-block vector multiplication. We analyze the
ssociated performance expectations and introduce efficient communication methods that render
his class of methods more efficient at scale. 

There have been a number of suggested algorithms for addressing the imbalance in compu-
ation and communication within Krylov methods, including communication avoidance [ 12 , 26 ],
verlapping communication and computation [ 16 ], and delaying communication at the cost of
erforming more computation [ 15 ]. Most recently, there has been work on reducing iterations to
onvergence via increasing the amount of computation per iteration and, ultimately, the amount
f data communicated [ 20 , 30 , 31 ]. These approaches have been successful in reducing the num-
er of global synchronization points; the current work is considered complementary in that the
oal is reduction of the total amount of communication, which is achieved via message passage
estructuring utilizing the MPI API. 

In addition to reducing synchronization points, enlarged Krylov methods such as enlarged con-

ugate gradient (ECG) reduce the number of sparse matrix-vector multiplications by improving
he convergence of the method through an increase in the amount of computation per iteration.
his is accomplished by using block vectors, which results in an increase in (local) computational
ork but also an increase in inter-process communication per iteration. Consequently, the focus
f this article is on analyzing the effects of block vectors on the performance of ECG and proposing
ptimal strategies to address the communication imbalances they introduce. 
There are two key contributions made in this article. 

(1) A performance study and analysis of an enlarged Krylov method based on ECG, with an
emphasis on the communication and computation of block vectors. Specifically, we note
how they re-balance the point-to-point and collective communication within a single iter-
ation of ECG, shifting the performance bottleneck to the point-to-point communication. 

(2) The development of a new communication technique for blocked data based on node-
aware communication techniques that have shown to reduce time spent in communication
within the context of sparse matrix-vector multiplication and algebraic multigrid [ 7 , 9 ].
This new communication technique exhibits speedups as high as 60 × for various large-
scale test matrices on two different supercomputer systems, as well as reduces the point-
to-point communication bottleneck in ECG. 

hese contributions are presented in Sections 3 and 4 , respectively. 

 BACKGROUND 

he CG method for solving a symmetric and positive definite system of equations, Ax = b, exhibits
oor parallel scalability in many situations [ 12 , 19 , 26 , 28 ]. In particular, the strong scalability is

imited due to the high volume of collective communication relative to the low computational
equirements of the method. The ECG method has a lower volume of collective communication and
igher computational requirements per iteration compared to CG, thus exhibiting better strong
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:3 

Figure 2.1. Three examples of T r,t , with t = 3 . In each case, r is a vector of length 12, decomposed into 12 × 3 
block vector. The colors represent a case of four processors: orange, green, red, and blue. 

s  

t  

c  

m  

 

r

 

t  

c  

o  

e

2

S  

l  

t

 

E

 

w  

s
 

R  

w  

r

 

w  

s

calability. In this section, we detail the basic structure of ECG, briefly outlining the method in
erms of mathematical operations and highlighting the key differences from standard CG. A key
omputation kernel in both Krylov and enlarged Krylov methods is that of a sparse matrix-vector
ultiplication; we discuss node-aware communication techniques for this operation in Section 2.2 .
Throughout this section and the remainder of the article, ECG performance is analyzed with

espect to the problem described in Example 2.1 . 

Example 2.1. In this example, we consider a discontinuous Galerkin finite element discretiza-
ion of the Laplace equation, −Δu = 1 on a unit square, with homogeneous Dirichlet boundary
onditions. The problem is generated using MFEM [ 4 ] and the resulting sparse matrix consists
f 1,310,720 rows and 104,529,920 nonzero entries. Graph partitioning is not used to reorder the
ntries, unless stated. 

.1 Enlarged Krylov Subspace Methods 

imilarly to CG, ECG begins with an initial guess x 0 and seeks an update as a solution to the prob-
em Ax = b, with the initial residual given by r 0 = b −Ax 0 . Unlike CG, which considers updates of
he form x k ∈ x 0 +K k , where K k is the Krylov subspace defined as 

K k = span {r 0 , Ar 0 , A 

2 r 0 , . . . , A 

k−1 r 0 }, (2.1)

CG targets x k ∈ x 0 +K k,t , where K k,t is the enlarged Krylov space defined as 

K k,t = span {T r 0 ,t , AT r 0 ,t , A 

2 T r 0 ,t , . . . , A 

k−1 T r 0 ,t }, (2.2)

ith T r,t representing a projection of the residual r (defined next). Notably, the enlarged Krylov
ubspace contains the traditional Krylov subspace: K k ⊂ K k,t [ 20 ]. 

In Equation (2.2) , T r,t defines a projection of the residual r (normally the initial residual r 0 ) from
 

n → R 

n×t by splitting r across t subdomains. The projection may be defined in a number of
ays, with the caveat that the resulting columns of T r,t are linearly independent and preserve the

ow-sum, 

r = 
t ∑ 

i= 1 

(T r,t ) i , (2.3)

here we denote the i th column of T as (T ) i . An illustration of multiple permissible splittings is
hown in Figure 2.1 . 
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:4 S. Lockhart et al. 

 

b  

i  

a  

T  

a  

s  

f  

c  

n

A

 

p  

r  

d  

s  

A  

i

A

 

b  

t  

n  

c  

t  

a

A

Increasing the number of subdomains, t , increases computation from single vector updates to
lock vector updates of size n × t . Additional uses of block vectors within ECG are outlined in detail
n Algorithm 1 . On Line 5, a (small) linear system is solved to generate the t search directions. In
ddition, the sparse matrix-block vector (SpMBV) product AP k is performed at each iteration.
he number of iterations to convergence is generally reduced from that required by CG, but the
lgorithm does not eliminate the communication overhead when the algorithm is performed at
cale. Unlike CG, where the performance bottleneck is caused by the load imbalance incurred
rom each inner product in the iteration, ECG sees communication overhead at scale due to the
ommunication associated with the SpMBV kernel (see Figure 3.3 in Section 3 ). We introduce a
ew communication method in Section 4 to improve this performance. 

LGORITHM 1 : Enlarged Conjugate Gradient 

1 r : = b −Ax 
2 P : = 0 , R : = T r,t , Z : = R 

3 while not converged 

4 P old : = P 

5 P : = Z (Z 

T AZ ) −
1 
2 

6 c : = P T R 

7 X : = X + Pc 

8 R : = R −APc 
9 if ‖ ∑ t 

i= 1 (R) i ‖ < tolerance 

10 break 

11 d : = ( AP ) T ( AP ) 

12 d old : = ( AP old ) 
T ( AP ) 

13 Z : = AP − Pd − P old d old 

14 x : = 
∑ t 

i= 1 (X ) i 

Additionally, Algorithm 1 can easily be updated to include preconditioning, represented by ap-
lication of a preconditioning matrix M 

−1 . Here we summarize the necessary changes to Algo-
ithm 1 ; for a full discussion of preconditioned ECG, see Reference [ 21 ]. Initialization of Z is up-
ated to include application of the preconditioner to the split residual vector, Z = M 

−1 R, and a
ingle step is added to each iteration in which the preconditioner is applied to the block of vectors
P before Line 11, M 

−1 AP . Consequently, Line 11 to 13 are then updated to include computations
nvolving M 

−1 AP as shown in Algorithm 2 . 

