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Abstract

Anderson Acceleration (AA) is a method to accelerate the

convergence of fixed point iterations for nonlinear, algebraic

systems of equations. Due to the requirement of solving a

least squares problem at each iteration and a reliance on

modified Gram-Schmidt for updating the iteration space,

AA requires extra costly synchronization steps for global re-

ductions. Moreover, the number of reductions in each itera-

tion depends on the size of the iteration space. In this work,

we introduce three low synchronization orthogonalization al-

gorithms into AA within SUNDIALS that reduce the total

number of global reductions per iteration to a constant of 2

or 3, independent of the size of the iteration space. A per-

formance study demonstrates the reduced time required by

the new algorithms at large processor counts with CPUs and

demonstrates the predicted performance on multi-GPU ar-

chitectures. Most importantly, we provide convergence and

timing data for multiple numerical experiments to demon-

strate reliability of the algorithms within AA and improved

performance at parallel strong-scaling limits.

1 Introduction

Anderson acceleration (AA) is a method employed to ac-
celerate the convergence of the fixed point (FP) method
for solving systems of nonlinear equations [2, 24, 16].
The formulation of this method leading to the most ef-
ficient implementation requires the solution of an uncon-
strained minimization problem, generally done through
solving a least squares problem (LSP) via QR factoriza-
tion [24, 7]. Because the LSP is highly sensitive, it is im-
perative to employ a stable algorithm, such as modified
Gram-Schmidt, to update the factorization at each iter-
ation. The application of modified Gram-Schmidt gen-
erates the main bottleneck of the algorithm when per-
formed in a distributed memory parallel environment,
due to the associated high communication costs of per-
forming multiple dot products in sequence [9].

A solution to the costly QR updates within AA is to
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apply an algorithm that requires fewer synchronization
points per iteration, i.e. performs multiple dot products
simultaneously or computes an equivalent QR update at
a lower parallel cost. Recent research by Świrydowicz
et al. [23] and Bielich et al. [4] introduced low synchro-
nization algorithms for MGS, CGS-2 and GMRES [22],
and because AA is equivalent to GMRES when solving
systems of linear equations [24], it is natural to consider
leveraging these advances in AA.

We have implemented and tested three low syn-
chronization algorithms within the SUNDIALS KIN-
SOL [14] implementation of AA. These methods reduce
the number of global reductions to a constant number
per iteration independent of the size of the AA iteration
space. While these methods can reduce the number of
synchronizations to 1 within Krylov methods, a single
reduction is not possible within AA due to the require-
ment for normalization before the LSP solve. Never-
theless, these new methods are able to reduce required
global communications to 2 or 3 per iteration.

In addition to demonstrating how to extend these
ideas to AA, this paper also includes a problem indepen-
dent performance study that illustrates the improved
strong scalability of the new kernels, particularly for
large iteration spaces and processor counts. The rel-
ative cost of the new methods is dependent upon on
particular problem. Thus, we present convergence and
timing data for multiple examples to demonstrate the
reliability of the algorithms for AA and improved per-
formance at scale.

The rest of the paper is organized as follows. In
Section 2, we describe the AA algorithm and relevant
components in the QR factorization process. In Sec-
tion 3, we present and compare the low synchronization
QR factorization variants. In Sections 4 and 5 we give
performance results for the different methods employed
within the AA algorithm itself and from several test
problems respectively. Finally, Section 6 provides con-
clusions based on our findings.
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2 Background

2.1 Anderson Acceleration AA (Algorithm 1) uti-
lizes a linear combination of m prior function evalua-
tions to accelerate the convergence of the FP iteration

xi+1 = G(xi). The weights γ
(i)
k minimize the FP resid-

ual norm in the linear case and are computed by solving
a LSP (Line 6 in Algorithm 1) via a QR factorization of
Fi where Q is a matrix with linearly independent, nor-
malized columns, and R is an upper triangular matrix.

Algorithm 1 Anderson Acceleration (AA)

Input: x0, m ≥ 1, tol, and maxIters.
Output: x∗

1: x1 = G(x0) and f0 = G(x0)− x0
2: for i = 1, 2, . . . ,maxIters do
3: Set mi = min{m, i} and fi = G(xi)− xi
4: Set Gi = [∆gi−mi , . . . ,∆gi−1] with ∆gk = G(xk+1) −
G(xk)

5: Set Fi = [∆fi−mi
, . . . ,∆fi−1] with ∆fk = fk+1 − fk

6: Determine γ(i) = [γ
(i)
0 , . . . , γ

(i)
mi−1 ]T that solves

minγ(i)‖fi −Fiγ(i)‖2.

