
Parallel Computing 114 (2022) 102973

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Tausch: A halo exchange library for large heterogeneous computing systems
using MPI, OpenCL, and CUDA✩

Lukas Spies a,∗, Amanda Bienz c, David Moulton b, Luke Olson a, Andrew Reisner b

a Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, USA
b Los Alamos National Laboratory, Los Alamos, NM, USA
c Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

A R T I C L E I N F O

Keywords:
Halo
Exchange
Tausch
Mpi
Opencl
Cuda
C++
Heterogeneous
Performance

A B S T R A C T

Exchanging halo data is a common task in modern scientific computing applications and efficient handling of
this operation is critical for the performance of the overall simulation. Tausch is a novel header-only library
that provides a simple API for efficiently handling these types of data movements. Tausch supports both simple
CPU-only systems, but also more complex heterogeneous systems with both CPUs and GPUs. It currently
supports both OpenCL and CUDA for communicating with GPGPU devices, and allows for communication
between GPGPUs and CPUs. The API allows for drop-in replacement in existing codes and can be used for the
communication layer in new codes. This paper provides an overview of the approach taken in Tausch, and
a performance analysis that demonstrates expected and achieved performance. We highlight the ease of use
and performance with three applications: First Tausch is compared to the halo exchange framework from two
Mantevo applications, HPCCG and miniFE, and then it is used to replace a legacy halo exchange library in the
flexible multigrid solver framework Cedar.
1. Introduction

A common challenge in many parallel scientific codes is commu-
nicating boundary data between different processes. The efficiency of
this data exchange or halo exchange is critical as it is called many
times in an application (e.g. iterative solvers) and impacts the overall
performance of a code. In this paper we will address codes that employ
MPI+X (or pure MPI) for parallel communication, and show how
Tausch can be utilized in such contexts.

Halo exchanges are often embedded directly within a larger applica-
tion, requiring hand-tuning and creating additional effort to maintain.
A goal in the present work is to design a stand-alone exchange library
that can be used as a drop-in replacement for those applications. To this
end, the Tausch1 library has several design requirements, including

Ease of use: It should be straightforward to incorporate Tausch into
an existing code or to add it to a new code. In contrast, existing
halo exchange libraries can be complicated to work with, for
example with objects living in a global namespace or with a
complex API.

✩ Los Alamos Report LA-UR-21-28891.
∗ Corresponding author.
E-mail addresses: lspies@illinois.edu (L. Spies), bienz2@illinois.edu (A. Bienz), moulton@lanl.gov (D. Moulton), lukeo@illinois.edu (L. Olson),

areisner@lanl.gov (A. Reisner).
1 The name Tausch comes from the German language and translates into English as exchange or swap.

Flexible: It should support any type of geometry and any type of
data, ideally allowing for different data types to be combined
into one message. This approach allows the tool to adapt to
the application it is used for, while taking advantage of specific
optimizations.

Heterogeneous: It should support both CPUs and GPUs, and their
interaction. Ideally the exchange will require minimal user input
on the specifics of the communication. Many modern super-
computers are inherently heterogeneous, thus necessitating an
exchange library that can handle multiple disparate compute
units.

Performant: Communicating data is a non-trivial task as it requires
memory movement (contiguous and strided) and network com-
munication, leading to a potential performance bottleneck in the
application. The exchange operation should target efficiency,
and performance expectations should be clearly defined.

In this work, we detail the Tausch library. It is a header-only C++
library utilizing MPI for communication, thus relieving the user of
vailable online 23 September 2022
167-8191/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2022.102973
Received 15 October 2021; Received in revised form 12 August 2022; Accepted 19
 September 2022

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:lspies@illinois.edu
mailto:bienz2@illinois.edu
mailto:moulton@lanl.gov
mailto:lukeo@illinois.edu
mailto:areisner@lanl.gov
https://doi.org/10.1016/j.parco.2022.102973
https://doi.org/10.1016/j.parco.2022.102973
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2022.102973&domain=pdf


Parallel Computing 114 (2022) 102973L. Spies et al.

u
t
d
m
v
t
T
l
e
a
o
T
t
a
a
m

f
T
p
I
m
V
p

T
C
s
f
U

o
A
i
p
c
d
t
a
o
p
a
a

2

C
w
i
a
t
l
a
f
F

d
t
w
f
h
u
r

having to precompile and link to an additional library and allowing
for maximum inlining of its member functions. Its aim is to be as
unintrusive as possible, making minimal assumptions about the code
and the data. It is agnostic regarding the dimension of the applica-
tion geometry as it works with the data on a memory level, storing
the information about the halos in a compressed format minimizing
memory requirements. Tausch also supports halo exchanges on hetero-
geneous systems: it facilitates halo exchanges across CPUs and GPUs
in any combination through a single API. It currently supports both
OpenCL [1] and CUDA [2] for communicating with GPUs. There are
various performance optimizations implemented in Tausch, all of which
can be enabled/disabled with the call to a single member function.
Examples of such optimizations include derived data types for MPI, and
direct memory copies. All operations in Tausch can be called in a non-
blocking (asynchronous) fashion, with each method returning a handler
object for managing these operations, checking their status and waiting
for their completion. In all, Tausch provides a flexible interface that can
adapt to any setup while providing several low-level optimizations to
boost performance.

There are several existing solutions for communicating halos. We
first discuss several tools that address halo exchanges in a generic way,
allowing for their integration into any user code. Then we mention
several existing frameworks that include their own halo handling. Most
of the existing generic tools are targeted towards a specific use case
or situation, with some no longer maintained. The Data Transfer Kit
(DTK) [3] is designed primarily for physics applications, where geomet-
ric domains may not conform to the same physical space, potentially
with mismatched parallel decomposition. These features are valuable
when needed, but they also introduce unnecessary complexity. The
Generic Communication Layer (GCL) [4] is a library of communication
patterns where the halo exchange operation is divided into different
layers that can be tweaked and updated independently. It is a templated
header-only C++ library and allows for flexibility in how it can be used,
leading to a more complex API. GCL is described as ‘‘old code’’ in its
GitHub repository [5], with its last update in 2017. We are not aware
of any applications making use of GCL.

