
Parallel Computing 116 (2023) 103021

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Characterizing the performance of node-aware strategies for irregular
point-to-point communication on heterogeneous architectures
Shelby Lockhart a,∗, Amanda Bienz b, William D. Gropp a, Luke N. Olson a

a University of Illinois at Urbana-Champaign, Department of Computer Science, Urbana, 61801, IL, USA
b University of New Mexico, Department of Computer Science, Albuquerque, 87131, NM, USA

A R T I C L E I N F O

Keywords:
Performance modeling
GPU
Data movement
CUDA-aware
GPUDirect
MPI
Parallel
Communication
Sparse matrix

A B S T R A C T

Supercomputer architectures are trending toward higher computational throughput due to the inclusion of
heterogeneous compute nodes. These multi-GPU nodes increase on-node computational efficiency, while also
increasing the amount of data to be communicated and the number of potential data flow paths. In this
work, we characterize the performance of irregular point-to-point communication with MPI on heterogeneous
compute environments through performance modeling, demonstrating the limitations of standard commu-
nication strategies for both device-aware and staging-through-host communication techniques. Presented
models suggest staging communicated data through host processes then using node-aware communication
strategies for high inter-node message counts. Notably, the models also predict that node-aware communication
utilizing all available CPU cores to communicate inter-node data leads to the most performant strategy when
communicating with a high number of nodes. Model validation is provided via a case study of irregular
point-to-point communication patterns in distributed sparse matrix–vector products. Importantly, we include
a discussion on the implications model predictions have on communication strategy design for emerging
supercomputer architectures.
1. Introduction

Modern parallel supercomputers exhibit increasingly higher compu-
tational throughput due to the inclusion of multiple GPUs per node —
see Section 2.1. These GPUs operate on much higher data volumes
concurrently than previous CPU-only clusters, yet the issue of com-
munication bottlenecks persists and is exacerbated in a multi-node–
multi-GPU setting. While the high computational intensity of modern
supercomputers is driving a new era of applications, the volume of data
communicated between compute units has also increased, creating new
obstacles for data movement performance.

In this paper, we focus on irregular point-to-point communication,
which generates performance bottlenecks in parallel iterative solvers
and graph algorithms due to the prevalence of sparse matrix operations
and unstructured mesh computations [1,2]. We aim to characterize
the performance of various irregular point-to-point communication
strategies using MPI within heterogeneous compute environments via
performance modeling, which suggests the extension of node-aware
communication strategies for inter-CPU communication (discussed in
Section 2.3) onto heterogeneous architectures.

Node-aware communication schemes utilize the relative location
of communicating processes and exchange costly data flow paths for

∗ Corresponding author.
E-mail addresses: sll2@illinois.edu (S. Lockhart), bienz@unm.edu (A. Bienz), wgropp@illinois.edu (W.D. Gropp), lukeo@illinois.edu (L.N. Olson).

lower cost alternatives [3]. There has been extensive research on the
development of these communication schemes for inter-CPU communi-
cation [3–6], as well as, initial results demonstrating potential benefits
of staging GPU data through host processes before exchanging inter-
node messages when message counts are high [7]. However, there
has not been a study on the potential benefits of using node-aware
communication techniques for inter-GPU communication on modern
heterogeneous architectures. In this work, we provide an overview of
existing node-aware communication techniques for inter-CPU commu-
nication and extend them to inter-GPU communication. While there are
many potential paths for data movement on heterogeneous architec-
tures, we consider the communication paths available via the MPI API
and only consider device specific optimizations, such as utilizing CUDA
Multi-Process Service (MPS) to allow multiple MPI ranks to copy data
from a single GPU, as a comparison.

In Section 3, we present modeling parameters for all potential
data flow paths between CPUs and GPUs, which are then used within
performance models to predict the cost of various node-aware commu-
nication schemes when implemented on heterogeneous architectures
in Section 4. Models are first validated via comparison against the
performance of communication within a sparse matrix–vector product,
vailable online 14 April 2023
167-8191/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2023.103021
Received 13 September 2022; Received in revised form 25 January 2023; Accepted
 7 April 2023

https://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:sll2@illinois.edu
mailto:bienz@unm.edu
mailto:wgropp@illinois.edu
mailto:lukeo@illinois.edu
https://doi.org/10.1016/j.parco.2023.103021
https://doi.org/10.1016/j.parco.2023.103021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2023.103021&domain=pdf


Parallel Computing 116 (2023) 103021S. Lockhart et al.

w
S
h
v
N
m
G
c

t
T
h
f
c
d
G
d
r
C
t

2

t
n
c
s

2

f
m
i
m
m

𝑇

w
n
r
c

𝑇

w
s
b
p
(
p
t

a
t
p
t
a
b
p
r
c
t
c

H
i
G
b
t

then further modeling results suggest that for large message counts,
optimal performance is achieved when GPU data is staged through a
host process and split across multiple processes before communicating
through the network.

Furthermore, Section 5 provides a study of the techniques modeled
in Section 4 when applied to the irregular point-to-point communica-
tion patterns in distributed sparse matrix–vector multiplication (SpMV)
on heterogeneous architectures, further validating model predictions.
Finally, Section 6 provides a discussion on the implications model pre-
dictions and benchmark results have on the future of communication
strategy design for emerging supercomputer architectures, alongside a
summary of the presented results.

The following provides a summary of paper contributions:

1. performance models for node-aware communication on hetero-
geneous architectures — Sections 3 and 4;

2. performance predictions for common irregular point-to-point
communication scenarios using the developed models — Sec-
tion 4.6;

3. benchmarks of irregular point-to-point communication patterns
found within distributed sparse matrix–vector multiplication —
Section 5; and

4. remarks on future communication design for emerging super-
computer architectures — Section 6.

2. Background

2.1. Modern architectures

Many current large-scale supercomputers consist of heterogeneous
nodes containing multiple GPUs connected to a single CPU per socket
with two sockets per node. In the case of the Lassen supercomputer,
each socket consists of a single IBM Power9 CPU connected to two
NVIDIA V100 GPUs [8] (see Fig. 2.1), while the Summit supercom-
puter has a single IBM Power9 CPU connected to three NVIDIA V100
GPUs [9]. For both machines, each CPU has 20 available cores, CPUs
and GPUs are connected via NVLink. Furthermore, CPUs are connected
directly to the Infiniband (IB) adapter through PCIe lanes, while GPUs
are connected to the IB adapter via a PCIe switch system connecting the
GPUs to NVMe and the adapter. Nodes are connected via Mellanox EDR
100G InfiniBand in a non-blocking fat tree topology. Upcoming De-
partment of Energy exascale machines, Frontier [10] and El Capitan,1

ill have nodes with a similar structure to those found in Lassen and
ummit. However, these compute nodes will consist of a single socket
ousing an AMD EPYC CPU connected to four AMD Instinct 250X GPUs
ia AMD Infinity Fabric with a Slingshot network. Additionally, the
ational Center for Supercomputing Applications (NCSA) will boast
ore expansive compute nodes consisting of four to eight AMD A100
PUs connected to a dual AMD 64-core 2.55 GHz Milan processor per
ompute node in their upcoming system Delta.2

Both current and future supercomputers boast heterogeneous archi-
ectures with multiple paths for data movement between two GPUs.
wo connected GPUs either exchange data directly or stage through the
ost CPU by first copying data to CPU memory, then transferring data
rom the local CPU to the host CPU of the receiving GPU, and finally
opying received data to the destination GPU. The process of staging
ata through the host CPU can be used for any set of communicating
PUs independent of their relative locations. However, device-aware
ata movement paradigms, such as CUDA-aware MPI using GPUDi-
ect [11] on Lassen, remove the necessity of copying data to the host
PU and allow data retrieval directly from device memory, even in
he case of inter-node data transfers. The addition of device-aware

1 https://www.llnl.gov/news/el-capitan-testbed-systems-rank-among-top-
00-worlds-most-powerful-computers

2 https://www.ncsa.illinois.edu/research/project-highlights/delta
2

p

Fig. 2.1. Lassen compute node.

echnologies increases the number of potential data movement paths
ecessitating the use of robust performance modeling to determine
ommunication bottlenecks, as well as, design optimal communication
trategies.