LGORITHM 2 : Preconditioning Updates to Enlarged Conjugate Gradient Iteration 

11 d : = ( AP ) T ( M 

−1 AP ) 

12 d old : = ( AP old ) 
T ( M 

−1 AP ) 

13 Z : = M 

−1 AP − Pd − P old d old 

As noted by the authors in Reference [ 21 ], any preconditioner that can be applied to CG can
e applied to ECG, but due to the block structure of the algorithm and the reduction in iterations
o convergence, it may not be efficient to use preconditioners that introduce additional commu-
ication when performed in parallel, though they may be more robust. Hence, discussion of pre-
onditioner choice and performance is excluded from this work as it is often problem specific, and
he focus in this work is on the characterization and optimization of the performance of the ECG
lgorithm itself. 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:5 

Figure 2.2. Communication and partitioning of a SpMV, A · v → w . With n = 12 , matrix A and vectors v and 

w are partitioned across two nodes and four processors (p0, p1, p2, and p3), indicated by orange, green, red, 
and blue. A solid block, , represents the portion of the SpMV requiring only on-process values from v . A 

shaded block, , represents the portion of the SpMV requiring on-node but off-process communication of 
values from v , and the outlined blocks, , require values of v from processors off-node. 

2

S

 

w  

s  

c  

c
 

p  

p  

3  

m  

r  

m  

a  

p  

o  

t  

n  

m  

o
 

b  

l  

r  

t  

c  

t  

t  
.2 Node-aware Communication Techniques 

parse matrix-vector (SpMV) multiplication, defined as 

A · v → w, (2.4)

ith A ∈ R 

m×n and v , w ∈ R 

n , is a common kernel in sparse iterative methods. It is known to lack
trong scalability in a distributed memory parallel environment, a problem stemming from low
omputational requirements and the communication overhead associated with applying standard
ommunication techniques to sparse matrix operations. 

There have been a number of techniques designed to reduce the communication costs of the
arallel SpMV. Graph partitioning algorithms produce efficient data layouts that often lead to im-
roved parallel partitions and system loads that reduce time spent in communication [ 13 , 14 , 24 ,
4 ]. Additionally, topology-aware task mapping addresses communication overhead via accurately
apping parallel partitions to supercomputer nodes [ 1 , 27 , 33 ]. While these methods can result in

educed communication times, they are often accompanied by costly set-up times or more complex
atrix distributions. In the case of node-aware communication techniques, A, v , and w are gener-

lly considered to be partitioned row-wise across p processes with contiguous rows stored on each
rocess (see Figure 2.2 ). In addition, the rows of A on each process are split into 2 blocks, namely
n-process and off-process. The on-process block is the diagonal block of columns corresponding
o the on-process portion of rows in v and w , and the off-process block contains the matrix A’s
onzero values correlating to non-local rows of v and w stored off-process. This splitting is com-
on practice, as it differentiates between the portions of a SpMV that require communication with

ther processes. 
A common approach to a SpMV is to compute the local portion of the SpMV with the on-process

lock of A while messages are exchanged to obtain the off-process portions of v necessary for the
ocal update of w . While this allows for the overlap of some communication and computation, it
equires the exchange of many point-to-point messages, which still creates a large communica-
ion overhead (see Figure 2.3 ). MPI + X, or hierarchical parallelism, strategies can help mitigate this
ommunication overhead by pairing a single MPI rank with multiple threads for local computa-
ion. These strategies allow for efficient overlap of communication and computation, yet they limit
he number of available communicating processes per node [ 2 , 5 , 32 ]. While this can reduce the
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:6 S. Lockhart et al. 

Figure 2.3. The time required for a single SpMV, split into communication and computation, for Example 2.1 
run on Blue Waters with 16 processes per node. 

Figure 2.4. Standard communication. On the left, Node 0 injects multiple messages into the network, all to 
P6 on Node 1. On the right, P1 sends multiple messages containing the same data to each process on Node 
1, resulting in “duplicate” data being sent across the network. 

o  

c  

c
 

s  

n  

a  

o  

s  

c
 

m  

t  

d  

o  

t

 

r  

a  

A

verall amount of time required for the SpMV over methods that use flat-MPI standard communi-
ation techniques, it typically does not reduce communication overhead as much as node-aware
ommunication techniques with flat-MPI—detailed in Reference [ 9 ]. 

The inefficiency of the standard communication approach is attributed to two redundancies
hown in Figure 2.4 . First, many messages are injected into the network from each node. Some
odes are sending multiple messages to a single destination process on a separate node, creating
 redundancy of messages. Second, processes send the necessary values from their local portion
f v to any other process requiring that information for its local computation of w . However, the
ame information may already be available and received by a separate process on the same node,
reating a redundancy of data being sent through the network. 

Node-aware communication techniques [ 7 , 9 ] mitigate these issues in both SpMVs and sparse

atrix-matrix (SpGEMM) multiplication by considering node topology to further break down
he off-process block into vector values of v that require on- or off-node communication; this
ecomposition is shown in Figure 2.2 . As a result, costly redundant messages are traded for faster,
n-node communication, resulting in two different multi-step schemes, namely three-step and
wo-step. 

Three-step Node-aware Communication. Three-step node-aware communication eliminates both
edundancies in standard communication by gathering all necessary data to be sent off-node in
 single buffer. Efficient implementation of this method relies on pairing all processes with a
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:7 

Figure 2.5. Three-step node-aware. In Step 1, all the data on Node 0 and Node 1 that need to be exchanged 

is collected in node local buffers on P0 and P7. In Step 2, the paired processes P0 and P7 exchange buffers. In 

Step 3, P0 and P7 redistribute the data to the correct receiving processes on Node 0 and Node 1, respectively. 

r  

t
 

w  

n  

d

 

d  

i  

p  

T  

t  

e  

s  

t

 

c  

m  
eceiving process on distinct nodes, thus ensuring that every process remains active throughout
he entire communication scheme (see Figure 2.5 ). 

First, all data to be sent to a separate node are gathered in a buffer by the single process paired
ith that node. Second, this process sends the data buffer to the paired process on the receiving
ode. Third, the paired process on the receiving node redistributes the data locally to the correct
estination processes on-node. An example of these steps is outlined in Figure 2.5 . 

Two-Step Node-aware Communication. Two-step node-aware communication eliminates the re-
undancy of sending duplicate data from standard communication and decreases the number of
nter-node messages but not to the same degree as three-step communication. In this case, each

rocess exchanges the information needed by the receiving node with their paired process directly.
hen the receiving node redistributes the messages on-node as shown in Figure 2.6 . While mul-

iple messages are sent to the same node, the duplicate data being sent through the network are
liminated. Hence, the number of bytes communicated with three-step and two-step node-aware
chemes is the same, and often yields a significant reduction over the amount of data being sent
hrough the network with standard communication. 

2.2.1 Node-aware Communication Models. The max-rate model [ 22 ] is used to quantify the effi-
iency of node-aware communication throughout the remainder of Sections 2 and 3 . For clarity, all
odeling parameters referenced throughout the remainder of the article are defined in Table 1 . The
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:8 S. Lockhart et al. 

Figure 2.6. Two-step node-aware. Each process on Node 0 is paired with a receiving process on Node 1. In 

Step 1, each process on Node 0 sends the data needed by any process on Node 1 to their paired process on 

Node 1 and vice versa. Here, P0 is paired with P4, P1 with P5, P2 with P6, and P3 with P7. In Step 2, each 

process on Node 0 and Node 1 redistributes the inter-node data received to its final destination on node. 

Table 1. Modeling Parameters 

Parameter Description First use 
p number of processes Section 2.2 
nnz number of nonzeros in A Section 3 
α network latency Equation ( 2.5 ) 
s maximum number of bytes sent by a process Equation ( 2.5 ) 
m maximum number of messages sent by a process Equation ( 2.5 ) 
ppn processes per node Equation ( 2.5 ) 
R N 

network injection rate (B/s) Equation ( 2.5 ) 
R b network rate (B/s) Equation ( 2.5 ) 
s proc maximum number of bytes sent by a process Equation ( 2.8 ) 
s node maximum number of bytes injected by a node Equation ( 2.8 ) 
m proc → node maximum number of nodes to which a processor sends Equation ( 2.8 ) 
m node → node maximum number of messages between two nodes Equation ( 2.7 ) 
s node → node maximum size of a message between two nodes Equation ( 2.7 ) 

Standard communication modeling parameters are listed in the top portion of the table, with node-aware 

communication specific modeling parameters listed in the bottom portion. 

m  

f  

c

 

w  

n  

n  

a
 

t

 

w

A

ax-rate model is an improvement to the standard postal model of communication, accounting
or injection limits into the network. The cost of sending messages from a symmetric multipro-

essing (SMP) node is modeled as 

T = α ·m +max 

( 
ppn · s 
R N 

, 
s 

R b 

) 
, (2.5)

here α is the latency, m is the number of messages sent by a single process on a given node, s is the
umber of bytes sent by a single process on a given SMP node, ppn is the number of processes per
ode, R N 

is the rate at which a network interface card (NIC) can inject data into the network,
nd R b is the rate at which a process can transport data. 