Raja [6,7] is a library of C++ software abstractions aiming to enable
architecture and programming model portability for high performance
applications. It also provides constructs for efficient packing and un-
packing of data on different computing devices, although it does not
facilitate any actual communication. Tempi [8] is another approach
that specifically targets MPI+CUDA, improving the performance of MPI
sing CUDA buffers. This design is achieved through MPI and can
hus be easily combined with other tools and libraries that use MPI. A
ifferent approach is taken by Kokkos [9], where a new programming
odel is developed that offers local mapping and execution on a

ariety of architectures. It does not handle halo exchanges and defers
o other codes and frameworks for those. Tpetra [10] is a package for
rilinos [11] implementing linear algebra objects that uses Kokkos for

ocal operations and provides the necessary code for facilitating halo
xchanges. PETSc also provides its own handling of halo exchanges
s part of its distributed arrays (DMDA). All of these come with their
wn programming models and require the user’s code to adapt to that.
hus, they require the use of their own custom data structures and also
ypically necessitate large code rewrites. Finally, the MiniGhost [12,13]
pplication in the Mantevo Project [14] is written in Fortran and serves
s stand-alone code to explore and experiment different programming
odels. It was last updated in 2016.

To demonstrate the flexibility and performance of Tausch we per-
orm a number of computational tests and highlight two applications.
hese computational experiments make use of the Lassen supercom-
uter, part of the Livermore Computing Center. Lassen employs the
BM Power9 CPU architecture with 40 CPU cores per node and a CPU
emory bandwidth of 170 GB/s. Each node is equipped with 4 NVIDIA
100 (Volta) GPUs with each GPU having 5120 cores, 7 TFLOPS peak
2

erformance, 32 GB memory, and 900 GB/s GPU memory bandwidth. a
Fig. 2.1. Examples of different halos, with the halos highlighted in blue.

he compiler used is GCC 7.3.1 together with Spectrum MPI 10.03 and
UDA 10.1. We present some simple results for the now decommis-
ioned BlueWaters system [15] that was hosted at the National Center
or Supercomputing Applications (NCSA) at the University of Illinois at
rbana/Champaign in Appendix.

The paper is organized as follows. In Section 2 we provide an
verview of Tausch, both on a conceptual level and also detailing the
PI. We illustrate how Tausch compresses halo information internally

n order to reduce the memory requirement and also to improve
erformance. In Section 3 we provide an overview of the various
ommunication strategies that are currently provided by Tausch. We
escribe how they have the potential to boost the performance given
he right data and hardware. In Section 4 we provide a performance
nalysis of Tausch for both a three dimensional test case on the CPU and
n the GPU. In Section 5 we compare the performance of Tausch to the
erformance of two established codes, HPCCG [16] and miniFE [17],
nd we discuss another project, Cedar [18], that incorporates Tausch
s their halo communication layer.

. Tausch overview

Tausch provides a high-level API for halo exchanges using MPI [19],
UDA [2], and OpenCL [1]. The user determines the traffic pattern,
here the data to be sent lives in memory and where the received data

s to be written to in memory. Tausch then offers various strategies to
chieve a high-performance exchange of the specified data, whether
he data comprises a halo or any other type of data. It is a header-only
ibrary, thus relieves the user of having to precompile and link to an
dditional library, and it allows for maximum inlining of its member
unctions. It is written in C++ with a fully compatible C API, and a
ortran interface is also available.

To begin, we first define the notion of a halo in the exchange of
ata. A halo is any structured or unstructured area that is used but
ypically not owned by the local process. In most applications a halo
ould lie along the edges of a domain, though this is not a requirement

or Tausch. We refer to data that needs to be sent to another partition’s
alo region as the send halo and, conversely, data that needs to be
pdated locally with values received from another partition as the
eceive halo. Fig. 2.1 illustrates various types of halos, both structured

nd unstructured, all of which can be handled by Tausch.



Parallel Computing 114 (2022) 102973L. Spies et al.

2

F I
t
m
(
f
d
s
e
s

f
i
d

w
a
M

2

P
i
I
d
p
T
s
t

t
i
a

Fig. 2.2. High-level overview of Tausch.

.1. High-level overview

Facilitating a halo exchange with Tausch consists of several steps.
ig. 2.2 shows a schematic of that process, where an 8 × 12 grid resides

on one node and the right column of 12 data elements is sent to the
node owning the adjacent block of data.

1. Describe the halo. Tausch requires a description of the halo
regions from where in memory to either read the sending halo
data (on the sending process) or where in memory to write the
received halo data (on the receiving process).

2. Pack the data. Closely following the implementation of a halo
exchange in pure MPI, Tausch packs the data into a dedicated
send buffer, allowing the user to continue computations on the
main buffer as the data to be sent is held separately.

3. Send and receive data. This corresponds closely to a call to
MPI_Send and MPI_Recv. Internally Tausch creates a com-
munication channel that is reused on subsequent calls to this
particular send.

4. Unpack the data. The data is copied from a dedicated receive
buffer into the main buffer on the receiving end.

The above four-step process outlines the basic way of handling halo
exchanges using Tausch. Depending on the underlying hardware and
MPI implementation, the user may choose certain optimizations that
modify this four-step process. For example, when calling Tausch to take
advantage of MPI derived datatypes, the steps to pack and unpack the
data are not required. We will revisit this and other examples in more
detail in Section 3.

2.2. Language overview (C++, C)

Tausch is a header-only library written in C++, providing a fully
compatible C API and a Fortran interface. This makes the process of
integrating it into any project very straightforward. In the following
we will detail a subset of the API.