.2. Modeling data movement

Throughout this paper, we rely on the max-rate model as the basis
or communication modeling [12]. The max-rate model is an improve-
ent to the standard postal model of communication, accounting for

njection limits into the network. The traditional postal model esti-
ates the cost of communicating a message between two symmetric
ultiprocessing (SMP) nodes as

= 𝛼 + 𝛽 ⋅ 𝑠 (2.1)

here 𝛼 is the latency, 𝛽 is the per-byte transfer cost, and 𝑠 is the
umber of bytes being communicated. The max-rate model adds pa-
ameters for injection-bandwidth limits and the number of actively
ommunicating processes, resulting in the following time estimation,

= 𝛼 ⋅ 𝑚 + max
(

𝚙𝚙𝚗 ⋅ 𝑠
𝑅𝑁

, 𝑠
𝑅𝑏

)

(2.2)

here 𝛼 is again the latency, 𝑚 is the maximum number of messages
ent by a single process on a given node, 𝑠 is the maximum number of
ytes sent by a single process on a given SMP, 𝚙𝚙𝚗 is the number of
rocesses per node, 𝑅𝑁 is the rate at which a network interface card
NIC) can inject data into the network, and 𝑅𝑏 is the rate at which a
rocess can transport data. When 𝚙𝚙𝚗 ⋅𝑅𝑏 < 𝑅𝑁 , this model reduces to
he postal model.

For inter-CPU communication, additional improvements are avail-
ble to the max-rate model within the context of irregular point-
o-point communication. Additional hardware and software overhead
enalties are represented in the LogP model [13], which is extended
o include long message costs in the LogGP model [14]. Addition-
lly, models for queue search times and network contention have
een shown to be important for accurately predicting performance of
oint-to-point communication [15]. These models provide penalty pa-
ameters which have been shown to increase the accuracy of standard
ommunication models, as well as, motivate design decisions within
he context of node-aware communication techniques. Node-aware
ommunication strategies are discussed in more detail in Section 2.3.

The max-rate model also applies to inter-GPU communication [7].
ere, the noted difficulty in reaching injection bandwidth limits with

nter-GPU communication is due to the low number of communicating
PUs per node. Additionally, for large message counts, performance
enefits are observed [7] when staging communication between GPUs
hrough host CPUs. In Section 4, the models for inter-GPU irregular
oint-to-point communication are presented.

https://www.llnl.gov/news/el-capitan-testbed-systems-rank-among-top-200-worlds-most-powerful-computers
https://www.llnl.gov/news/el-capitan-testbed-systems-rank-among-top-200-worlds-most-powerful-computers
https://www.ncsa.illinois.edu/research/project-highlights/delta


Parallel Computing 116 (2023) 103021S. Lockhart et al.
Fig. 2.2. Standard communication. On the left, Node 0 injects multiple messages into
the network, all to P6 on Node 1. On the right, P1 sends all highlighted data to multiple
processes on Node 1, leading to redundant messages.

2.3. Node-aware communication

Node-aware communication techniques for irregular point-to-point
communication have been designed within the context of sparse
matrix–vector multiplication (SpMV) and sparse matrix–matrix multi-
plication (SpMM) [3]. Due to their low computational requirements,
sparse matrix operations often incur a large communication overhead
when performed in a parallel distributed setting, highlighting the
limitations of standard communication practices.

There are two redundancies that occur with standard communica-
tion, namely: a message redundancy and a data redundancy, illustrated
in Fig. 2.2. First, each node injects many messages into the network; for
example, some nodes send multiple messages to a single process on the
destination node creating message redundancy. Second, processes send
their local data to every destination process, independent of whether
they had sent the same local data to another process on the same
node; hence a redundancy in data being sent through the network.
The majority of node-aware communication work has been done within
the context of CPU to CPU communication with a subset of this work
later replicated for GPU to GPU communication. There are three types
of node-aware communication for CPU to CPU communication, each
eliminating all or some of the redundancies introduced by standard
communication.

2.3.1. 3-Step
3-Step node-aware communication, first introduced in [3], elim-

inates both redundancies in standard communication by gathering
all necessary data to be sent off-node in a single buffer. Pairing all
processes with a receiving process on distinct nodes ensures efficiency
of the method by making sure every process remains active throughout
the communication scheme. First, all messages sent to a separate node
are gathered in a buffer by the single process associated with the node.
Secondly, this process sends the data buffer to the paired process on
the receiving node. Thirdly, the paired process on the receiving node
redistributes the data to the correct destination processes on-node. An
example of these steps is outlined in Fig. 2.3.

As noted in [3], the method can be extended to include further
breakdown of data exchanges to include intra-socket data communica-
tion before the intra-node communication phase. However, we expect
minimal performance benefits in extending the communication strategy
throughout the entire node hierarchy for CPU to CPU communica-
tion. Instead, this strategy is adopted for GPU to GPU communication
in [16], where the full hierarchy of the node is utilized to achieve
optimal performance due to the fast data transfer rates of socket-level
GPU interconnects on Summit [9]. In addition, recent work on utilizing
neighborhood collectives in conjunction with the 3-Step node-aware
communication strategy further reduces communication overhead in
sparse solvers [5].
3

Fig. 2.3. 3-Step node-aware. In Step 1, all data on Node 0 that needs to be sent to
Node 1 is collected in a buffer on P0, the process paired to send and receive from
Node 1. In Step 2, P0 sends this buffer from Node 0 to P7, the receiving process on
Node 1. In Step 3, P7 redistributes the data to the correct receiving processes on Node
1. Dotted lines, , depict the action performed in each step.

Fig. 2.4. 2-Step node-aware. Each process on Node 0 is paired with a receiving process
on Node 1. In Step 1, each process on Node 0 sends the data needed by any process on
Node 1 to its paired process on Node 1. Here, P0 is sending to P4, P1 to P5, P2 to P6,
and P3 to P7. In Step 2, each process on Node 1 redistributes the data received from
Node 0 to the destination on Node 1. Dotted lines, , depict the action performed
in each step.

2.3.2. 2-Step
When communicating high data volumes between nodes, 3-Step

communication can see limitations as the single buffer communicat-
ing data grows extremely large, thus motivating a 2-Step node-aware
technique as in [4]. The 2-Step technique eliminates the redundancy
of sending duplicate data through the network, but does not reduce
the redundancy of multiple messages being sent between nodes. In 2-
Step, each process exchanges information needed by the receiving node
with their paired process directly, followed by the receiving node redis-
tributing the messages on-node, as shown in Fig. 2.4. Overall, the total
number of bytes communicated with 3-Step and 2-Step communication
techniques is the same, but the number and size of inter-node messages
differs.

2.3.3. Split
3-Step and 2-Step communication show a drastic difference in per-

formance in communicating on-node versus inter-node messages [3],
particularly on more traditional networks, e.g., the now retired Blue-
Waters system. Yet this is not always the case for more recent inter-
connects, such as on Lassen, which shows varying performance for
inter-node versus intra-node communication depending on the amount

of data being communicated — see Fig. 2.5. In addition to network



Parallel Computing 116 (2023) 103021S. Lockhart et al.

L

L

L

L

o
a
u
i
i
2
o
c
m
o
m
c
t
t

d
m
d
m
c
p
o

2

m
(
t
w

𝐴

w
m
o
l
c
c
p

Fig. 2.5. The amount of time required to send data between two processes distinguish-
ing between where the two processes are physically located on the same socket, the
same node and separate sockets, and separate nodes requiring network communication.

Fig. 2.6. The amount of time required to send various amounts of data between two
distinct nodes when splitting the data across varying numbers of processes per node
(𝚙𝚙𝚗). Minimum times circled.

communication being faster than on-node communication for large
message sizes, the CPUs used in current supercomputers have high
numbers of cores (for example, the IBM Power9 has 40 available
cores on Lassen, and the Delta system has 64 available cores on each
AMD Milan processor), making splitting large data volumes across all
available cores more performant than when the entire data volume is
sent by a single process — see Fig. 2.6.