In the case of on-node messages, the injection rate is not present and the max-rate model reduces
o the standard postal model for communication 

T = α� ·m +
s 

R b, � 
, (2.6)

here α� is the local or on-node latency and R b, � is the rate of sending a message on-node. 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:9 

 

s  

m

 

w  

a

 

w  

m  

n
 

α  

p  

o  

I  

a  

d  

T  

c

3

I  

c  

w  

n  

c  

e  

A  

a  

t  

U  

e  

w  

3

T  

b  

p  

s  

t  

i  
In Reference [ 9 ], the max-rate model is extended to two-step and three-step communication by
plitting the model into inter-node and intra-node components. For three-step, the communication
odel becomes 

T total = α ·
m node → node 

ppn 
+max 

( 
s node 

R N 

, 
s proc 

R b 

) 
︸������������������������������������������︷︷������������������������������������������︸ 

inter-node 

+ 2 ·
( 
α� · ( ppn − 1 ) +

s node → node 

R b, � 

) 
︸�������������������������������������︷︷�������������������������������������︸ 

intra-node 

, (2.7)

here m node → node is the maximum number of messages communicated between any two nodes
nd s node → node is the size of messages communicated between any two nodes. 

For two-step, this results in 

T total = α ·m proc → node +max 

( 
s node 

R N 

, 
s proc 

R b 

) 
︸����������������������������������������︷︷����������������������������������������︸ 

inter-node 

+α� · ( ppn − 1 ) +
s proc 

R b, � ︸���������������������︷︷���������������������︸ 

intra-node 

, (2.8)

here s node and s proc represent the maximum number of bytes injected by a single NIC and com-
unicated by a single process from an SMP node, respectively, and m proc → node is the maximum
umber of nodes with which any process communicates. 
The latency to communicate between nodes, α , is often much higher than the intra-node latency,

� , thus motivating a multi-step communication approach. In a two-step method, having every
rocess on-node communicate data minimizes the constant factor max ( s node 

R N 

, 
s proc 

R b 
), which depends

n the maximum amount of data being communicated to a separate node by a single process.
n practice, a three-step method often yields the best performance for a parallel SpMV, since the
mount of data being communicated by a single process is often small. As a result, moving the
ata to be communicated off-node into a single buffer minimizes the first term in Equation (2.7) .
hese multi-step communication techniques minimize the amount of time spent in inter-node
ommunication. We extend this idea to the block vector operation in Section 4.1 . 

 PERFORMANCE STUDY OF ENLARGED CONJUGATE GRADIENT 

n this section, we detail the per-iteration performance and performance modeling of ECG. A
ommunication efficient version of Algorithm 1 is implemented in Raptor [ 10 ] and is based on the
ork in Reference [ 21 ]. Throughout this section and the remainder of the article, we assume an
 × n matrix A with nnz nonzeros is partitioned row-wise across a set of p processes. Each process
ontains at most n 

p 
contiguous rows of the matrix A. In the modeling that follows, we assume an

qual number of nonzeros per partition. In addition, each block vector in Algorithm 1 —R, X , Z ,
Z , P , and AP—is partitioned row-wise and with the same row distribution as A. The variables c , d ,
nd d old are size t × t and a copy of each is stored locally on each process. Tests were performed on
he Blue Waters Cray XE/XK machine at the National Center for Supercomputing Applications at
niversity of Illinois. Blue Waters [ 11 , 25 ] contains a three-dimensional torus Gemini interconnect;
ach Gemini consists of two nodes. The complete system contains 22 636 XE compute nodes; each
ith two AMD 6276 Interlagos processors, and additional XK compute nodes unused in these tests.

.1 Implementation 

he scalability of a direct implementation of Algorithm 1 is limited [ 21 ]; however, this is improved
y fusing communication and by executing the system solve in Line 5 in Algorithm 1 on each
rocess. This is accomplished in Reference [ 21 ] by decomposing the computation of P into several
teps as described in Algorithm 3 . The t × t product Z 

T (AZ ) is stored locally on every process in
he storage space of c , as shown in Figure 3.1 . The Cholesky factorization on Line 3 of Algorithm 3
s performed simultaneously on every process, yielding a (local) copy of C . Then each process
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:10 S. Lockhart et al. 

Figure 3.1. The above figure displays the partitioning of all the vectors and intermediary vectors, R, X , Z , 
AZ , P , and AP along with t × t working arrays c , d , and d old , as in Algorithm 1 , for t = 2 . 

p  

p  

a

s

A

 

p  

m  

a  

i  

c  

c  

r  

M  

n  

t  

i
 

h  

a  

o  

t  

g  

w  

m  

A

erforms a local triangular system solve using the local vector values of Z to construct the local
ortion of P (see Line 4). Similarly, an additional sparse matrix block vector product AP = A ∗ P is
voided by noting that AP is constructed using 

AP ← Triangular Solve with Multiple Right Sides of A P ∗C = A Z , 

ince the product AZ and the previous iteration’s AP = A ∗ P are already stored. 

LGORITHM 3 : Calculating P : = Z (Z 

T AZ ) −1 /2 

1 AZ ← A ∗ Z [ sparse matrix-block vector multiplication] 

2 Z 

T AZ ← Z 

T ∗AZ [ block inner product] 

3 C 

T C ← Z 

T AZ [ Cholesky factorization] 

4 P ← solve P ∗C = Z [ Triangular solve with multiple right sides] 

Algorithm 4 summarizes our implementation in terms of computational kernels, with the on
rocess computation in terms of floating point operations along with the associated type of com-
unication. The remainder of the calculations within ECG consist of local block vector updates,

s well as block vector inner products for the values c , d , and d old . A straightforward approach
s to compute these independently within the algorithm, resulting in four MPI_Allreduce global
ommunications per iteration, as in Reference [ 21 ]. However, since the input data required to cal-
ulate c , d , and d old are available on Line 6 in Algorithm 1 when c is computed, a single global
eduction is possible. The implementation described in Algorithm 4 highlights a single call to
PI_Allreduce for all of these values and reducing them in the same buffer. This reduces the
umber of MPI_Allreduce calls to two per iteration. Additionally, the point-to-point communica-
ion required for the SpMBV is performed using the standard communication approach described
n Section 2.2 and used in standard industry codes, such as PETSc [ 6 ]. 

From Algorithm 4 , we note that computation and communication per iteration costs of ECG
ave increased over that of parallel CG, with computation in terms of floating point operations
nd the type of communication incurred next to each kernel. For our implementation, the number
f collective communication calls to MPI_Allreduce has remained the same as CG (at two), but
he number of values in the global reductions has increased from a single float in each of CG’s
lobal reductions to t 2 and 3 t 2 . The singular SpMV from CG has increased to a SpMBV product,
hich does not increase the number of point-to-point messages, but does increase the size of the
essages being communicated by the enlarging factor t . This SpMBV is performed the same as
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:11 

Figure 3.2. Residual history for CG and ECG with various enlarging factors t for Example 2.1 . 