2.2.1. Constructor

Tausch (
const MPI_Comm comm,
const bool useDuplicateOfCommunicator ,
OutOfSync handling

)

The default constructor takes three arguments: The MPI communicator
to be used (default: MPI_COMM_WORLD), whether to take a duplicate
of the communicator (default: true), and whether to check for race
conditions and what to do then (default: WarnMe). Duplicating the
communicator isolates Tausch from other communication and avoids
3

any potential interference. s
2.2.2. Halo regions

int addSendHaloInfo (
s td : : vector <int> haloIndices ,
const s i z e _ t typeSize ,
const s i z e _ t numBuffers ,
const int remoteMpiRank

)
int addRecvHaloInfo (

s td : : vector <int> haloIndices ,
const s i z e _ t typeSize ,
const s i z e _ t numBuffers ,
const int remoteMpiRank

)

There are multiple approaches to specifying a halo region. The sim-
plest way is to pass a vector of indices for halo values to Tausch.
The second parameter specifies the byte size of that data — e.g.,
sizeof(real_t). The third parameter specifies how many buffers
can be combined along the same communication paths (default: 1).
f there is more than one buffer using the same communication path,
hen they can either all use the same halo specification (for example,
ultiple variables at each point), or use different halo specifications

for example, two different domains that are used simultaneously). The
ourth parameter specifies the receiving MPI rank (default: −1, meaning
o not set a fixed remote rank). The receiving MPI rank may be the
ame MPI rank as the sender, which allows Tausch to optimize the halo
xchange accordingly. The function also returns the ID of the halo for
ubsequent invocations on the halo region.

Internally Tausch does not store the full vector of indices but instead
orms a compressed view. Section 2.4 shows how that is done and
ts implications. At the same time, the compressed form can be sent
irectly to Tausch rather than a raw vector of indices.

Specifying a receive halo region is similar to that of the send halo,
ith the main difference being the MPI rank passed on as fourth
rgument, which refers to the sending MPI rank instead of the receiving
PI rank.

.2.3. Packing and unpacking data

S ta tus packSendBuffer (
const s i z e _ t haloId ,
const s i z e _ t buf fe r Id ,
unsigned char ∗buf ,
const bool blocking

)
S ta tus unpackRecvBuffer (
const s i z e _ t haloId ,
const s i z e _ t buf fe r Id ,
unsigned char ∗buf ,
const bool blocking

)

acking the send data requires moving data from the main buffer
nto a dedicated send buffer, which is internal to Tausch. The halo
D is the integer returned by calls to addSendHaloInfo and ad-
RecvHaloInfo. The buffer ID (starting at 0 counting up) is im-
ortant only if more than one buffer is combined as one message.
he third parameter is the main buffer where the send halo data is
tored. Unpacking the received data is done in an equivalent way to
he packing process.

By default, packing and unpacking data is done while blocking
he main thread until the operation has completed. With block-
ng=false the packing and/or unpacking is done asynchronously
nd this function returns a Status object for that process. Making

ure that the process has completed before its data is used further has



Parallel Computing 114 (2022) 102973L. Spies et al.

w

t
r
a
s
A
c
c

2

to either be taken care of by the user, or Tausch can be set to either
print a warning or wait on these processes whenever a send is called
after a non-blocking pack, or an unpack is called after a non-blocking
receive.

The Status object provides a unified way to handle such calls,
it provides methods to check its status (isRunning() and isCom-
pleted()), and wait() in order to block the main thread un-
til the connected operation has completed. Inside this object lives
a std::shared_future<void>, an MPI_Request, a cudas-
tream_t, or an OpenCL UserEvent, but the user does not have
to worry about which one it is. However, if desired, the underlying
object can be obtained using conversion. For example, assigning the
Status object to an object of type std::shared_future<void>

ill return the future contained inside Status.
When calling Tausch with derived MPI datatypes for communica-

ion, these calls are not required as the data is sent directly from and
eceived directly into the main buffers. This optimization avoids the
dditional copy performed at these steps, however each buffer sends a
eparate message instead of combining multiple buffers in one message.
dditionally, the halo data in the main buffers cannot be touched while
ommunication remains active. These performance trade-offs require
areful consideration.

.2.4. Sending and receiving data

S ta tus send (
s i z e _ t haloId ,
const int msgtag ,
int remoteMpiRank ,
const s i z e _ t buf fe r Id ,
const bool blocking ,
MPI_Comm communicator

)
S ta tus recv (

s i z e _ t haloId ,
const int msgtag ,
int remoteMpiRank ,
const s i z e _ t buf fe r Id ,
const bool blocking ,
MPI_Comm communicator

)

Calls to send and recv move the data between different MPI
ranks. The halo ID is the integer returned by the call to addSend-
HaloInfo and addRecvHaloInfo. The message tag corresponds
to the integer tag required for MPI communication. The remote MPI
rank refers to the sender/receiver of the message (default: −1, mean-
ing take the rank specified when adding halo information). When
multiple buffers use the same communication path and thus share
the same halo ID, then the buffer ID specifies which one of these
buffers we are operating on (counter starting at 0). For the send
andrecv calls, this parameter only needs to be specified when MPI
derived datatypes are used (default: −1). The send operation is by
default non-blocking (blocking=false) whereas the receive oper-
ation is by default blocking (blocking=true). The default values
for blocking are not due to any particular performance considera-
tion, but rather were chosen arbitrarily as sensible defaults. The final
parameter enables temporary overwriting of the MPI communicator
for the specific call to send or recv. If not specified (or set to
MPI_COMM_NULL) the communicator specified during construction of
Tausch is used. Both methods return a Status object (containing the
underlying MPI_Request used for each operation).
4

2.2.5. Other member functions

void setSendCommunicationStrategy (
s i z e _ t haloId ,
Communication s t r a t egy

) ;
void setRecvCommunicationStrategy (

s i z e _ t haloId ,
Communication s t r a t egy

) ;

This enables any specific communication strategies for sending and
receiving. These need to be called after the respective halo has been set
up and before any communication happens. See Section 3 for a detailed
overview of the different communication strategies.

void setOutOfSyncHandling (
OutOfSync handling

) ;

All the functions in Tausch doing the heavy lifting (pack/unpack and
send/receive) have the option to be called without blocking the main
thread (blocking=false). Even though Tausch cannot guarantee
that using this option will not lead to a race condition, it can make
sure that a send waits for the corresponding pack, and that an unpack
waits for the corresponding receive. There are three possible values of
the OutOfSync enum, the first one is DontCheck. The second and
default value is WarnMe, all this does is print a message to the screen
that a potential race condition has been detected. The third possible
value is Wait which makes Tausch wait for the pack or receive to
complete before proceeding with the send or unpack.