Split communication, as introduced in [6], addresses the variable
performance of 3-Step and 2-Step node-aware communication on mod-
ern supercomputers. This communication technique balances the per-
formance of multi-step communication by splitting the communicated
inter-node data into messages of size message_cap, followed by a
distribution across some number of on-node processes before being
injected into the network. Pseudo-code of the setup is provided in Al-
gorithm 1 with communication parameters defined in Table 1. Here,
we detail the operations summarized in Algorithm 1.

Line 8 The algorithm begins by splitting inter-node messages by their
origin node (on-node or off-node).

Line 9 A local communicator is created for exchanging all messages
with origin on-node.

Line 10 All messages with origin off-node are split into lists according
to their origin node.

Lines 11 Parameters, such as the number of nodes from which this
node receives, the maximum amount of data being received from
a single other node, and the total amount of data being received
from any node by this node, are determined.

Lines 12–17 In this block of the algorithm, the appropriate
message_cap is determined.

Lines 12–13 First, the maximum amount of data being received
from any node is checked to determine if it is smaller
than the user provided message_cap. When this occurs,
every node’s data should be sent in a single message.
4

Lines 14–17 Otherwise, if the total inter-node data volume
being communicated divided by the provided mes-
sage_cap is greater than the active number of processes
per node, then the message_cap is increased to be the
total inter-node data volume divided by the number of
on-node processes.

ine 18 On-node processes are assigned inter-node messages to re-
ceive in descending order of size, starting with local rank 0.
Inter-node messages to be sent are assigned in the reverse order
starting with local rank PPN-1. This in combination with the
message splitting ensures that all processes are active during
communication.

ine 19 A local communicator is created for redistributing all received
inter-node data to its final destination processes on-node.

ine 20 A global communicator is created for exchanging inter-node
messages based on send and receive message assignment in Line
18.

ine 21 A local communicator is created for redistributing all inter-
node data to be sent by this node to the local processes respon-
sible for sending the inter-node messages.

Algorithm 2 provides the steps for performing Split communication
nce the relevant communicators have been created. While Algorithm 1
nd the four stages of node-aware communication in Algorithm 2 would
ltimately be hidden from the user, Algorithm 2 demonstrates the flex-
bility of the communication technique. Depending on the computation
n which Split communication is being used, Lines 2 to of Algorithm

can be overlapped with various pieces of the computation — details
f performance gains when overlapping computation with node-aware
ommunication can be found in [3]. Furthermore, in [6], the inter-node
essage size cutoff is determined by the rendezvous protocol based

n communication modeling for Lassen, but it is observed that the
essage size cutoff can be determined via tuning or any other chosen

riteria. Similarly, we use a message size cutoff of three in Fig. 2.7
o demonstrate the multi-step technique when communicating between
wo nodes with four processes each.

Splitting communication eliminates the data redundancy from stan-
ard communication, but does so with varying numbers of inter-node
essages (as determined by the total data volume being sent to another
istinct node). Within the context of a sparse matrix-block vector
ultiplication, this scheme yields up to 60× speedup over standard

ommunication techniques. The goal of this work is to consider ap-
roaches similar to the Split communication strategy within the context
f heterogeneous architectures.

.4. Distributed sparse matrix–vector multiplication

Throughout the paper, we utilize the irregular point-to-point com-
unication patterns induced by sparse matrix–vector multiplication

SpMV) to test the performance potential of node-aware communica-
ion strategies within the context of GPU to GPU communication, as
ell as provide further model validation. A SpMV, defined as

⋅ 𝑣 → 𝑤 (2.3)

ith 𝐴 ∈ R𝑚× 𝑛 and 𝑣, 𝑤 ∈ R𝑛, is a common kernel in sparse iterative
ethods. Distributed SpMVs performed on GPUs currently face many

bstacles in performance including computational inefficiencies of the
ocal SpMV portion on each GPU, packing and unpacking communi-
ation buffers, strategically overlapping computation and communi-
ation, etc. [17,18]. There are multiple potential solutions to these
roblems, many of which are still currently being researched [19–21].



Parallel Computing 116 (2023) 103021S. Lockhart et al.

Algorithm 1: Setup for Split communication.
1 Input: l_recv [list of messages to receive]
2 comm [world communicator]
3 message_cap [user-defined message cap size]
4 Output: local_comm [on-node subcommunicator]
5 local_Rcomm [redistribution subcommunicator]
6 global_comm [off-node subcommunicator]
7 local_Scomm [on-node sending subcommunicator]
8 Split messages by origin, off-node and on-node
9 local_comm ← Create on-node communicator

10 Split off-node messages by node
11 Set parameters in Table 1
12 if max_IN_recv_size < message_cap
13 Conglomerate all inter-node receives by node
14 else
15 if total_IN_recv_vol

message_cap > PPN & num_IN_nodes < PPN
16 Set message_cap = ⌈

total_IN_recv_vol
PPN ⌉

17 Split inter-node receives to max size message_cap
18 Set on-node receive order (descending by size)
19 local_Rcomm ← Create redistribution communicator (receive)
20 global_comm ← Create inter-node communicator
21 local_Scomm ← Create redistribution communicator (send)

s
t
m
d
m
m

2

a

Table 1
Split communication parameters.
Parameter Description

message_cap maximum message size when splitting communicated inter-nodal data volumes
total_IN_recv_vol total amount of data being received by this node from any other node in Bytes
max_IN_recv_size maximum amount of data being received from a single other node in Bytes
num_IN_nodes number of nodes from which this node is receiving any messages
PPN processes per node
B
p
d

p
i
u
u
c
i

Algorithm 2: Split communication.
1 Perform local_comm communication.
2 Perform local_Scomm data redistribution.
3 Perform global_comm inter-node communication.
4 Perform local_Rcomm data redistribution.

Because the presented work focuses on general communication
trategies, we do not attempt to optimize these portions of the dis-
ributed SpMV. Instead our performance tests focus solely on bench-
arking the irregular point-to-point communication that occurs in the
istributed kernel, characterizing the performance of multiple com-
unication strategies for various communicated data volumes and
essage counts on a heterogeneous architecture.

.4.1. Testing setup
All performance tests presented in Sections 5 and 4.5 correspond to

distributed SpMV with 𝐴, 𝑣, and 𝑤 partitioned row-wise across 𝑔 GPUs
with contiguous rows stored on each GPU (see Fig. 2.8). In addition,
the rows of 𝐴 on each GPU are presumed to be split into two blocks,
namely on-GPU and off-GPU. The on-GPU block is the diagonal block of
columns corresponding to the on-GPU portion of rows in 𝑣 and 𝑤, and
the off-GPU block contains the matrix 𝐴’s nonzero values correlating
to non-local rows of 𝑣 and 𝑤 stored off-GPU. This splitting is common
practice, as it differentiates between the portions of a SpMV that require
communication, as well as making the distributed kernel a perfect case
study for node-aware communication performance on heterogeneous
architectures. Because our key goal is to characterize irregular point-
to-point communication performance independent of the distributed
5

operation in which it is included, all presented benchmarks through-
out the paper focus on the communication patterns induced by the
distributed SpMV and not the computational aspects of the operation.
We would like to note that within the context of a distributed SpMV,
optimal performance depends on some combination of communication
and computation overlap. However, optimizing the entire distributed
SpMV operation lies outside the scope of this paper, thus timings for
the computational portion and on-device kernel details are excluded.

3. Modeling parameters for communication

When data is moved between two GPUs on separate nodes using
MPI, the data can be moved in one of two ways:

Device-aware: data is sent directly from the sending GPU through the
NIC and the network to the receiving GPU without being copied
to the host CPU; and

Staged-through-host: data is copied to the host CPU before being sent
through the NIC and the network to the receiving GPU’s host
CPU then copied to the receiving GPU.

ecause both of these involve moving data through the GPU and
ossibly the CPU, it is important to consider the cost of transmitting
ata through all possible data flow paths involving the CPU or GPU.