ALGORITHM 4 : Enlarged Conjugate Gradient by Kernel 

1 SpMV 

2 Vector Initialization 

3 for k = 1 , . . . 
4 SpMBV → Flops: 2 · nnz p · t Comm: point-to-point 

5 Block inner product → Flops: 2 · n 
p · t 

2 Comm: global all reduce 

6 Cholesky decomposition → Flops: 1 
3 · t 

3 

7 Triangular solves → Flops: 2 · 1 
2 · t 

2 

8 Block inner product → Flops: 2 · n 
p · t 

2 Comm: global all reduce 

9 Block vector addition → Flops: 2 · n 
p · t 

10 Block vector axpy → Flops: 2 · n 
p · t 

t  

a  

i  

n

3

I  

(  

t  

r  

c  

t  

b  

W  

w  

c  

i  

d  

M
 

g  
he SpMV presented in Figure 2.2 with the local portion of the SpMBV computed while messages
re exchanged to attain off-process data. Additionally, the local computation for each kernel has
ncreased by a factor of t . ECG uses these extra per iteration requirements to reduce the total
umber of iterations to convergence, resulting in fewer iterations than CG as seen in Figure 3.2 . 

.2 Per Iteration Performance 

n Figure 3.3 , we decompose the performance of a single iteration of ECG for Example 2.1 into
local) computation, point-to-point communication, and collective communication. Performance
ests were executed on Blue Waters [ 11 , 25 ]. Each test is the average of 20 iterations of ECG;
eported times are the maximum average time recorded for any single process. At small scales, local
omputation dominates performance, while at larger scales, the point-to-point communication in
he single SpMBV kernel and the collective communication in the block vector inner products
ecome the bottleneck in ECG. Figure 3.3 also shows the time spent in a single inner product.
hile we observe growth with the number of processes, as expected, the relative cost (and growth)
ithin ECG remains low. Importantly, increasing t at high processor counts does not significantly

ontribute to cost. This is shown in Figure 3.4 , where the mean runtime for various block vector
nner products all fall within each other’s confidence intervals. This suggests that increasing t to
rive down the iteration count will have little effect on the per iteration cost of the two calls to
PI_Allreduce , and in fact, will result in fewer total calls to it due to the reduction in iterations. 

The remainder of this section focuses on accurately predicting the performance of a sin-
le iteration of ECG through robust communication performance models. In particular, SpMBV
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:12 S. Lockhart et al. 

Figure 3.3. Time (left) and percentage of time (right) for a single iteration of ECG for various block vec- 
tor sizes, t , and processor counts for Example 2.1 . The three varying shades for each t value represent 
the amount of overall time spent in on-process computation, point-to-point communication, and collective 
communication. 

Figure 3.4. Time for a single inner product (right) for various block vector sizes, t , and processor counts 
for Example 2.1 . Vertical lines denote the confidence intervals. 

c  

c

3

T  

p  

E  

a  

a

 

w  

d  

p  

w

A

ommunication is addressed in detail in Section 4 , where we discuss new node-aware communi-
ation techniques for blocked data. 

.3 Performance Modeling 

o better understand the timing profiles in Figure 3.3 , we develop performance models. Below, we
resent two different models for the performance of communication within a single iteration of
CG. First, consider the standard postal model for communication, which represents the maximum
mount of time required for communication by an individual process in a single iteration of ECG
s 

T postal = α ·m +
s · t 
R b ︸��������︷︷��������︸ 

point to point 

+ 2 · α · log (p) +
f · 4 · t 2 

R b ︸�������������������������︷︷�������������������������︸ 

collective 

, (3.1)

here f is the number of bytes for a floating point number—e.g., f = 8 . See Table 1 for a complete
escription of model parameters. As discussed in Section 2.2.1 , this model presents a misleading
icture on the performance of ECG at scale, particularly on current supercomputer architectures
here SMP nodes encounter injection bandwidth limits when sending inter-node messages. 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:13 

Figure 3.5. Max-rate model versus the postal model for the point-to-point communication in one iteration 

of ECG for Example 2.1 using various t . Measured runtimes are also included ( t = 5 and t = 20 shown for 
brevity). 

 

r

 

F  

i  

i  

v  

s  

t  

a  

l
 

s  

w

 

w  

e  

i  

t  

c

T . 

 

U  

c  

s
 

a  

i  

i  
To improve the model, we drop in the max-rate model for the point-to-point communication,
esulting in 

T MR 

= α ·m +max 

( 
ppn · s · t 

R N 

, 
s · t 
R b 

) 
︸���������������������������������︷︷���������������������������������︸ 

point to point 

+ 2 · α · log (p) +
f · 4 · t 2 

R b ︸�������������������������︷︷�������������������������︸ 

collective 

. (3.2)

igure 3.5 shows that the max-rate model provides a more accurate upper bound on the time spent

n point-to-point communication within ECG. The term 2 · α · log (p) +
f ·4 ·t 2 

R b 
remains unchanged

n Equations (3.1) and (3.2) to represent the collective communication required for the two block
ector inner products. Each block vector inner product incurs latency from requiring log (p) mes-
ages in an optimal implementation of the MPI_Allreduce . More accurate models for modeling
he communication of the MPI_Allreduce in the inner product exist, such as the logP model [ 17 ]
nd logGP model [ 3 ], but optimization of the reduction is outside the scope of this article, so we
eave the postal model for representing the performance of the inner products. 

Modeling the computation within an iteration of ECG is straightforward. The computation for a
ingle iteration of ECG is written as the sum of the kernel floating point operations in Algorithm 4 ,
hich results in the following: 

T comp = γ ·
( 
( 2 t ) 

nnz 

p 
+ ( 4 t + 4 t 2 ) 

n 

p 
+

1 

2 
t 2 +

1 

3 
t 3 

) 
, (3.3)

here γ is the time required to compute a single floating point operation. More accurate mod-
ls, such as the roofline model, exist for predicting peak computational performance, as well as
dentifying computational bottlenecks [ 35 ]. However, because point-to-point communication is
he overwhelmingly dominant cost in strong-scaling performance of ECG, we maintain a simple
omputational model. In total, we arrive at the following model for a single iteration of ECG: 

 ECG 

= α ·m +max 

( 
ppn · s · t 

R N 

, 
s · t 
R b 

) 
+ 2 · α · log (p) +

f · 4 · t 2 

R b 
+ γ ·

( 
(2 t ) 

nnz 

p 
+ (4 t + 4 t 2 ) 

n 

p 
+

1 

2 
t 2 +

1 

3 
t 3 

) 
(3.4)

sing this model, we can predict the reduction in the amount of time spent in point-to-point
ommunication using the multi-step communication techniques presented in Section 2.2.1 for a
ingle iteration of ECG for Example 2.1 —see Table 2 . 

We see that ECG is still limited at large processor counts even when substituting the node-
ware communication techniques to replace the costly point-to-point communication observed
n Figure 3.3 . The models do predict a large amount of speedup for most cases, however, when us-
ng three-step communication, suggesting that node-aware communication techniques can reduce
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:14 S. Lockhart et al. 

Table 2. Modeled Percentage of Time to Be Spent in Point-to-Point Communication for Multistep 
(“m-s”) Compared against the Measured Percentage of Time Spent in Point-to-Point Communication 

for Standard (“std”) in a Single Iteration of ECG for Example 2.1 
with Varying t and Processor Counts on Blue Waters 

t  

t  

p  

c  

i  

p

4

A  

a

 

w  

m  

w  

m
 

m  

i  

p  

c  

i  

i  

o

A

he large point-to-point bottleneck observed in the performance study. While a large communica-
ion cost stems equally from the collective communication the MPI_Allreduce operations, their
erformance is dependent upon underlying MPI implementation and outside the scope of this arti-
le. We address the point-to-point communication performance further in Section 4 by analyzing
t through the lens of node-aware communication techniques, optimizing them to achieve the best
ossible performance at scale. 