2.3. OpenCL and CUDA

Using Tausch in combination with OpenCL and CUDA is nearly
identical to the API described in Section 2.2. In order to use ei-
ther or both of these technologies, the macros TAUSCH_OPENCL and
TAUSCH_CUDA are required before including the header file. Only the
process of packing/unpacking data require a different API call, pack-
SendBufferOCL and unpackRecvBufferOCL
(packSendBufferCUDA and unpackRecvBufferCUDA
respectively), which contains OpenCL/CUDA specific code. In addi-
tion, before using the OpenCL feature of Tausch, the specific OpenCL
environment must be specified, either by passing an existing OpenCL
environment to Tausch (setOpenCL) or by requesting Tausch to set
up an environment (enableOpenCL).

In order to facilitate GPU-to-GPU communication, Tausch by default
first transfers GPU data to the CPU and then does the data transfer
using MPI before transferring the data to the receiving GPU. Most
MPI implementations allow GPU-to-GPU communication to happen
without going through the CPU. We will revisit this as part of our
communication strategies in Section 3.4.

For NVIDIA GPUs using CUDA, Tausch also supports multiple GPUs
per MPI rank, as it can work with pointers to memory regions on
different GPUs.

2.4. Compressed storage of halo information

Tausch uses a compressed format to store halo information instead
of storing a full vector indices. The compressed storage used by Tausch
is optimized for structured halo regions, however, it will work for any
halo region form or shape.

The user can either directly specify the halo regions using the
compressed format, or make use of a convenience function that takes in
a set of indices of halo data and converts it into the compressed format.
In the latter case, Tausch decomposes that region up into rectangular

subregions corresponding to how the data is laid out in memory. Such



Parallel Computing 114 (2022) 102973L. Spies et al.

h

a
p
(

u
A
d
e

Fig. 2.3. Example of compressed storage: 10 integers (40 bytes) stored using 4 integers
(16 bytes), halo region highlighted in blue.

Fig. 2.4. Example of rectangular region not corresponding directly to mesh region,
alo region highlighted in blue.

region does not necessarily translate to a rectangular region in the
hysical setup. Each such subregion is defined using these 4 integers
see Fig. 2.3):

1. Starting index of the region;
2. number of consecutive values (i.e., number of columns);
3. frequency of consecutive values (i.e., number of rows); and
4. stride between the sets of consecutive values.

Using a compressed form allows highly efficient memory operations
sing memcpy, but also using strided copies in OpenCL and CUDA.
dditionally, the memory requirement of storing halo information is
rastically reduced, particularly in cases of structured data. In the
xample given in Fig. 2.3 the compressed storage requires 2∕5 of

the memory required for a full set of halo indices, and the effect
increases with larger halo regions. Yet, in the case of unstructured
halo regions, the memory requirement of using the compressed storage
might increase if the region does not easily decompose into rectangular
subregions.

The rectangular subregions found by Tausch do not necessarily
correspond to rectangular regions in the mesh. Instead, in a slightly
more abstract sense, they correspond to rectangular regions in the
memory — e.g., the example shown in Fig. 2.4 illustrates how a 10 × 2
rectangular region in the mesh is detected as 20 × 1 rectangular region
in the memory.

The same concept extends to three dimensions, where a three
dimensional volume is interpreted by Tausch as a two or possibly
one dimensional memory region. It is also possible to directly pass
the halo region information in compressed form to Tausch instead of
vectors of indices. In the case of the example shown in Fig. 2.4 both
representations (10 × 2 and 20 × 1) are valid.

In general, a one dimensional compression is preferential to a two
dimensional one, as it allows the use of fewer memcpy operations and
thus offers better performance. Since a halo inherently corresponds
to the surface of the domain (i.e., at most two dimensional), a three
dimensional compression of the halo brings little to no benefit while
increasing the overhead of the actual compression step.

3. Communication strategies

Tausch implements a robust default strategy: always pack the data
wherever it lies into a dedicated send buffer on the CPU that is
communicated with MPI. Even though this is guaranteed to execute
properly, it possibly yields suboptimal performance. We next review
5

several additional methods that can be enabled by the user.
3.1. Derived datatypes

When communicating data between CPU ranks, the use of derived
datatypes avoids copying the data-to-be-sent into a dedicated send
buffer before handing it off to MPI (step 2 in Section 2.1) and,
similarly, on the receiving end skips the intermediate step of receiving
the data into a dedicated receive buffer before distributing the data into
the main buffer (step 4 in Section 2.1).

Skipping these two copy operations offers the potential for improved
performance if implemented efficiently in MPI. However, it also means
that the locations of the data-to-be-sent cannot be altered until the send
operation has completed. Adding the intermediate step of copying the
data into a dedicated send buffer mitigates this caveat (at the possible
expense of performance).

3.2. Persistent communication

MPI supports persistent communication, where a communication
channel is established between a sender and receiver including the
sending and receiving buffers and any information required for the
communication. Such a channel can then be re-used repeatedly in
subsequent iterations. Bypassing this overhead has the potential for
improved performance if it is implemented efficiently in MPI. When en-
abled, Tausch will manage persistent communication channels without
requiring additional user interaction.

3.3. Single-copy and multi-copy

When halo data needs to be moved to or from a GPU, then Tausch
can perform this copy in one of two ways:

Single-copy: first transfer all received data as a contiguous memory
buffer to the device in a single memory copy followed by a
redistribution of data on the device; or

Multi-copy: directly transfer data to the corresponding memory loca-
tions on the device using two-dimensional memory copies.

The advantage of the former is that the data movement between
the CPU and the GPU is done with a single memory copy and one big
chunk of data, independent of the data shape. In applications where
the memory movement between the CPU and GPU is a bottleneck, this
can optimize the performance of that operation at the expense of an
additional memory copy on the device.