Throughout this section and the remainder of the paper, results are
resented for the Spectrum MPI implementation on Lassen [8] In [7], it
s shown that Lassen and Summit [9] demonstrate similar performance
sing Spectrum MPI (there, the MPI implementation is optimized for
se on the two DOE machines), therefore results for a single ma-
hine are provided. Moreover, each of the presented model parameters
s the result of ping-pong and node-pong timings collected through



Parallel Computing 116 (2023) 103021S. Lockhart et al.
Fig. 2.7. Split node-aware. Here, data is communicated between two distinct nodes:
Node 0 and Node 1, each with 4 local processes, denoted P#. In Step 1, each node
conglomerates small messages to be sent off-node, splits messages based on a message
cap of 3, and retains messages approximately the size of the message cap (Algorithm
2 Line 2). In Step 2, the buffers prepared in Step 1 are sent to their destination node,
specifically to the paired process on that node (Algorithm 2 Line 3). For Step 3, all
processes redistribute their received data to the correct destination processes on-node
(Algorithm 2 Line 4).

Fig. 2.8. Partitioning of a SpMV, 𝐴 ⋅𝑣 → 𝑤, with 𝑛 = 12. Matrix 𝐴 and vectors 𝑣 and 𝑤
are partitioned across two nodes, four GPUs (g0, g1, g2, g3). Solid blocks, , represent
the portion of the SpMV requiring on-GPU values from 𝑣. Shaded blocks, , require
on-node but off-GPU communication of values from 𝑣. Outlined blocks, , require
values of 𝑣 from GPUs off-node.

BenchPress,3 a node architecture-aware library used for benchmarking
data movement performance on large-scale systems. The ping-pong
and node-pong tests are performed for 1000 iterations and averaged;
each model parameter is then given by a linear least-squares fit to the
collected data.

3 https://github.com/bienz2/BenchPress
6

Table 2
Measured parameters for inter-CPU and inter-GPU communication (with and without
GPUDirect enabled) on Lassen.

on-socket on-node off-node

in
te

r-
CP

U

Short 𝛼 3.67e−07 9.25e−07 1.89e−06
𝛽 1.32e−10 1.19e−09 6.88e−10

Eager 𝛼 4.61e−07 1.17e−06 2.44e−06
𝛽 7.12e−11 2.18e−10 3.79e−10

Rend 𝛼 3.15e−06 6.77e−06 7.76e−06
𝛽 3.40e−11 1.49e−10 7.97e−11

in
te

r-
GP

U GD
R Eager 𝛼 1.87e−06 2.02e−05 8.95e−06

𝛽 5.79e−11 2.15e−10 1.72e−10

Rend 𝛼 1.82e−05 1.93e−05 1.10e−05
𝛽 1.46e−11 2.39e−11 1.72e−10

N
o

GD
R Eager 𝛼 4.15e−05 4.27e−05 4.56e−05

𝛽 6.08e−09 6.24e−09 6.03e−10

Rend 𝛼 5.54e−05 5.75e−05 8.72e−05
𝛽 8.96e−11 8.11e−11 7.96e−11

𝛼 [s] 𝛽 [s/byte]

Table 3
Measured parameters for cudaMemcpyAsync on Lassen.

HostToDevice DeviceToHost

1 proc 𝛼 1.30e−05 1.27e−05
𝛽 1.85e−11 1.96e−11

4 proc 𝛼 1.52e−05 1.47e−05
𝛽 5.52e−10 1.50e−10

8 proc 𝛼 3.10e−05 3.03e−05
𝛽 7.88e−11 6.21e−11

10 proc 𝛼 3.85e−05 3.81e−05
𝛽 9.43e−11 1.05e−10

𝛼 [s] 𝛽 [s/byte]

We use the postal model presented in Eq. (2.1) to model the time
required for sending a single message between two CPUs or two GPUs,
with the measured parameters for Lassen presented in Table 2. The
𝛼 and 𝛽 parameters are separated based on where the two processes
are physically located with respect to one another, namely on the same
socket, on different sockets but the same node, or separate nodes. In
addition, the parameters are split further based on messaging protocol:

short fits in the envelope so the message is sent directly to the receiv-
ing process;

eager assumes adequate buffer space is already allocated by the re-
ceiving process; or

rendezvous requires the receiving process to allocate buffer space for
the message before the data is sent.

The short protocol has been excluded from the GPU messaging pa-
rameter portion of Table 2 because this protocol is not used in
device-aware communication on Lassen. Furthermore, the inter-GPU
parameters are split further into whether GPUDirect technologies were
enabled (GDR) or disabled (No GDR), demonstrating the benefits of
utilizing GPUDirect technologies for device-aware communication.

Because staging data through a host process requires copying data
to the sending host CPU and from the receiving GPU’s host process,
measured parameters for cudaMemcpyAsync are included in Table 3
with distinction between whether the copy is using a single process or
four processes to move data from the device. We assume that all data
copies will occur on-socket, and we do not consider cases with more
than four processes pulling data from a single GPU at a time as there
was no observed benefit in splitting data copies further across multiple
processes — see Fig. 3.1.

https://github.com/bienz2/BenchPress


Parallel Computing 116 (2023) 103021S. Lockhart et al.

G
r
d
p
C
b
f

f
t

4

a
c
e
c
n
a
S
d
d
H
r

a
s
s
m
h
m
u
h
t
t
r

w
s

r
d
o
n
m
i

4

t
d
e
m
t
i
a
d
s
u
h

𝑇

a
G
t

c
s
r
h
m

4

c

Fig. 3.1. The time required to copy various amounts of data from a single GPU using
cudaMemcpyAsync when splitting the copy across NP processes. HostToDevice (H2D)
and DeviceToHost (D2H) timings presented.

Table 4
Measured parameter for injec-
tion bandwidth limits on Lassen.

𝑅−1
𝑁 [bytes/s]

inter-CPU 4.19e−11

In addition to considering the postal model for inter-CPU and inter-
PU communication, the max-rate model presented in Eq. (2.2) is

equired for accurately predicting the performance of staging GPU
ata through a host process when using more than a single process
er node. Therefore, the measured injection bandwidth limit for inter-
PU communication is presented in Table 4. The inter-GPU injection
andwidth limit is excluded, as these limits are not reached with the
our available GPUs per node on Lassen.

Using the measured modeling parameters, we now model the per-
ormance of various communication strategies based on the node-aware
echniques discussed in Section 2.3.

. Modeling node-aware strategies for inter-node communication

In this section, we present performance models for existing node-
ware strategies using device-aware and staged-through-host communi-
ation for inter-node data exchanges on Lassen, though these models do
xtend to any machine with two sockets per node. For each node-aware
ase, the models are divided into the time spent in on-node commu-
ication (Sections 4.1 and 4.2), off-node communication (Section 4.3),
nd data copies, in the case of staged-through-host communication (see
ection 4.4). The models themselves do not consider the removal of
uplicate data discussed in Section 2.3, as the amount of duplicate
ata injected into the network is operation and problem dependent.
owever, adapting the input parameters for the models to reflect the

emoval of duplicate data is straightforward and done in Section 4.6.
Performance is modeled for standard communication and all node-

ware communication strategies discussed in Section 2.3. We consider
taged-through-host and device-aware communication for all of the
trategies except for the Split strategies, for which device-aware com-
unication does not apply. ‘‘Split + MD’’ first copies data to a single
ost process, then splits the inter-node data to be communicated across
ultiple processes via extra on-node inter-CPU messages. ‘‘Split + DD’’
ses duplicate device pointers to copy data from a GPU to multiple
ost process, reducing the number of on-node messages required to split
he inter-node data volume being communicated. Each GPU is assumed
o have a single host process except in the case of ‘‘Split + DD’’. For
eference, the modeled communication strategies are listed in Table 5.
7

r

Table 5
Modeled communication strategies.