 OPTIMIZED COMMUNICATION FOR BLOCKED DATA 

s discussed in Section 3 , scalability for ECG is limited by the SpMBV multiplication kernel defined
s 

A ·V → W , (4.1)

ith A ∈ R 

n×n and V , V ∈ R 

n×t , where 1 < t � n. Due to the block vector structure of X , each
essage in a SpMV is increased by a factor of t (see Figure 4.1 ). The larger messages associated
ith t > 1 increase the amount of time spent in the point-to-point communication at larger scales,
aking the SpMBV operation an ideal candidate for node-aware messaging approaches. 
Additionally, the SpMBV kernel is a key computational kernel within block Krylov subspace
ethods [ 31 ]. While block Krylov methods are slightly different from enlarged Krylov methods,

n that they solve a linear system with multiple right-hand sides, and enlarged Krylov methods
roject an initial residual into a larger subspace to solve a single system, they both require a SpMBV
omputational kernel. It is worth noting that the techniques presented in the following sections
mpact the parallel performance of block Krylov subspace methods via reduction of time spent
n point-to-point communication. However, we do not analyze per iteration performance impacts
utside the context of ECG. 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:15 

Figure 4.1. Sparse matrix-block vector multiplication (cf. Figure 2.2 ). 

Figure 4.2. The inter-node message sizes across all processes for two-step and three-step communication 

when performing the SpMBV for Example 2.1 when t = 20 across 4,096 processes on Blue Waters. The average 
message size across all processes is marked by a red line. 

4

R  

a  

b

 

w

 

I  

t  

o  

b  

h  

w

.1 Performance Modeling 

ecalling the node-aware communication models from Section 2.2.1 , we augment the two-step
nd three-step models with block vector size, t . As a result, the two-step model in Equation (2.8)
ecomes 

T t ot al = α ·m proc → node +max 

( 
t · s node 

R N 

, 
t · s proc 

R b 

) 
︸������������������������������������������������︷︷������������������������������������������������︸ 

inter-node 

+α� · ( ppn − 1 ) + t ·
s proc 

R b, � ︸�������������������������︷︷�������������������������︸ 

intra-node 

, (4.2)

hile the three-step model in Equation (2.7) becomes 

T t ot al = α ·
m node → node 

ppn 
+max 

( 
t · s node 

R N 

, 
t · s proc 

R b 

) 
︸�������������������������������������������������︷︷�������������������������������������������������︸ 

inter-node 

+ 2 ·
( 
α� · ( ppn − 1 ) + t · s node → node 

R b, � 

) 
︸����������������������������������������︷︷����������������������������������������︸ 

intra-node 

. (4.3)

n both models, t impacts maximum rate, a term that is relatively small for t = 1 and dominates
he inter-node portion of the communication as t grows. Since messages are increased by a factor
f t , the single buffer used in three-step communication quickly reaches the network injection
andwidth limits. Using multiple buffers, as in two-step communication, helps mitigate the issue,
owever more severe imbalance persists, since the amount of data sent to different nodes is often
idely varying. 
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:16 S. Lockhart et al. 

Figure 4.3. Strong scaling results for Example 2.1 using standard, two-step, and three-step communication 

in the SpMBV ( t = 5 and t = 20 shown for brevity). 

 

f  

n  

o  

a
 

i  

i  

s

4

W  

i
 

a  

a  

o  

d  

t  

c  

t  

g
 

m  

w
 

c  

a  

i  

m
 

r  

G  

m  

A  

A

Figure 4.2 shows every inter-node message sent by a single process alongside the message size
or Example 2.1 when performing the SpMBV kernel with 4,096 processes and 16 processes per
ode. We present the message sizes for three-step and two-step communication, noting that the
verall number of inter-node messages decreases when using three-step communication, but the
verage message size sent by a single process increases. 

For t = 20 , the maximum message size nears 10 6 for three-step communication, while the max-
mum message size barely reaches 10 5 for two-step communication. Additionally, there is clear
mbalance in the inter-node message sizes for two-step communication with messages ranging in
ize from 10 3 to 10 5 Bytes. 

.2 Profiling 

e next apply the node-aware communication strategies presented for SpMVs and SpGEMMs
n Section 2.2 to the SpMBV kernel within ECG. 

Figure 4.3 displays the performance of standard, two-step, and three-step communication when
pplied to the SpMBV kernel for Example 2.1 with t = 5 and t = 20 . The two-step communication
ppears to outperform the others in most cases. This is due to the large amount of data to be sent
ff-node that is split across many processes. We see two-step communication performing better
ue to the term α ·m proc → node in Equation (4.2) being smaller than the α ·m node → node term in the
hree-step communication model (Equation (4.3) ) due to multiplication by the factor t . In fact, all
ounts measured in the ECG profiling section are now multiplied by the enlarging factor t . While
he traditional SpMV shows speedup with three-step communication, we now see that two-step is
enerally the best fit for our methods as message size, and thus t , increases. 

Next we consider node-aware communication performance results for a subset of the largest
atrices in the SuiteSparse matrix collection [ 18 ] (matrix details can be found in Table 3 ). These
ere selected based on size and density to provide a variety of scenarios. 
While two-step communication is effective in many instances, it is not always the most optimal

ommunication strategy, as depicted in Figure 4.4 . Unlike the results for Example 2.1 , three-step
nd two-step communication do not always outperform standard communication, and in some
nstances (4,096 processes), for most values of t there is performance degradation. This is seen

ore clearly in Figure 4.5 . 
It is important to highlight cases where only a single node-aware communication technique

esults in performance deterioration over standard communication. Distinct examples include
eo_1438 and thermal2 on 4,096 processes. Both of these matrices benefit from two-step com-
unication for t = 10 and 20, but performance degrades when using three-step communication.
nother example is the performance of ldoor on 8,192 processes (see Figure 4.5 ). For t = 5 and 10,
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:17 

Table 3. Test Matrices 

matrix rows/ cols nnz nnz/row density 

audikw_1 943,695 77,651,847 82.3 8.72e-05 
Geo_1438 1,437,960 60,236,322 41.9 2.91e-05 
bone010 986,703 47,851,783 48.5 4.92e-05 
Emilia_923 923,136 40,373,538 43.7 4.74e-05 
Flan_1565 1,565,794 114,165,372 72.9 4.66e-05 
Hook_1498 1,498,023 59,374,451 39.6 2.65e-05 
ldoor 952,203 42,493,817 44.6 4.69e-05 
Serena 1,391,349 64,131,971 46.1 3.31e-05 
thermal2 1,228,045 8,580,313 7.0 5.69e-06 

Figure 4.4. Speedup of two-step and three-step communication over standard communication in the SpMBV 

for various matrices from the SuiteSparse matrix collection on Blue Waters. The red line marks 1.0, or no 
speedup. 

l  

o  

w  

m  

f  

4

W  

e  

m  

o  

I  

M  

w
 

o  

s  

d  

(  
door results in performance degradation using two-step communication, but up to 5 × speedup
ver standard communication when using three-step communication. These cases highlight that
hile one node-aware communication technique underperforms in comparison to standard com-
unication, the other node aware technique is still much faster. Using this as the key motivating

actor, we discuss an optimal node-aware communication technique for blocked data in Section 4.3 .

.3 Optimal Communication for Blocked Data 

hen designing an optimal communication scheme for the blocked data format, the main consid-
ration is the impact the number of vectors within the block have on the size of messages com-
unicated. The effects message size and message number have on performance can vary based

n machine, hence we present results for Blue Waters alongside Lassen [ 23 ]. Lassen, a 23-petaflop
BM system at Lawrence Livermore National Laboratory, consists of 792 nodes connected via a

ellanox 100 Gb/s Enhanced Data Rate InfiniBand network. Each node on Lassen is dual-socket
ith 44 IBM Power9 cores and 4 NVIDIA Volta GPUs (which are unused in our tests.) 
In Figure 4.6 , we view the effects placement of data and amount of data being communicated has

n performance times for two different machines. This figure shows the amount of time required to
end various numbers of bytes between two processes when they are located on the same node but
ifferent sockets (blue) and on the same node and same socket (red) for the machines Blue Waters
left) and Lassen (right). It also shows the amount of time required to communicate between two
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:18 S. Lockhart et al. 