The advantage of the latter is that the data is directly written to the
appropriate memory locations on the device, requiring each subregion
of the halo to execute its own memory copy operation. This can be
expensive if the halo region consists of many subregions, but may be
less expensive if the halo region is an almost perfect rectangle. Fig. 3.1
shows a comparison of these two approaches in three dimensions on
Lassen. The test case is a cube with the halo region along the surface —
i.e., 6 halo subregions. Based on the results from Fig. 3.1 there is
a reasonable expectation for the single copy strategy to yield better
performance, thus Tausch implements this as a default.

3.4. CUDA-aware MPI

A special case arises when two or more GPUs communicate with
each other using CUDA. If CUDA-aware MPI is available and supported
by the underlying architecture, then moving the data between the
GPUs can be done without (explicitly) going through the CPU. In
order to use this feature in Tausch, the communication strategy for a
sending and/or receiving halo id needs to be set, everything else will
be handled internally by Tausch. Fig. 3.2 compares the performance
of using CUDA-aware MPI to the default strategy of passing the data
through the CPU for 100 iterations of a simple halo exchange using
Tausch across 512 GPUs on Lassen for a 7-point stencil. Note that we



Parallel Computing 114 (2022) 102973L. Spies et al.

V

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

w

Fig. 3.1. Data movement in three dimensions between the CPU and GPU for NVIDIA
100 (Volta) on Lassen.

Fig. 3.2. Comparing performance of halo exchange for 7-point stencil using
CUDA-aware MPI and passing through CPU on 512 GPUs on Lassen.

do not measure the stencil applications but only the communication
required for such a stencil. The colored regions show the range of values
(min/max) across all ranks, the lines show the average timings.

Fig. 3.2 shows that using CUDA-aware MPI has the potential to
greatly improve the performance, up to an order of magnitude. Since
this feature is highly dependent on the underlying MPI architecture,
it is hard to predict whether this feature is available and whether it
will, in fact, lead to a performance gain. However, it clearly as the
potential to do so, thus it is important for Tausch to support either
communication path, giving the user maximum flexibility. It is worth
pointing out that using CUDA-aware MPI with Tausch is as simple as
setting the communication strategy to use such, no other adjustments
are necessary.

4. Performance analysis

In this section we explore the performance of Tausch in more detail
in order to highlight its efficiency and to expose potential bottlenecks.

4.1. Performance model

We consider two different performance models, one that only mod-
els the communication (based on the max-rate model [20]) and one that
6

c

Fig. 4.1. Visualization of three-dimensional halo exchange used as test case.

includes packing/unpacking the data before and after communicating.
The max-rate model is an extension of the traditional postal model,
and can capture injection limits observed on SMP nodes. For a detailed
analysis of the max-rate model we refer the reader to [20].

In order to compare the performance of Tausch to the performance
model we consider a test that performs a three-dimensional halo ex-
change. Fig. 4.1 shows a visualization of this halo exchange test in
three dimensions, and Algorithm 4.1 describes the actual algorithm that
is being used. The test code implementing this example is run on the
Lassen supercomputer.

Algorithm 4.1 Algorithm of test code
1: Create data buffers
2: Compose halo information
3: n_test ← number of tests
4: n_timing ← number of timings per operation
5: for test←1, n_test do
6: MPI_Barrier
7: Start pack timer
8: for t←1, n_timing do
9: Pack halo data to be sent off
0: into dedicated send buffer
1: end for
2: Stop pack timer
3: Start communication timer
4: for t←1, n_timing do
5: Send data off to neighbors
6: using MPI_Isend
7: Receive data from neighbors
8: using MPI_Irecv + MPI_Wait
9: end for
0: Stop communication timer
1: Start unpack timer
2: for t←1, n_timing do
3: Unpack received halo data
4: out of dedicated receive buffer
5: end for
6: Stop unpack timer
7: end for

The max-rate performance model, which focuses on communication,
can be expressed using the following equation,

𝑇 = 𝑡𝑐 + 𝑟𝛼 + 𝑘 𝑛
min(𝑅𝑁 , 𝑘𝑅𝐶 )

(4.1)

here 𝑡𝑐 is the time for copying the data into/out of dedicated send/re-
eive buffers, 𝑟 is the number of messages a rank is sending, 𝛼 is the



Parallel Computing 114 (2022) 102973L. Spies et al.

(
n
s

Table 1
Max-rate model parameters for Lassen, obtained through experiment.

Protocol 𝛼 [s] 𝑅𝑁 [B/s] 𝑅𝐶 [B/s]

Short 1.38 × 10−6 – 3.81 × 109

Eager 2.26 × 10−6 – 2.36 × 109

Rendezvous 1.14 × 10−5 2.28 × 109 1.77 × 1010

Fig. 4.2. Performance Model on CPU using 320 ranks across 8 nodes (top) and GPU
using 32 ranks across 8 nodes (bottom) running on Lassen.

latency introduced by MPI per message, 𝑘 is the number of processes,
𝑛 is the number of bytes sent per process, 𝑅𝑁 is the injection bandwidth
how fast data can leave or enter the node and leave or enter the
etwork), and 𝑅𝐶 is the rate that can be achieved by each process in
ending or receiving a message. The values for 𝛼, 𝑅𝑁 and 𝑅𝐶 can be

found in Table 1, with the values obtained through experiment. Note
that 𝑅𝑁 only impacts the rendezvous protocol.

We present a performance evaluation for test runs on both the CPU
and the GPU. Note that the only difference between those two is in the
copying the halo data into their dedicated send buffers, for the GPU
test runs this involves calls to cudaMemcpy.

Fig. 4.2 shows the comparison of the performance model and the
test code. The colored regions show the range of values (min/max)
across all ranks, the lines show the average timings. In order to get
a handle on the average expected performance, the parameters for the
performance model are for inter-node communication (i.e., using the
network) and for copying only consecutive chunks of memory (without
stride). Thus, the model will be slightly too optimistic for memory
7

Fig. 4.3. MPI_Pack vs packSendBuffer in Tausch, packing surface of three
dimensional cube on both the (top) CPU and (bottom) GPU with CUDA, on Lassen.

copies, especially for the larger problem sizes. For the smaller problem
sizes data located at some stride still falls within one or just a few
cache lines resulting in a performance that is near ideal. On the other
hand, the communication prediction of the model is slightly pessimistic,
ranks that lie on the same node and/or socket will result in faster
communication performance than the predicted performance. Overall,
the prediction by the performance model will be an average of the best
and worst performance between any two ranks.