Staged-through-host Device-aware

Standard ✓ ✓

3-Step ✓ ✓

2-Step ✓ ✓

Split + MD ✓

Split + DD ✓

4.1. Modeling on-node communication for 3-step and 2-step

For 3-Step communication, all data originating on any GPU on node
𝑘 with a destination of any GPU on node 𝑙 is first gathered locally. In the
worst-case scenario, all GPUs on node 𝑘 must contribute data for node
𝑙, requiring communication among all GPUs per node. This is modeled
as
𝑇𝚘𝚗(𝑠) = (𝚐𝚙𝚜 − 1)(𝛼𝚘𝚗−𝚜𝚘𝚌𝚔𝚎𝚝 + 𝛽𝚘𝚗−𝚜𝚘𝚌𝚔𝚎𝚝 ⋅ 𝑠)

+ 𝚐𝚙𝚜 ⋅ (𝛼𝚘𝚗−𝚗𝚘𝚍𝚎 + 𝛽𝚘𝚗−𝚗𝚘𝚍𝚎 ⋅ 𝑠)
(4.1)

here gps is the GPUs per socket and 𝑠 is the maximum message size
ent by any single GPU.

The last step of both 2-Step and 3-Step communication involves
edistributing data received via inter-node communication to its final
estination GPU on-node. The worst case scenario for both strategies
ccurs when all of the data received via inter-node communication
eeds to be redistributed to every other GPU on-node. This is also
odeled with Eq. (4.1), with 𝑠 representing the maximum received

nter-node message size.

.2. Modeling on-node communication for split

The Split strategies require copying all data on node 𝑘 with des-
ination of any GPU on node 𝑙 ≠ 𝑘 to the host processes before
istributing the data across some number of on-node processes. Finally,
ach process sends data through the network. For large inter-node
essage sizes, the worst-case scenario occurs when a single GPU con-

ains all data to be sent off-node with a data size large enough that
t is split across all on-node processes. In the case of Lassen, there
re a maximum of 40 on-node processes, therefore distributing the
ata would require an additional 19 on-socket messages and 20 off-
ocket/on-node messages if a single host process per GPU were being
sed. Generalizing the Split strategy to any architecture using multiple
ost processes with duplicate device pointers yields

𝚘𝚗−𝚜𝚙𝚕𝚒𝚝(𝑠, 𝚙𝚙𝚐) =
(

𝚙𝚙𝚜

𝚙𝚙𝚐
− 1

)

⋅ (𝛼𝚘𝚗−𝚜𝚘𝚌𝚔𝚎𝚝 + 𝛽𝚘𝚗−𝚜𝚘𝚌𝚔𝚎𝚝 ⋅ 𝑠)

+
(

𝚙𝚙𝚜

𝚙𝚙𝚐

)

⋅ (𝛼𝚘𝚗−𝚗𝚘𝚍𝚎 + 𝛽𝚘𝚗−𝚗𝚘𝚍𝚎 ⋅ 𝑠)
(4.2)

s the modeled time, where ppg is the number of host processes per
PU, and pps is the processes per socket, and 𝑠 is the total data volume

o be communicated inter-node split across ppg.
Similar to the worst-case scenario for 3-Step and 2-Step on-node

ommunication, the worst-case redistribution scenario for the Split
trategies is equivalent to Eq. (4.2). In this case, a single GPU must
edistribute all received inter-node data to every other GPU on-node;
ere, 𝑠 represents the total data volume received via inter-node com-
unication split across ppg.

.3. Modeling off-node communication

For the off-node communication portion of each of the multi-step
ommunication strategies, the max-rate model Eq. (2.2) is used for

outines that are staged-through-host, and the postal model Eq. (2.1) is



Parallel Computing 116 (2023) 103021S. Lockhart et al.
Table 6
Communication models. (Extra parameters defined in Table 7).
Communication strategy Model

Standard Staged-through-host Max-rate model Eq. (2.2)
Device-aware Postal model Eq. (2.1)

3-Step Staged-through-host 𝑇𝚘𝚏𝚏(𝑚𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎 , 𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎) + 2 ⋅ 𝑇𝚘𝚗(𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎) + 𝑇copy(𝑠𝚙𝚛𝚘𝚌 , 𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎)
Device-aware 𝑇𝚘𝚏𝚏−𝙳𝙰(𝑚𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎 , 𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎) + 2 ⋅ 𝑇𝚘𝚗(𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎)

2-Step Staged-through-host 𝑇𝚘𝚏𝚏(𝑚𝚙𝚛𝚘𝚌→𝚗𝚘𝚍𝚎 , 𝑠𝚙𝚛𝚘𝚌) + 𝑇𝚘𝚗(𝑠𝚙𝚛𝚘𝚌) + 𝑇𝚌𝚘𝚙𝚢(𝑠𝚙𝚛𝚘𝚌 , 𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎)
Device-aware 𝑇𝚘𝚏𝚏−𝙳𝙰(𝑚𝚙𝚛𝚘𝚌→𝚗𝚘𝚍𝚎 , 𝑠𝚙𝚛𝚘𝚌) + 𝑇𝚘𝚗(𝑠𝚙𝚛𝚘𝚌)

Split Staged-through-host + MD 𝑇𝚘𝚏𝚏(𝑚𝚙𝚛𝚘𝚌→𝚗𝚘𝚍𝚎 , 𝑠𝚗𝚘𝚍𝚎∕𝚙𝚙𝚗) + 2 ⋅ 𝑇𝚘𝚗−𝚜𝚙𝚕𝚒𝚝(𝑠𝚗𝚘𝚍𝚎 , 1) + 𝑇𝚌𝚘𝚙𝚢(𝑠𝚙𝚛𝚘𝚌 , 𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎)
Staged-through-host + DD 𝑇𝚘𝚏𝚏(𝑚𝚙𝚛𝚘𝚌→𝚗𝚘𝚍𝚎 , 𝑠𝚗𝚘𝚍𝚎∕𝚙𝚙𝚗) + 2 ⋅ 𝑇𝚘𝚗−𝚜𝚙𝚕𝚒𝚝(𝑠𝚗𝚘𝚍𝚎 , 4) + 𝑇𝚌𝚘𝚙𝚢(𝑠𝚙𝚛𝚘𝚌 , 𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎)
Table 7
Extra modeling parameters.
Parameter Description

𝑠𝚙𝚛𝚘𝚌 max # of bytes sent by a single process/GPU
𝑠𝚗𝚘𝚍𝚎 max # of bytes injected by a single node
𝑠𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎 max # of bytes sent between any two nodes
𝑚𝚙𝚛𝚘𝚌→𝚗𝚘𝚍𝚎 max # of nodes to which a processor sends
𝑚𝚗𝚘𝚍𝚎→𝚗𝚘𝚍𝚎 max # of messages between any two nodes

used for device-aware routines. For the max-rate model, the time spent
in off-node communication is given by

𝑇𝚘𝚏𝚏(𝑚, 𝑠) = 𝛼𝚘𝚏𝚏−𝚗𝚘𝚍𝚎 ⋅ 𝑚 + max
(

𝑠𝚗𝚘𝚍𝚎
𝑅𝑁

, 𝑠 ⋅ 𝛽𝚘𝚏𝚏−𝚗𝚘𝚍𝚎

)

(4.3)

for a number of messages to be communicated, 𝑚, and a maximum
number of bytes sent by a single process, 𝑠𝚙𝚛𝚘𝚌 where 𝑠𝚗𝚘𝚍𝚎 is the
maximum number of bytes injected into the network by any single
node. For device-aware communication, this reduces to the postal
model

𝑇𝚘𝚏𝚏−𝙳𝙰(𝑚, 𝑠) = 𝛼𝚘𝚏𝚏−𝚗𝚘𝚍𝚎 ⋅ 𝑚 + 𝑠 ⋅ 𝛽𝚘𝚏𝚏−𝚗𝚘𝚍𝚎. (4.4)

4.4. Copy parameter for staged-through-host communication

The time required to copy data between the CPU and GPU is given
by

𝑇𝚌𝚘𝚙𝚢(𝑠𝚜𝚎𝚗𝚍, 𝑠𝚛𝚎𝚌𝚟) =𝛼𝙷𝟸𝙳 + 𝛽𝙷𝟸𝙳 ⋅ 𝑠𝚜𝚎𝚗𝚍
+ 𝛼𝙳𝟸𝙷 + 𝛽𝙳𝟸𝙷 ⋅ 𝑠𝚛𝚎𝚌𝚟.