Figure 4.5. Speedup of two-step and three-step communication over standard communication in the SpMBV 

for various matrices on Blue Waters for 4,096 and 8,192 processes. The red line marks 1.0, or no speedup. 
Speedups greater than 6.0 are given via annotations on the plot. 

Figure 4.6. Communication time on-socket, on-node, or across the network on Blue Waters (left) and Lassen 

(right). Measured times are displayed as dots; solid lines represent max-rate model [ 22 ]. ppn represents the 
number of processors participating in communication. (The Blue Waters data were initially presented in 

Reference [ 8 ] and is replotted here.) 

p  

c  

c  

m  

p  

F  

a  

i  

F  

t  

i  

m  

i  

F  

i  

n

A

rocesses on separate nodes when there are less than four (Blue Waters) or five (Lassen) active pro-
esses communicating through the network at the same time or more than four or five processes
ommunicating through the network at the same time. We see that as the number of bytes com-
unicated between two processes increases, it becomes increasingly important whether those two

rocesses are located on the same socket, node, or require communication through the network.
or both machines, inter-node communication is fastest when message sizes are small, and there
re few messages being injected into the network. On Blue Waters, intra-node communication
s the fastest, with the time being dependent on how physically close the processes are located.
or instance, when two processes are on the same socket, communication is faster than when
hey are on the same node, but different sockets. This is true for Lassen, as well, but cross-socket
ntra-node communication is not always faster than communicating through the network. Once

essage sizes exceed 10 4 bytes, and there are fewer than five processes actively communicating,
nter-node communication is faster than two cross-socket intra-node processes communicating.
or both machines, however, we see that once a large enough communication volume is reached,
t becomes faster to split the inter-node data being sent across a subset of the processes on a single
ode due to network contention as observed in Reference [ 8 ]. 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:19 

Figure 4.7. Time required to send data between two processes on separate nodes with the data communica- 
tion split across ppn processes. Timings for Blue Waters and Lassen are presented in the left and right plots, 
respectively. 

 

s  

p  

F  

p  

s  

b
 

c  

S  

b  

t
 

t  

u  

n  

s  

n  

e  

r  

t  

o  

m  

t

 

w  

n  

m  

m  
In addition to the importance of the placement of two communicating processes, the total mes-
age volume and number of actively communicating processes plays a key role in communication
erformance. While it is extremely costly for every process on a node to send 10 5 bytes as seen in
igure 4.6 , there are performance benefits when splitting a large communication volume across all
rocesses on a node, depicted in Figure 4.7 . Blue Waters sees modest performance benefits when
plitting large messages across multiple processes, whereas Lassen sees much greater performance
enefits. 
These observations help justify why three-step communication would outperform two-step

ommunication, and vice versa in certain cases of the SpMBV profiling presented in Figure 3.5 .
ending all messages in a single buffer becomes impractical when the block size, t , is very large,
ut having each process communicate with a paired process also poses problems when some of
he inter-node messages being sent are still very large, as seen in Figure 4.2 . 

Motivated by the results above, we introduce an optimized multi-step communication process
hat combines the aspects of both the three-step and two-step communication techniques, and
sing three-step or two-step communication when necessary. We reduce the number of inter-
ode messages and conglomerate messages to be sent off node for certain cases when the message
izes to be sent off-node are below a given threshold, and we split the messages to be sent off-
ode across multiple processes when the message size is larger than a given threshold. Hence,
ach node is determining the most optimal way to perform its inter-node communication. As a
esult, this nodal optimal communication eliminates the redundancies of data being injected into
he network, just as three-step and two-step do, but in some cases, it does not reduce the number
f inter-node messages as much as three-step, and in fact can increase the number of inter-node
essages injected by a single node to be larger than those injected by two-step, but never exceeding

he total number of active processes per node. 
The number of inter-node messages sent can be represented by the following inequality: 

m node → node ≤ n opt ≤ max (m proc → node , ppn ), (4.4)

here n opt is the number of inter-node messages injected by a single process for the optimal
ode-aware communication, and it is bounded below by the worst-case number of messages com-
unicated in three-step communication (Equation (4.3) ) and above by the worst-case number of
essages communicated in two-step communication (Equation (4.2) ) or ppn , whichever is greater.
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:20 S. Lockhart et al. 

Figure 4.8. Node-aware communication on two nodes with four processes each. 

 

t  

c

 

 

 

 

A

The proposed process, excluding reducing the global communication strategy to three-step or
wo-step communication, is summarized in Figure 4.8 . This figure outlines the nodal optimal pro-
ess of communicating data between two nodes, each with four local processes. 

Step 1: Each node conglomerates small messages to be sent off-node while retaining larger mes-
sages. Messages are assigned to processes in descending order of size to the first available
process on node. This is done for every node simultaneously. 

Step 2: Buffers prepared in step 1 are sent to their destination node, specifically to the paired
process on that node with the same local rank. P0 exchanges data with P4, while P1 sends
data to P5, and P2 sends data to P6. 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:21 

Figure 4.9. Speedup of optimal communication over standard communication (without reducing to a global 
communication strategy) in the SpMBV for various matrices from the SuiteSparse matrix collection on Blue 
Waters and Lassen. The red line marks 1 or no speedup. 

 

 

H  

t  

d  

t  

b  

i  

fi  

b  

m
 

d  

l  

t  

o  

o
 

e  

s  

c  
Step 3: All processes on each individual node redistribute their received data to the correct des-
tination processes on-node. In this step, all communication is local. 

The resulting speedups for the two systems Blue Waters and Lassen are presented in Figure 4.9 .
ere the message size cutoff being used is the message size cutoff before the MPI implementa-

ion switches to the rendezvous protocol. For sending large messages between processes, the ren-
ezvous protocol communicates an envelope first, then the remaining data are communicated after
he receiving process allocates buffer space. It is necessary to use this protocol for large messages,
ut there is a slight slowdown over sending messages via the short and eager protocols that either
nclude the data being sent as part of the envelope (short) or eagerly send the data if they do not
t into the envelope (eager). This cutoff is chosen because rendezvous is the slowest protocol and
ecause the switch to the rendezvous protocol is approximately the crossover point when on-node
essages become slower than network messages on Lassen (around 10 4 Bytes in Figure 4.6 .) 
Using this cutoff point, the method sees speedup for some test matrices and performance degra-

ation for most on Blue Waters, which is consistent with the minimal speedup seen by splitting
arge messages across multiple processes in Figure 4.7 . Additionally, it is likely that network con-
ention is playing a large role in the Blue Waters results as the message sizes become large based
n the findings in Reference [ 8 ], and due to each node determining independently how to send its
wn data without consideration of the size or number of messages injected by other nodes. 

The nodal optimal communication performs better on Lassen than Blue Waters and aligns with
xpectations based on the combination of using three-step for nodes with small inter-node mes-
ages to inject into the network where on-node communication is faster than network communi-
ation (Figure 4.6 ) and splitting large messages where the benefits are much greater (Figure 4.7 ).
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:22 S. Lockhart et al. 

Figure 4.10. Speedup of tuned communication over standard communication in the SpMBV for various ma- 
trices from the SuiteSparse matrix collection on Blue Waters and Lassen. The red line marks 1.0 or no speedup. 