The minimum values for the test runs are the fastest time for doing a
halo exchange between any two ranks, and likely stem from two ranks
living on the same socket. Conversely, the maximum values likely stem
from two ranks living on different nodes that are far apart. From the
results we see that the modeled and actual performance closely align.

4.2. Comparison to MPI_Pack

MPI provides its own routines for packing/unpacking, MPI_Pack
and MPI_Unpack. Fig. 4.3 shows a comparison of MPI_Pack to the
packing routine in Tausch on both the CPU and GPU using CUDA-aware
MPI. The test case is a three dimensional cube whose surface is packed
into a six dedicated send buffers (to be sent to its 6 neighbors). The
test code for MPI_Pack is implemented using plain MPI and is not
used/supported in Tausch. We see that Tausch performs better than
MPI_Pack for packing data: up to 5 times faster on the CPU and up to
2500 times faster on the GPU. The speedup is at least in part due to the



Parallel Computing 114 (2022) 102973L. Spies et al.

a

f
M

Fig. 5.1. Halo exchange in HPCCG with and without Tausch using 320 MPI ranks
cross 8 nodes on Lassen (40 ranks per node).

act that Tausch is optimized for structured communication, whereas
PI_Pack is assuming a more general pattern.

5. Example applications

In this section we highlight the ease of use and performance with
three applications. First, Tausch is compared to two Mantevo applica-
tions, HPCCG [16] (CPU-only) and miniFE [17] (CPU and GPU), and
lastly we use it to replace a legacy halo exchange library in the flexible
multigrid solver framework, Cedar [18]. Due to the flexibility of Tausch
and the simplicity of its API, dropping Tausch into existing code is
straightforward.

5.1. Tausch in HPCCG

The Mantevo application HPCCG [16] is a simple conjugate gra-
dient code that generates a 27-point finite difference matrix for a 3D
chimney domain on an arbitrary number of processors. It captures the
performance of popular Krylov based linear solvers that rely on key
linear algebra operations, such as sparse matrix–vector multiplications
and dot products. It was chosen for a comparison with Tausch as it
exhibits strong similarities to Tausch in the handling of halo data. Thus,
this allows us to get an accurate understanding of the performance of
Tausch in comparison to an established code. We started out by running
the original application on Lassen on 320 CPU cores (spread across 8
nodes). Then we replaced the halo exchange logic with calls to Tausch
and re-ran the code with the same configuration. The result it shown
in Fig. 5.1.

Fig. 5.1 shows a comparison of HPCCG with and without Tausch.
The colored regions show the range of values (min/max) across all
ranks, the lines show the average timings. Tausch outperforms HPCCG,
often improving performance by an order of magnitude. One reason
for this performance boost is the re-use of information about the halos.
For example, where HPCCG is re-creating intermediate buffers at each
iteration, Tausch is able to re-use buffers of the right size from previous
iterations. Tausch also encodes the halo information once during setup
allowing for more performant memory operations to be done at each
iteration instead of simple looping over each halo data point. These
optimizations are not trivial to be implemented by hand, but come for
free with the use of Tausch. They all result in a lower overhead per
iteration and thus a significant speed-up. This has a noticeable effect
on the overall absolute runtime as up to 10% of the total runtime is
8

spent in the halo exchange.
Fig. 5.2. Halo exchange in miniFE with and without Tausch using 320 ranks across
eight nodes on the CPU (top) and across 128 nodes on the GPU (bottom).

5.2. Tausch in miniFE

The Mantevo application miniFE [17] provides implementations of
an unstructured finite elements code on various platforms. It provides
implementations on both the CPU and the GPU (using CUDA) with a
clear implementation of its own halo handling, making it very straight-
forward to switch to using Tausch. Both the CPU and GPU runs are
done with 320 ranks, spread across eight nodes for the CPU and 128
nodes for the GPU. We first ran the original code and then the modified
version with Tausch. The result is shown in Fig. 5.2.

The colored regions show the range of values (min/max) across all
ranks, the lines show the average timings. The upper plot in Fig. 5.2
shows that on the CPU the halo exchange in miniFE takes about the
same amount of time with Tausch and the original code, the difference
between the two is negligible. On the GPU, the original code performs
slightly better than Tausch, yet the difference between the two is still
negligible. The clear advantage of using Tausch, however, is the simple
interface, the need for fewer lines of code, and the minimization of the
potential need of restructuring and refactoring of the code. The overall
proportion of time spent in the halo exchange is less than 30% in the
GPU case and less than 25% in the CPU case.

It is worth pointing out that the part of the code that handles Tausch

is nearly identical in both the version for the CPU and the one for the



Parallel Computing 114 (2022) 102973L. Spies et al.

p
c
w
a
G
i
c
a
w
T
o
s
l

7

h

D

p
w
1

D

A

m
A

p
d
o
a
A

A

c
b
X
c
w
h
G

Fig. 5.3. Cedar with Tausch and MSG, 320 MPI ranks across 8 nodes on Lassen (40
ranks per node).

GPU. The only differences being the buffer pointers, and the setting of
CUDA-aware MPI strategy (a single line of code) based on a compile-
time macro. This highlights yet again the ease of using Tausch in a
variety of codes.

5.3. Tausch in Cedar

Tausch plays a crucial role in the structure-exploiting variational
multigrid library Cedar [18]. Replacing a legacy halo-exchange library
(MSG [21]), Tausch provides structured communication for the solver
in two and three dimensions. In addition to providing performant halo
communication with predictable performance, Tausch enables parallel
plane relaxation with coarse-grid problems redistributed on subcommu-
nicators. Prohibited in the past by the legacy communication library,
Tausch supports many non-interfering instances. This is used to create
thousands of instances of Tausch for large 3D solves with minimal
overhead [22].