(4.5)

where 𝑠𝚜𝚎𝚗𝚍 is the initial data copied from the source GPU, and 𝑠𝚛𝚎𝚌𝚟 is
the final data copied to the destination GPU.

For all communication strategies except splitting with duplicate
device pointers, a single process copies all data from a corresponding
GPU. In the case of splitting with duplicate device pointers, we set the
number of processes copying data simultaneously to four in our model.
Parameters for both a single host process copying data and four host
processes copying data simultaneously are presented in Table 3.

4.5. Model validation

Table 6 presents the full models for the various communication
strategies given in Table 5, which combine the preceding sub-models,
with extra model parameters defined in Table 7 for clarity.

We provide a brief validation of the models via performance of the
communication pattern induced by sparse matrix–vector multiplication
(SpMV) with the audikw_1 matrix from the SuiteSparse matrix col-
lection [22]. The matrix has 943 695 rows and columns, and a nonzero
density of 8.72e−05 with the associated sparsity pattern in Fig. 4.1.
Due to the high number of nonzero entries in the top rows and first
columns of the matrix, the communication pattern associated with a
SpMV for audikw_1 incurs high numbers of on-node and inter-node
communication, therefore it is a perfect test case for validating the
models which model the worst-case on-node communication scenarios
8

Fig. 4.1. Sparsity pattern for the audikw_1 matrix.

for each of the communication strategies. Modeling the worst-case on-
node scenario can result in over-prediction of actual runtimes, as such,
these models are not designed to provide a fine-grained prediction.
Their purpose is to predict which communication scheme will perform
fastest, a task at which they succeed. It is worth noting that the models
are easily adaptable to modeling the exact on-node communication that
would occur for a given application, should a more fine-grained model
be desired. This would require knowledge of problem partitioning, as
well as, the communication load of every participating process.

Fig. 4.2 depicts the measured times (solid lines) for SpMV com-
munication alongside model predictions (dotted lines) with minimum
performing and minimum model-predicted times are circled. Presented
measured times are the maximum average time required for commu-
nication by any single process for 1000 test runs. In the standard
communication cases, the modeled times are an order of magnitude
higher than actual measured times, but for the node-aware communica-
tion models, the predicted times provide a tight upperbound, generally
on the same order of magnitude as the measured performance. In
Section 4.6, we use these models to predict the performance of common
irregular point-to-point communication scenarios.

4.6. Modeled performance

Fig. 4.3 presents the modeled performance for common scenarios
with irregular point-to-point communication, namely, a node sending
a modest number of inter-node messages (32) and a large number of
inter-node messages (256), with messages distributed evenly across
on-node GPUs. Because the node-aware performance models are de-
pendent upon the number of destination nodes, the models are split
further, modeling if the data was being sent to 4 nodes/ 16 off-node
GPUs (Fig. 4.3(a)) or 16 nodes/ 64 off-node GPUs (Fig. 4.3(b)). Note
that the number of GPUs to which data is being communicated does not
reflect overall problem partitioning. It simply models the cases where



Parallel Computing 116 (2023) 103021S. Lockhart et al.

p

t
t

f
i
a
a
s
n
o
s
f
i
L

r
c
i
e
c
o
i
a
i
e
o
c
h
c

w
c
M
n
p
(

t
f
m
3
o
t

t
a

h
n
a
d

g
r
w
t
p

5
c

c
a
s
a
p

Fig. 4.2. Model validation. Solid lines, , depict measured times, and dotted
lines, , depict model predictions. Circles are used to highlight the minimum
erforming communication strategy, accurately predicted by the models.

he maximum number of GPUs with which any one node would need
o communicate is 16 GPUs on 4 nodes or 64 GPUs on 16 nodes.

For each of these scenarios, we model the amount of time required
or each node to send their messages to the destination nodes us-
ng standard communication. This modeled performance is compared
gainst that of the various node-aware strategies where the messages
re split and/or agglomerated accordingly. There are two cases pre-
ented for the 2-Step strategy, considering if every GPU on the source
ode is sending data to every GPU on the destination node (2-Step All),
r if all the messages being sent to the destination node are from a
ingle active GPU on the source node (2-Step 1). The message size cap
or the Split strategies is taken to be the same that was used in [6] and
s the message cap used for switching to the rendezvous protocol on
assen.

In Fig. 4.3, we present the minimum modeled times on the top
ows, excluding the 2-Step 1 approaches, as they present the best-
ase scenario for 2-Step communication, which does not often occur
n practice. However, we do think it is important to present these mod-
led times in order to depict a comprehensive picture of node-aware
ommunication’s potential, hence they are included in the bottom rows
f the plots. For large message counts (256 Inter-Node Messages plots
n Fig. 4.3) and for message sizes greater than 103 Bytes, device-
ware 2-Step 1 is predicted to perform best, indicating that for high
nter-node data volumes, if the on-node data was distributed such that
very GPU on a given node 𝑘 was communicating with a distinct GPU
n destination node 𝑙, 2-Step communication would be best. This is
onsistent with the observed performance of the application-specific
ierarchical communication in [16]. Now, we include discussion of the
ircled minimum times excluding the 2-Step 1 performance predictions.

In the case of a small number of messages injected into the net-
ork to a small number of nodes (Fig. 4.3(a)), 3-Step and standard

ommunication are observed as the most performant with ‘‘Split +
D’’ communication replacing 3-Step as the most performant for 16

odes (Fig. 4.3(b)). In both cases, the staged-through-host strategies
redict the best performance until message sizes grow extremely large
> 104 Bytes), where standard device-aware communication is modeled
9

o be best. Device-aware communication is also modeled to be best
or large message sizes when a node is injecting a large number of
essages into the network. However, due to the high message volume,
-Step and 2-Step device-aware strategies are predicted to have the
ptimal performance, due to their reduction in messages sent compared
o standard communication.

Staged-through-host node-aware communication techniques model
he best performance independent of number of destination nodes for
ll message sizes up to 104 Bytes. When communicating with a small

number of nodes (Fig. 4.3(a)), 3-Step and 2-Step communication are
often predicted to be the most performant, while ‘‘Split + MD’’ commu-
nication is predicted to be the most performant when communicating
with a larger number of nodes (Fig. 4.3(b)). This can be attributed to
the use of all available processes on-node (40 in the case of Lassen),
so that each individual process is injecting fewer messages into the
network than in the case of 3-Step or 2-Step communication, where
there is only a single process paired with each GPU (4 in the case of
Lassen).

The device-aware node-aware strategies models present relatively
large costs. However, this is unsurprising, considering the high over-
head for inter-GPU communication on-socket and on-node (as indi-
cated by the measured parameters in Table 2). The only cases for
which device-aware node-aware strategies have improved performance
over staged-through-host techniques is when the communicated inter-
node data volume is extremely large, or assumed to have an optimal
communication pattern (as in 2-Step 1).

Concerning the removal of duplicate data, there should be no impact
on performance for small numbers of inter-node messages. A perfor-
mance impact is noticed primarily when their is communication of
a high inter-node data volume via a high number of messages. Once
message sizes grow past 103 Bytes in standard communication for all
igh message count models, removing duplicate data impacts which
ode-aware communication strategy could be most performant. Seeing
s there is very little difference in modeled performance for removing
uplicate data, these modeled times are excluded for brevity.

Overall, the staged-through-host node-aware communication strate-
ies model the best predicted performance for communication patterns
equiring a high number of inter-node message exchanges. In Section 5,
e benchmark the performance of the communication strategies within

he context of sparse matrix–vector multiplication, verifying model
redictions.