W  

a  

T  

c  

t  

o  

S  

u
 

o  

t  

c  

o  

m  

n
 

t  

s  

w  

p  

w  

t

A

hile Blue Waters achieves higher speedups in some cases than Lassen, both systems see speedups
s large as 60 ×. These results only present part of the overall communication picture, however.
here are still cases where the global communication strategy should be reduced to three-step
ommunication, two-step communication, or standard communication. This differs based on the
wo machines and the specific test matrix, but tuning between the techniques results in the most
ptimal communication strategy. Tuning comes at the minimal cost of performing four different
pMBVs during setup of the SpMBV communicator. Speedups over standard communication when
sing tuning to use the fastest communication technique are presented in Figure 4.10 . 
In the top plot of Figure 4.10 , Blue Waters benefits in 33% of the cases from including the nodal

ptimal multi-step communication strategy. These results are expected based on Figure 4.9 where
he benefits of nodal optimal multi-step communication were less than ideal. In fact, for 20% of the
ases on Blue Waters, standard communication is the most performant, consistent with matrices
f low density. The matrices Geo_1438 and ldoor , which have the smallest density of the test
atrices (Table 3 ), see minimal benefits from the multi-step communication techniques as the
umber of processes is scaled up due to the minimal amount of data being communicated. 
We expected to see two-step and nodal optimal communication perform the best on Lassen due

o the faster inter-node communication for smaller sized messages (Figure 4.6 ) and the benefits of
plitting messages across many processes on node (Figure 4.7 ). These expectations are consistent
ith the results presented in the bottom plot of Figure 4.10 ; most test matrices saw the best SpMBV
erformance with nodal optimal communication (44% of the cases). The remainder of the test cases
ere divided almost equally between two-step, three-step, and standard communication for which

echnique was the most performant (approximately 18% of the cases, each). 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



Performance Analysis and Optimal Communication for ECG 2:23 

Table 4. Measured Percentage of Time Spent in Point-to-point Communication for the Tuned 

Multistep (“m-s”) Compared against the Measured Percentage of Time Spent in Point-to-point 
Communication for Standard (“std”) in a Single Iteration of ECG for Example 2.1 

with Varying t and Processor Counts on Blue Waters and Lassen 

 

c  

p  

f  

a  

m  

s  

b  

t  

i

5

T  

t  

u  

r
 

t  

t  

a  

n  

t  

b  

s  

n

Table 4 shows the benefits of using the tuned point-to-point communication over the standard
ommunication in a single iteration of ECG for Example 2.1 . Tuned communication reduces the
ercentage of time spent in point-to-point communication independent of system, though the per-
ormance benefits are typically best when more data are being communicated ( t = 20 in Table 4(a)
nd Table 4(b)). For Blue Waters, the new communication technique results in point-to-point com-
unication taking 20–40 % less of the total time compared to the percentage of time when using

tandard communication (corresponding to the blue highlighted values in Table 4(a)). Performance
enefits are much greater on Lassen where the tuned communication results in a decrease of more
han 40% of the total iteration time compared to an iteration time with standard communication
n most cases. 

 CONCLUSIONS 

he enlarged ECG is an efficient method for solving large systems of equations designed to reduce
he collective communication bottlenecks of the classical CG method. Within ECG, block vector
pdates replace the single vector updates of CG, thereby reducing the overall number of iterations
equired for convergence and hence the overall amount of collective communication. 

In this article, we performed a performance study and analysis of the effects of block vectors on
he balance of collective communication, point-to-point communication, and computation within
he iterations of ECG. We noted the increased volume of data communicated and its disproportion-
te affects on the performance of the point-to-point communication; the communication bottle-
eck of ECG shifted to be the point-to-point communication within the SpMBV kernel. To address
he new SpMBV bottleneck, we designed an optimal multi-step communication technique that
uilds on existing node-aware communication techniques and improves them for the emerging
upercomputer architectures with greater numbers of processes per node and faster inter-node
etworks. 
ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 



2:24 S. Lockhart et al. 

 

p  

t  

c  

w  

t  

a

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

[  

 

[  

 

[  

[  

[  

 

[  

 

A

Overall, this article provides a comprehensive study of the performance of ECG in a distributed
arallel environment, and introduces a novel point-to-point multi-step communication technique
hat provides consistent speedup over standard communication techniques independent of ma-
hine. Notably, the novel communication technique naturally extends to any iterative method in
hich there is a sparse matrix-block vector product kernel, such as block Krylov methods. Fu-

ure work includes profiling and improving the performance of ECG on hybrid supercomputer
rchitectures with computation offloaded to graphics processing units. 

The software used to generate the results in this article is freely available in RAPtor [ 10 ]. 

EFERENCES 

[1] Tarun Agarwal, Amit Sharma, A. Laxmikant, and Laxmikant V. Kalé. 2006. Topology-aware task mapping for reduc-

ing communication contention on large parallel machines. In Proceedings of the 20th IEEE International Parallel &

Distributed Processing Symposium . IEEE, 10. 

[2] Hasan Metin Aktulga, Chao Yang, Esmond G. Ng, Pieter Maris, and James P. Vary. 2014. Improving the scalability of

a symmetric iterative eigensolver for multi-core platforms. Concurr. Comput.: Pract. Exp. 26, 16 (2014), 2631–2651. 

[3] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. 1997. LogGP: Incorporating long mes-

sages into the LogP model for parallel computation. J. Parallel Distrib. Comput. 44, 1 (1997), 71–79. DOI: https:

//doi.org/10.1006/jpdc.1997.1346 

[4] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub Cerveny, Veselin

Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido Akkerman,

Johann Dahm, David Medina, and Stefano Zampini. 2021. MFEM: A modular finite element methods library. Comput.

Math. Appl. 81 (2021), 42–74. DOI: https://doi.org/10.1016/j.camwa.2020.06.009 

[5] Allison H. Baker, Martin Schulz, and Ulrike M. Yang. 2010. On the performance of an algebraic multigrid solver on

multicore clusters. In International Conference on High Performance Computing for Computational Science . Springer,

102–115. 

[6] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, Alp

Dener, Victor Eijkhout, W. Gropp, et al. 2019. PETSc Users Manual . 

[7] Amanda Bienz, William Gropp, and Luke Olson. 2019. Node aware sparse matrix–vector multiplication. J. Parallel

Distrib. Comput. 130 (08 2019), 166–178. DOI: https://doi.org/10.1016/j.jpdc.2019.03.016 

[8] Amanda Bienz, William D. Gropp, and Luke N. Olson. 2018. Improving performance models for irregular point-to-

point communication. In Proceedings of the 25th European MPI Users’ Group Meeting (EuroMPI’18) . Association for

Computing Machinery, New York, NY, 8 pages. https://doi.org/10.1145/3236367.3236368 

[9] Amanda Bienz, William D. Gropp, and Luke N. Olson. 2020. Reducing communication in algebraic multigrid with

multi-step node aware communication. Int. J. High Perf. Comput. Appl. 34, 5 (June 2020), 547–561. DOI: https://doi.

org/10.1177/1094342020925535 

10] Amanda Bienz and Luke N. Olson. 2017. RAPtor: Parallel Algebraic Multigrid v0.1, Release 0.1. Retrieved from https:

//github.com/raptor-library/raptor . 

11] Brett Bode, Michelle Butler, Thom Dunning, Torsten Hoefler, William Kramer, William Gropp, and Wen-mei Hwu.

2013. The blue waters super-system for super-science. In Contemporary High Performance Computing . Chapman &

Hall/CRC, 339–366. https://w w w.taylorfrancis.com/books/e/9781466568358 . 

12] Erin Carson, Nicholas Knight, and James Demmel. 2013. Avoiding communication in nonsymmetric Lanczos-based

Krylov subspace methods. SIAM J. Sci. Comput. 35, 5 (January 2013), S42–S61. DOI: https://doi.org/10.1137/120881191 .

arXiv: https://doi.org/10.1137/120881191 

13] Ümit V. Çatalyürek and Cevdet Aykanat. 1999. Hypergraph-partitioning-based decomposition for parallel sparse-

matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst. 10, 7 (1999), 673–693. DOI: https://doi.org/10.1109/71.