Fig. 5.3 shows a comparisons of the performance of halo exchanges
in Cedar when using Tausch and the previous solution MSG. The test
case is a three-dimensional halo and stencil exchange across 320 MPI
ranks spread across 8 nodes on Lassen (40 ranks per node). The colored
regions show the range of values (min/max) across all ranks, the lines
show the average timings. Tausch consistently performs better than
9

MSG. A major source of performance gain is the communication of the
stencil operator data. MSG communicates each stencil direction in its
own message, whereas Tausch is able to combine them into larger mes-
sages, as they are sent along the same communication path. Enabling
Tausch to combine them into larger messages happens during setup,
where different halo specifications that use the same communication
paths can be tied together. Since at least around 30% of the time
in Cedar is spent in communication [23], this improvement leads to
significant performance gains overall.

6. Conclusion

In this paper we have introduced a new tool called Tausch that
rovides a simple API for moving halo data on heterogeneous ma-
hines. We have illustrated how its design maximizes performance
hile minimizing memory requirements. Measuring its performance
gainst a performance model in three dimensions on both the CPU and
PU showed that its performance lies within expectations. Compar-

ng its performance to the Mantevo applications HPCCG and miniFE
onfirmed its performance as it was able to match or outperform the
pplications by up to an order of magnitude. Finally, we took the frame-
ork Cedar and replaced the legacy communication library, MSG, by
ausch and achieved considerable performance gain of up to an order
f magnitude. Increased flexibility in the design of Tausch also enabled
calable parallel plane relaxation in Cedar previously prohibited by the
egacy communication library.

. Resources

Tausch is hosted on GitHub and is licensed under the MIT license:
ttps://github.com/luspi/tausch.

eclaration of competing interest

No author associated with this paper has disclosed any potential or
ertinent conflicts which may be perceived to have impending conflict
ith this work. For full disclosure statements refer to https://doi.org/
0.1016/j.parco.2022.102973.

ata availability

Data will be made available on request.

cknowledgments

This material is based in part upon work supported by the Depart-
ent of Energy, National Nuclear Security Administration, USA, under
ward Number DE-NA0002374.

This research is part of the Blue Waters sustained-petascale com-
uting project, which is supported by the National Science Foun-
ation, USA (awards OCI-0725070 and ACI-1238993) and the state
f Illinois. Blue Waters is a joint effort of the University of Illinois
t Urbana-Champaign and its National Center for Supercomputing
pplications.

ppendix. BlueWaters

BlueWaters [15] was located at the National Center for Super-
omputing Applications (NCSA) at the University of Illinois at Ur-
ana/Champaign. It had two different types of compute nodes, XE and
K. Each XE compute node had 2 AMD 6276 Interlagos CPUs (each 16
ores, 2.3 GHz operating frequency each, and 4 GB system memory)
ith a CPU memory bandwidth of 102.4 GB/s. Each XK compute node
ad a single AMD 6276 Interlagos CPU and one NVIDIA GK110 Keppler
PU (2688 cores, 1.31 TFLOPS peak performance, 6 GB memory, 250

https://github.com/luspi/tausch
https://doi.org/10.1016/j.parco.2022.102973
https://doi.org/10.1016/j.parco.2022.102973
https://doi.org/10.1016/j.parco.2022.102973


Parallel Computing 114 (2022) 102973L. Spies et al.

G
G

w
X

p
s
t
c
t
m
f
m
r
o
a

l
o
r
p

t

R

Fig. A.1. Performance Model on CPU using 256 ranks across 16 nodes on BlueWaters.

B/s GPU memory bandwidth) with a CPU memory bandwidth of 51.2
B/s.

The system was decommissioned at the start of 2022, but before it
ent offline we were able to run a simple performance analysis on its
E6 nodes (CPU-only).

The setup for the performance analysis is identical to the setup
resented in Section 4. The test runs were run with a total of 256 ranks
pread across 16 nodes, resulting in 16 ranks per node. Fig. A.1 shows
he resulting comparison between our test runs and our model data. The
olored regions show the range of values (min/max) across all ranks,
he lines show the average timings. The parameters for the performance
odel are for inter-node communication (i.e., using the network) and

or copying consecutive memory chunks (without any stride). Thus the
odel will be slightly too pessimistic for communication as the test

uns include some on-node/on-socket communication, and slightly too
ptimistic for memory copies as our test case involves strided memory
ccesses.

For the test runs the minimum/maximum values are the fastest/s-
owest performance between any two ranks in the setup. Two ranks
n the same node will result in better than average performance, two
anks living on two nodes far apart will result in worse than average
erformance.

We see that the performance model aligns very well with the data,
he observed performance is very close to the expected performance.

eferences

[1] K.O.W. Group, The OpenCL specification, 2018, Version 1.2. URL https://www.
khronos.org/registry/OpenCL/specs/opencl-2.1.pdf.

[2] CUDA C++ programming guide, 2019, Version 10.1. URL https://docs.nvidia.
com/cuda/archive/10.1.
10
[3] S.R. Slattery, P.P.H. Wilson, R.P. Pawlowski, The Data Transfer Kit: A Geometric
Rendezvous-Based Tool for Multiphysics Data Transfer, American Nuclear Society
- ANS, 2013, URL http://inis.iaea.org/search/search.aspx?orig_q=RN:45033752.

[4] M. Bianco, An interface for halo exchange pattern, 2013, http://dx.doi.org/10.
5281/zenodo.831983.

[5] Generic communication layer, 2020, Accessed: 2020-04-27. URL https://github.
com/eth-cscs/gcl.

[6] RAJA performance portability layer (C++), 2020, Accessed: 2021-05-29. URL
https://github.com/LLNL/RAJA.

[7] D.A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A.J. Kunen, O.
Pearce, P. Robinson, B.S. Ryujin, T.R. Scogland, RAJA: Portable performance for
large-scale scientific applications, in: 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), 2019, pp. 71–81,
http://dx.doi.org/10.1109/P3HPC49587.2019.00012.

[8] C. Pearson, K. Wu, I.-H. Chung, J. Xiong, W.-M. Hwu, TEMPI: An interposed
MPI library with a canonical representation of CUDA-aware datatypes, 2021,
URL https://arxiv.org/abs/2012.14363.