. Benchmarking sparse matrix–vector multiplication communi-
ation patterns

In this section, we present performance results for the various
ommunication strategies discussed throughout Sections 3 and 4 when
pplied to the communication patterns of a single distributed SpMV –
ee Section 2.4. For each of the strategies, each GPU is assumed to have
single host process, except in the case of ‘‘Split + DD’’ where four host

rocesses are used to copy data from each GPU. The number of host
processes used to copy data from any GPU is distinct from the number
of processes used to communicate inter-node data, in the case of the
Split strategies. For the Split strategies, after data is copied from each
GPU via some number of host processes, inter-node communicated data
is potentially partitioned across up to all available 40 processes on-node
(the maximum number of on-node processes/cores for Lassen.) Our test
matrices are a subset of the largest matrices in the SuiteSparse matrix
collection [22]. For each benchmark, we performed 1000 test runs and
present the maximum average time required for communication by any
single process. The presented results reflect actual measurements on
Lassen.



Parallel Computing 116 (2023) 103021S. Lockhart et al.

d
b

5

p
t
n
n
N
c

Fig. 4.3. The modeled time to send data from a single node to 4 nodes (top) and 16 nodes (bottom), where data from the sending node is sent via 32 or 256 messages
istributed evenly across all on-node GPUs when using Standard communication. Minimum modeled times (excluding the 2-Step best-case scenario, 2-Step 1) are presented with
ars on the top rows. A comparison of the minimum modeled times to the 2-Step 1 case is presented on the bottom rows.
n
g
n
3
d
t
c

.1. Results

Fig. 5.1 displays the distributed SpMV communication benchmark
erformance times for each communication strategy presented in Sec-
ion 4 for each SuiteSparse matrix. Presented beneath each plot is the
umber of GPUs on which the SpMV is partitioned, the maximum
umber of nodes to which any single node is communicating (Recv
odes), and the communicated inter-node message volume for standard
ommunication.
10

g

Consistent with the majority of model predictions for large inter-
ode message volumes, the staged-through-host communication strate-
ies exhibit far faster performance than the device-aware commu-
ication strategies. However, it is worth noting that device-aware
-Step and device-aware 2-Step are typically much faster than stan-
ard device-aware communication. In the case of the thermal2 ma-
rix, which exhibited a high inter-node message volume for standard
ommunication, the gap between the device-aware node-aware strate-
ies and staged-through-host communication strategies is smaller than



Parallel Computing 116 (2023) 103021S. Lockhart et al.

d

Fig. 5.1. The measured time spent in irregular point-to-point communication for a distributed SpMV for various SuiteSparse matrices. Number of GPUs across which the problem
was partitioned and standard communication maximum number of connected nodes for any single node (Recv Nodes) and message volume included beneath plots. Solid lines, ,
epict staged-through-host communication, and dashed lines, , depict device-aware communication. Minimum times circled for convenience.
for other matrices. Additionally, ‘‘Split + DD’’ consistently performed
worse than ‘‘Split + MD’’, consistent with modeled predictions. This
is unsurprising considering the latency associated with using duplicate
device pointers (∼1.5e−05 in Table 3) is much higher than the latency
of sending on-socket messages (∼3.7e−07–∼3.2e−06 in Table 2) to
distribute data being sent from a single GPU across multiple ranks.

The majority of the presented results are similar to the model
prediction plots (Fig. 4.3), where the fastest communication strategy
was typically predicted to be one of the staged-through-host strate-
gies: ‘‘Split + MD’’, Standard, or 3-Step. ‘‘Split + MD’’ exhibits the
minimal performing time in most cases, except for smaller counts of
participating GPUs (40 or 80 in the case of audikw_1, Serena,
ldoor, thermal2), or for low inter-node message counts (bone010,
Geo_1438) in which standard communication becomes more optimal.

Overall, staged-through-host node-aware communication strategies
demonstrate the best performance for the majority of benchmarks,
with ‘‘Split + MD’’ typically being the fastest, consistent with model
predictions in Fig. 4.3(b).

6. Conclusions and future work

The advancement of parallel computers has introduced the design
of supercomputers with heterogeneous compute nodes due to the in-
clusion of multiple GPUs per node. For distributed applications, this
typically results in larger communicated data volumes, as each compute
unit can now operate on a larger partition of the problem. In addition
11

to increased data volumes, the inclusion of multiple GPUs per node
has increased the complexity of determining optimal data movement
paths, particularly in the case of inter-node irregular point-to-point
communication. In this work, we characterized the performance of
irregular point-to-point communication between GPUs via modeling
and introduced node-aware communication strategies to inter-node
communication on heterogeneous architectures. Our models suggested
the use of staged-through-host node-aware communication strategies,
specifically Split methods were indicated as potential top performers.
These results were confirmed by a performance study on distributed
SpMVs which saw Split node-aware communication performing best
in most cases, and typically much faster than standard device-aware
communication.

Additionally, our work provides important groundwork on design-
ing efficient communication strategies for the next generation of super-
computers. Future exascale machine architectures will include higher
CPU core counts per node, alongside higher bandwidth interconnects
(e.g., on Frontier, El Capitan, or Delta), two parameters that largely
affect the performance of node-aware communication strategies. Based
on the presented models, Split communication strategies will likely be
the most efficient communication techniques to take advantage of the
high bandwidth interconnects, but distributing data to be communi-
cated across a larger number of on-node CPU cores could pose perfor-
mance constraints. Because the models presented in Section 4 naturally
extend to architectures with single socket nodes, future work includes
plans to begin modeling the performance of machines resembling the
next generation DOE exascale machines.



Parallel Computing 116 (2023) 103021S. Lockhart et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This material is based in part upon work supported by the De-
partment of Energy, National Nuclear Security Administration, United
States, under Award Number DE-NA0003963 and DE-NA0003966.

References

[1] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing communication
in sparse matrix solvers, in: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, Association for Computing
Machinery, New York, NY, USA, 2009, pp. 1–12, http://dx.doi.org/10.1145/
1654059.1654096.

[2] C.W. Smith, M. Rasquin, D. Ibanez, K.E. Jansen, M.S. Shephard, Improving
unstructured mesh partitions for multiple criteria using mesh adjacencies, SIAM
J. Sci. Comput. 40 (1) (2018) C47–C75, http://dx.doi.org/10.1137/15M1027814.

[3] A. Bienz, W.D. Gropp, L.N. Olson, Node aware sparse matrix–vector mul-
tiplication, J. Parallel Distrib. Comput. 130 (2019) 166–178, http://dx.doi.
org/10.1016/j.jpdc.2019.03.016, URL https://www.sciencedirect.com/science/
article/pii/S0743731519302321.

[4] A. Bienz, W.D. Gropp, L.N. Olson, Reducing communication in algebraic multi-
grid with multi-step node-aware communication, Int. J. High Perform. Comput.
Appl. 34 (5) (2020) 547–561, http://dx.doi.org/10.1177/1094342020925535.

[5] A. Bienz, Sparse neighborhood collectives on heterogeneous architectures, 2022,
SIAM Conference on Parallel Processing for Scientific Computing. URL https:
//meetings.siam.org/sess/dsp_talk.cfm?p=118711.

[6] S. Lockhart, A. Bienz, W. Gropp, L. Olson, Performance analysis and optimal
node-aware communication for enlarged conjugate gradient methods, ACM
Trans. Parallel Comput. 10 (1) (2023) http://dx.doi.org/10.1145/3580003.

[7] A. Bienz, L.N. Olson, W.D. Gropp, S. Lockhart, Modeling data movement
performance on heterogeneous architectures, in: 2021 IEEE High Performance Ex-
treme Computing Conference, HPEC, 2021, pp. 1–7, http://dx.doi.org/10.1109/
HPEC49654.2021.9622742, URL https://ieeexplore.ieee.org/document/9622742.

[8] Lawrence Livermore National Laboratory, Lassen, 2022, URL https://hpc.llnl.
gov/hardware/compute-platforms/lassen.

[9] Oak Ridge National Laboratory, Summit, 2022, URL https://www.olcf.ornl.gov/
summit.

[10] Oak Ridge National Laboratories, Frontier, 2022, URL https://www.olcf.ornl.gov/
frontier.
12
[11] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, D.K. Panda, Efficient
inter-node MPI communication using GPUDirect RDMA for InfiniBand clusters
with NVIDIA GPUs, in: 2013 42nd International Conference on Parallel Pro-
cessing, 2013, pp. 80–89, http://dx.doi.org/10.1109/ICPP.2013.17, URL https:
//ieeexplore.ieee.org/document/6687341.