780863 

14] Ümit V. Çatalyürek, Cevdet Aykanat, and Bora Uçar. 2010. On two-dimensional sparse matrix partitioning: Models,

methods, and a recipe. SIAM J. Sci. Comput. 32, 2 (2010), 656–683. DOI: https://doi.org/10.1137/080737770 

15] A. T. Chronopoulos and C. W. Gear. 1989. s-step iterative methods for symmetric linear systems. J. Comput. Appl.

Math. 25, 2 (February 1989), 153–168. DOI: https://doi.org/10.1016/0377- 0427(89)90045- 9 

16] S. Cools and W. Vanroose. 2017. The communication-hiding pipelined BiCGstab method for the parallel solution of

large unsymmetric linear systems. Parallel Comput. 65 (July 2017), 1–20. DOI: https://doi.org/10.1016/j.parco.2017.04.

005 

17] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos, Ramesh Subramo-

nian, and Thorsten von Eicken. 1993. LogP: Towards a realistic model of parallel computation. SIGPLAN Not. 28,

7 (July 1993), 1–12. DOI: https://doi.org/10.1145/173284.155333 
CM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 

https://doi.org/10.1006/jpdc.1997.1346
https://doi.org/10.1006/jpdc.1997.1346
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.jpdc.2019.03.016
https://doi.org/10.1145/3236367.3236368
https://doi.org/10.1177/1094342020925535
https://doi.org/10.1177/1094342020925535
https://github.com/raptor-library/raptor
https://github.com/raptor-library/raptor
https://www.taylorfrancis.com/books/e/9781466568358
https://doi.org/10.1137/120881191
https://doi.org/10.1137/120881191
https://doi.org/10.1109/71.780863
https://doi.org/10.1109/71.780863
https://doi.org/10.1137/080737770
https://doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1145/173284.155333


Performance Analysis and Optimal Communication for ECG 2:25 

[  

[  

[  

 

[  

 

[  

 

[

[  

[  

 

[  

[  

[  

 

[  

 

 

[  

[  

[  

[  

[  

[  

R

18] Timothy A. Davis and Yifan Hu. 2011. The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38,

1, Article 1 (December 2011), 25 pages. DOI: https://doi.org/10.1145/2049662.2049663 

19] P. Ghysels and W. Vanroose. 2014. Hiding global synchronization latency in the preconditioned Conjugate Gradient

algorithm. Parallel Comput. 40, 7 (July 2014), 224–238. DOI: https://doi.org/10.1016/j.parco.2013.06.001 

20] Laura Grigori, Sophie Moufawad, and Frederic Nataf. 2016. Enlarged Krylov subspace conjugate gradient methods

for reducing communication. SIAM J. Matrix Anal. Appl. 37, 2 (January 2016), 744–773. arXiv: https://doi.org/10.1137/

140989492 

21] Laura Grigori and Olivier Tissot. 2019. Scalable linear solvers based on enlarged Krylov subspaces with dynamic

reduction of search directions. SIAM J. Sci. Comput. 41, 5 (January 2019), C522–C547. arXiv: https://doi.org/10.1137/

18M1196285 

22] William Gropp, Luke N. Olson, and Philipp Samfass. 2016. Modeling MPI communication performance on SMP

nodes. In Proceedings of the 23rd European MPI Users’ Group Meeting (EuroMPI’16) . ACM Press, New York, NY, 41–50.

DOI: https://doi.org/10.1145/2966884.2966919 

23] W. A. Hanson. 2020. The CORAL supercomputer systems. IBM J. Res. Dev. 64, 3/4 (2020), 1:1–1:10. 

24] Bruce Hendrickson and Tamara G. Kolda. 200. Graph partitioning models for parallel computing. Parallel Comput.

26, 12 (200), 1519–1534. DOI: https://doi.org/10.1016/S0167- 8191(00)00048- X 

25] William Kramer, Michelle Butler, Gregory Bauer, Kalyana Chadalavada, and Celso Mendes. 2015. Blue waters parallel

I/O storage sub-system. In High Performance Parallel I/O , Prabhat and Quincey Koziol (Eds.). CRC Publications, Taylor

& Francis Group, 17–32. 

26] Hoemmen M. 2010. Communication-Avoiding Krylov Subspace Methods . Ph.D. Dissertation. University of California,

Berkeley. 

27] Tania Malik, Vladimir Rychkov, and Alexey Lastovetsky. 2016. Network-aware optimization of communications for

parallel matrix multiplication on hierarchical HPC platforms. Concurr. Comput.: Pract. Exp. 28, 3 (2016), 802–821. 

28] Lois Curfman McInnes, Barry Smith, Hong Zhang, and Richard Tran Mills. 2014. Hierarchical Krylov and nested

Krylov methods for extreme-scale computing. Parallel Comput. 40, 1 (January 2014), 17–31. DOI: https://doi.org/10.

1016/j.parco.2013.10.001 

29] Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. 2009. Minimizing communication

in sparse matrix solvers. In Proceedings of the Conference on High Performance Computing Networking, Storage and

Analysis (SC’09) . Association for Computing Machinery, New York, NY, Article 36, 12 pages. DOI: https://doi.org/10.

1145/1654059.1654096 

30] Sophie M. Moufawad. 2020. s-step enlarged krylov subspace conjugate gradient methods. SIAM J. Sci. Comput. 42,

1 (January 2020), A187–A219. arXiv: https://doi.org/10.1137/18M1182528 

31] Dianne P. O’Leary. 1980. The block conjugate gradient algorithm and related methods. Lin. Algebr. Appl. 29

(February 1980), 293–322. DOI: https://doi.org/10.1016/0024- 3795(80)90247- 5 

32] Brian A. Page and Peter M. Kogge. 2018. Scalability of hybrid sparse matrix dense vector (spmv) multiplication. In

Proceedings of the International Conference on High Performance Computing & Simulation (HPCS’18) . IEEE, 406–414. 

33] Jesper Larsson Träff. 2002. Implementing the MPI process topology mechanism. In Proceedings of the ACM/IEEE Con-

ference on Supercomputing (SC’02) . IEEE, Los Alamitos, CA, 1–14. 

34] Brendan Vastenhouw and Rob H. Bisseling. 2005. A two-dimensional data distribution method for parallel sparse

matrix-vector multiplication. SIAM Rev. 47, 1 (2005), 67–95. DOI: https://doi.org/10.1137/S0036144502409019 

35] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model

for multicore architectures. Commun. ACM 52, 4 (2009), 65–76. 
eceived 10 March 2022; revised 15 December 2022; accepted 10 January 2023 

ACM Transactions on Parallel Computing, Vol. 10, No. 1, Article 2. Publication date: March 2023. 

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1016/j.parco.2013.06.001
https://doi.org/10.1137/140989492
https://doi.org/10.1137/140989492
https://doi.org/10.1137/18M1196285
https://doi.org/10.1137/18M1196285
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1016/S0167-8191(00)00048-X
https://doi.org/10.1016/j.parco.2013.10.001
https://doi.org/10.1016/j.parco.2013.10.001
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1137/18M1182528
https://doi.org/10.1016/0024-3795(80)90247-5
https://doi.org/10.1137/S0036144502409019

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Enlarged Krylov Subspace Methods
	2.2 Node-aware Communication Techniques

	3 PERFORMANCE STUDY OF ENLARGED CONJUGATE GRADIENT
	3.1 Implementation
	3.2 Per Iteration Performance
	3.3 Performance Modeling

	4 OPTIMIZED COMMUNICATION FOR BLOCKED DATA
	4.1 Performance Modeling
	4.2 Profiling
	4.3 Optimal Communication for Blocked Data

	5 CONCLUSIONS
	REFERENCESendgraf 