[9] H.C. Edwards, C.R. Trott, D. Sunderland, Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns, J. Parallel
Distrib. Comput. 74 (12) (2014) 3202–3216, http://dx.doi.org/10.1016/j.jpdc.
2014.07.003, Domain-Specific Languages and High-Level Frameworks for High-
Performance Computing. URL http://www.sciencedirect.com/science/article/pii/
S0743731514001257.

[10] C.G. Baker, M.A. Heroux, Tpetra, and the use of generic programming in
scientific computing, Sci. Program. 20 (2) (2012) 115–128, http://dx.doi.org/
10.1155/2012/693861.

[11] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B.
Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist,
R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley, An overview of
the Trilinos project, ACM Trans. Math. Software 31 (3) (2005) 397–423, http:
//dx.doi.org/10.1145/1089014.1089021.

[12] MiniGhost halo exchange mini-application, 2020, Accessed: 2020-04-27. URL
https://github.com/Mantevo/miniGhost.

[13] R. Barrett, M. Heroux, C. Vaughan, MiniGhost : a miniapp for exploring boundary
exchange strategies using stencil computations in scientific parallel computing,
2012, http://dx.doi.org/10.2172/1039405.

[14] Mantevo project, 2020, Accessed: 2020-04-27. URL https://mantevo.github.io.
[15] BlueWaters - system summary, 2021, Accessed: 2021-04-06. URL https://

bluewaters.ncsa.illinois.edu/hardware-summary.
[16] High performance computing conjugate gradients (HPCCG), 2021, Accessed:

2021-01-08. URL https://github.com/Mantevo/HPCCG.
[17] miniFE finite element mini-application, 2022, Accessed: 2022-02-22. URL https:

//github.com/Mantevo/miniFE.
[18] D. Moulton, L.N. Olson, A. Reisner, Cedar framework, 2017, Version 0.1. URL

https://github.com/cedar-framework/cedar.
[19] M.P.I. Forum, MPI: A message-passing interface standard, 2015, Version 3.0. URL

https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.
[20] W. Gropp, L.N. Olson, P. Samfass, Modeling MPI communication performance

on SMP nodes: Is it time to retire the ping pong test, in: Proceedings of the
23rd European MPI Users’ Group Meeting, in: EuroMPI 2016, Association for
Computing Machinery, New York, NY, USA, 2016, pp. 41–50, http://dx.doi.org/
10.1145/2966884.2966919.

[21] A. Malevsky, Message-Passing Tools for Structured Grid Communications User’s
Guide Version 2.0, Centre de Recherche en Calcul Appliqué, 5160 boul. Décarie,
bureau 400, Montréal, Québec.

[22] A.R. Reisner, J.D. Moulton, M. Berndt, L.N. Olson, Scalable line and plane
relaxation in a parallel structured multigrid solver, Parallel Comput. 100 (2020)
http://dx.doi.org/10.1016/j.parco.2020.102705.

[23] A. Reisner, L.N. Olson, J.D. Moulton, Scaling structured multigrid to 500K+
cores through coarse-grid redistribution, SIAM J. Sci. Comput. 40 (4) (2018)
C581–C604, http://dx.doi.org/10.1137/17M1146440, arXiv:https://doi.org/10.
1137/17M1146440.

https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://docs.nvidia.com/cuda/archive/10.1
https://docs.nvidia.com/cuda/archive/10.1
https://docs.nvidia.com/cuda/archive/10.1
http://inis.iaea.org/search/search.aspx?orig_q=RN:45033752
http://dx.doi.org/10.5281/zenodo.831983
http://dx.doi.org/10.5281/zenodo.831983
http://dx.doi.org/10.5281/zenodo.831983
https://github.com/eth-cscs/gcl
https://github.com/eth-cscs/gcl
https://github.com/eth-cscs/gcl
https://github.com/LLNL/RAJA
http://dx.doi.org/10.1109/P3HPC49587.2019.00012
https://arxiv.org/abs/2012.14363
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://dx.doi.org/10.1155/2012/693861
http://dx.doi.org/10.1155/2012/693861
http://dx.doi.org/10.1155/2012/693861
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1145/1089014.1089021
https://github.com/Mantevo/miniGhost
http://dx.doi.org/10.2172/1039405
https://mantevo.github.io
https://bluewaters.ncsa.illinois.edu/hardware-summary
https://bluewaters.ncsa.illinois.edu/hardware-summary
https://bluewaters.ncsa.illinois.edu/hardware-summary
https://github.com/Mantevo/HPCCG
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE
https://github.com/cedar-framework/cedar
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://dx.doi.org/10.1145/2966884.2966919
http://dx.doi.org/10.1145/2966884.2966919
http://dx.doi.org/10.1145/2966884.2966919
http://refhub.elsevier.com/S0167-8191(22)00063-1/sb21
http://refhub.elsevier.com/S0167-8191(22)00063-1/sb21
http://refhub.elsevier.com/S0167-8191(22)00063-1/sb21
http://refhub.elsevier.com/S0167-8191(22)00063-1/sb21
http://refhub.elsevier.com/S0167-8191(22)00063-1/sb21
http://dx.doi.org/10.1016/j.parco.2020.102705
http://dx.doi.org/10.1137/17M1146440
http://abs/10.1137/17M1146440
http://abs/10.1137/17M1146440
http://abs/10.1137/17M1146440

	Tausch: A halo exchange library for large heterogeneous computing systems using MPI, OpenCL, and CUDA
	Introduction
	Tausch overview
	High-level overview
	Language overview (C++, C)
	Constructor
	Halo regions
	Packing and unpacking data
	Sending and receiving data
	Other member functions

	OpenCL and CUDA
	Compressed storage of halo information

	Communication strategies
	Derived datatypes
	Persistent communication
	Single-copy and multi-copy
	CUDA-aware MPI

	Performance analysis
	Performance model
	Comparison to MPIPack

	Example applications
	Tausch in HPCCG
	Tausch in miniFE
	Tausch in Cedar

	Conclusion
	Resources
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. BlueWaters
	References