[12] W. Gropp, L.N. Olson, P. Samfass, Modeling MPI communication performance
on SMP nodes: Is it time to retire the ping pong test, in: Proceedings of the
23rd European MPI Users’ Group Meeting, EuroMPI 2016, ACM, New York,
NY, USA, 2016, pp. 41–50, http://dx.doi.org/10.1145/2966884.2966919, URL
http://doi.acm.org/10.1145/2966884.2966919.

[13] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subra-
monian, T. von Eicken, LogP: Towards a realistic model of parallel computation,
SIGPLAN Not. 28 (7) (1993) 1–12, http://dx.doi.org/10.1145/173284.155333.

[14] A. Alexandrov, M.F. Ionescu, K.E. Schauser, C. Scheiman, LogGP: Incorporating
long messages into the LogP model for parallel computation, J. Parallel Distrib.
Comput. 44 (1) (1997) 71–79, http://dx.doi.org/10.1006/jpdc.1997.1346, URL
http://www.sciencedirect.com/science/article/pii/S0743731597913460.

[15] A. Bienz, W.D. Gropp, L.N. Olson, Improving Performance Models for Irregular
Point-to-Point Communication, in: Proceedings of the 25th European MPI Users’
Group Meeting, Barcelona, Spain, September 23-26, 2018, 2018, pp. 7:1–7:8,
http://dx.doi.org/10.1145/3236367.3236368.

[16] M. Hidayetoğlu, T. Bicer, S.G. de Gonzalo, B. Ren, V. De Andrade, D. Gursoy, R.
Kettimuthu, I.T. Foster, W.-m.W. Hwu, Petascale XCT: 3D Image Reconstruction
with Hierarchical Communications on Multi-GPU Nodes, in: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’20, IEEE Press, 2020, pp. 1–13, URL https://dl.acm.org/doi/
10.5555/3433701.3433750.

[17] J. Jenkins, J. Dinan, P. Balaji, N.F. Samatova, R. Thakur, Enabling fast,
noncontiguous GPU data movement in hybrid MPI+ GPU environments, in: 2012
IEEE International Conference on Cluster Computing, IEEE Computer Society,
IEEE, 2012, pp. 468–476, http://dx.doi.org/10.1109/CLUSTER.2012.72, URL
https://doi.ieeecomputersociety.org/10.1109/CLUSTER.2012.72.

[18] B.A. Page, P.M. Kogge, Scalability of hybrid sparse matrix dense vector (SpMV)
multiplication, International Conference on High Performance Computing &
Simulation (2018) http://dx.doi.org/10.1109/HPCS.2018.00072, URL https://
par.nsf.gov/biblio/10064735.

[19] W. Yang, K. Li, K. Li, A parallel computing method using blocked for-
mat with optimal partitioning for SpMV on GPU, J. Comput. System Sci.
92 (2018) 152–170, http://dx.doi.org/10.1016/j.jcss.2017.09.010, URL https:
//www.sciencedirect.com/science/article/pii/S0022000017301587.

[20] B.A. Page, P.M. Kogge, Scalability of hybrid SpMV with hypergraph partitioning
and vertex delegation for communication avoidance, in: International Conference
on High Performance Computing & Simulation, HPCS 2020, 2021, pp. 1–10, URL
https://par.nsf.gov/biblio/10298914.

[21] C.-H. Chu, K.S. Khorassani, Q. Zhou, H. Subramoni, D.K. Panda, Dynamic kernel
fusion for bulk non-contiguous data transfer on GPU clusters, in: 2020 IEEE
International Conference on Cluster Computing, CLUSTER, 2020, pp. 130–141,
http://dx.doi.org/10.1109/CLUSTER49012.2020.00023, URL https://ieeexplore.
ieee.org/document/9229601.

[22] T.A. Davis, Y. Hu, The university of florida sparse matrix collection, ACM Trans.
Math. Software 38 (1) (2011) http://dx.doi.org/10.1145/2049662.2049663.

http://dx.doi.org/10.1145/1654059.1654096
http://dx.doi.org/10.1145/1654059.1654096
http://dx.doi.org/10.1145/1654059.1654096
http://dx.doi.org/10.1137/15M1027814
http://dx.doi.org/10.1016/j.jpdc.2019.03.016
http://dx.doi.org/10.1016/j.jpdc.2019.03.016
http://dx.doi.org/10.1016/j.jpdc.2019.03.016
https://www.sciencedirect.com/science/article/pii/S0743731519302321
https://www.sciencedirect.com/science/article/pii/S0743731519302321
https://www.sciencedirect.com/science/article/pii/S0743731519302321
http://dx.doi.org/10.1177/1094342020925535
https://meetings.siam.org/sess/dsp_talk.cfm?p=118711
https://meetings.siam.org/sess/dsp_talk.cfm?p=118711
https://meetings.siam.org/sess/dsp_talk.cfm?p=118711
http://dx.doi.org/10.1145/3580003
http://dx.doi.org/10.1109/HPEC49654.2021.9622742
http://dx.doi.org/10.1109/HPEC49654.2021.9622742
http://dx.doi.org/10.1109/HPEC49654.2021.9622742
https://ieeexplore.ieee.org/document/9622742
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://www.olcf.ornl.gov/summit
https://www.olcf.ornl.gov/summit
https://www.olcf.ornl.gov/summit
https://www.olcf.ornl.gov/frontier
https://www.olcf.ornl.gov/frontier
https://www.olcf.ornl.gov/frontier
http://dx.doi.org/10.1109/ICPP.2013.17
https://ieeexplore.ieee.org/document/6687341
https://ieeexplore.ieee.org/document/6687341
https://ieeexplore.ieee.org/document/6687341
http://dx.doi.org/10.1145/2966884.2966919
http://doi.acm.org/10.1145/2966884.2966919
http://dx.doi.org/10.1145/173284.155333
http://dx.doi.org/10.1006/jpdc.1997.1346
http://www.sciencedirect.com/science/article/pii/S0743731597913460
http://dx.doi.org/10.1145/3236367.3236368
https://dl.acm.org/doi/10.5555/3433701.3433750
https://dl.acm.org/doi/10.5555/3433701.3433750
https://dl.acm.org/doi/10.5555/3433701.3433750
http://dx.doi.org/10.1109/CLUSTER.2012.72
https://doi.ieeecomputersociety.org/10.1109/CLUSTER.2012.72
http://dx.doi.org/10.1109/HPCS.2018.00072
https://par.nsf.gov/biblio/10064735
https://par.nsf.gov/biblio/10064735
https://par.nsf.gov/biblio/10064735
http://dx.doi.org/10.1016/j.jcss.2017.09.010
https://www.sciencedirect.com/science/article/pii/S0022000017301587
https://www.sciencedirect.com/science/article/pii/S0022000017301587
https://www.sciencedirect.com/science/article/pii/S0022000017301587
https://par.nsf.gov/biblio/10298914
http://dx.doi.org/10.1109/CLUSTER49012.2020.00023
https://ieeexplore.ieee.org/document/9229601
https://ieeexplore.ieee.org/document/9229601
https://ieeexplore.ieee.org/document/9229601
http://dx.doi.org/10.1145/2049662.2049663

	Characterizing the performance of node-aware strategies for irregular point-to-point communication on heterogeneous architectures
	Introduction
	Background
	Modern Architectures
	Modeling Data Movement
	Node-Aware Communication
	3-Step
	2-Step
	Split

	Distributed Sparse Matrix–Vector Multiplication
	Testing Setup


	Modeling Parameters for Communication
	Modeling Node-Aware Strategies for Inter-Node Communication
	Modeling On-Node Communication for 3-Step and 2-Step
	Modeling On-Node Communication for Split
	Modeling Off-Node Communication
	Copy Parameter for Staged-through-Host Communication
	Model Validation
	Modeled Performance

	Benchmarking Sparse Matrix–Vector Multiplication Communication Patterns
	Results

	Conclusions and Future Work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