7: Set xi+1 = G(xi)− Giγ(i)
8: if ‖xi+1 − xi‖ < tol then
9: return xi+1 as x∗

10: end if
11: end for

Solving the LSP (Algorithm 2) requires updating the
QR decomposition to incorporate the vector ∆fi−1.
This update is comprised of two subroutines: QRAdd ap-
pends a vector to the QR factorization while performing
the necessary orthogonalization and QRDelete removes
the oldest vector from the factorization.

Algorithm 2 Least Squares Problem (LSP) Solve

Input: i, m, mi, fi, ∆fi−1, γ(i), Q, and R.
Output: Q, R, and γ(i)

1: if i = 1 then
2: Set Q:,0 = ∆fi−1/‖∆fi−1‖2 and R0,0 = ‖∆fi−1‖2
3: else
4: if i > m then
5: QRDelete(Q, R, mi)
6: end if
7: QRAdd(Q, R, ∆fi−1, mi)
8: end if
9: Solve Rγ(i) = QT ∗ fi

A key factor in the performance and convergence of AA
is the number of residual history vectors or depth, m.
The depth determines the maximum size of the QR
factorization and thus the number of vectors that must
be orthogonalized each iteration in QRAdd. Note in the
start-up phase (i < m), the number of vectors increases
by one each iteration until m vectors are retained. Once
the history is full, the subsequent iterations require
orthogonalization against m − 1 vectors. As discussed

below, the number of synchronizations required by
QRAdd depends on m and the method for updating the
QR factorization. Generally, QRDelete does not require
any communication, as initially noted by Loffeld and
Woodward in [17]. In practice the depth is often kept
small (m < 5) however, there are potential convergence
benefits to be gained if it were economical, performance-
wise, to run with larger m.

2.2 QR Factorization with Gram-Schmidt
There exist several methods for computing the QR fac-
torization of a matrix. In this paper, we consider meth-
ods derived from the Gram-Schmidt procedure. Specif-
ically, we focus on the process of updating a given
QR factorization to include a vector q. Here, column-
oriented algorithms are presented as opposed to those
that proceed row-wise. These are better suited to a low-
synchronization formulation and promote data-locality
for cache-memory access both for CPUs and GPUs.

The classical Gram-Schmidt (CGS) process updates
a given QR factorization with the vector q by applying
the projection P = I − QQT to q then normalizing q.
While this process is attractive in a parallel computing
environment, due to the fact that P can be applied with
a single reduction, this algorithm is highly unstable and
exhibits a loss of orthogonality dependent on O(ε)κ2(A)
[11, 10] where ε is machine precision and κ2(A) is the
square of the condition number of A. For this reason
alone, it is unsuitable as a QR updating scheme in
AA, where the LSP solver convergence may be highly
sensitive to the loss of orthogonality [19].

A common solution for the instability of CGS
is to apply modified Gram-Schmidt (MGS) instead.
This process applies the rank–1 elementary projection
matrices I − Q:,jQ

T
:,j , j = 0, . . . , n − 1, one for each

of the n linearly independent columns of Q, to the
vector q then normalizes q. Performing the Gram-
Schmidt process in this way effectively reduces the loss
of orthogonality to O(ε)κ(A) [5]. However, applying the
projections sequentially requires n dot products, one
for each of the columns, resulting in communication
bottlenecks when performed in a parallel distributed
environment (discussed more thoroughly in Section 3.1).

New variants of CGS and MGS have been intro-
duced to mitigate instability and parallel performance
issues caused by these methods. In most cases, they in-
troduce a correction matrix T , leading to a projection
operator of the form P = I − QTQT . In the case of
CGS, CGS-2 (classical Gram-Schmidt with reorthogo-
nalization) corrects the projection by reorthogonalizing
the vectors of Q and thereby reduces the loss of or-
thogonality to O(ε) [10, 20]. The form of the correc-
tion matrix for this algorithm was derived in [23] and is



discussed further in Sections 3.3 and 3.4. The inverse
compact WY MGS representation was recently intro-
duced, requiring a triangular solve instead of the re-
cursive construction of the correction matrix T from a
block-triangular inverse (presented in Section 3.2). The
required number of dot products per iteration is effec-
tively reduced to one for GMRES and s–step Krylov
solvers [23, 25]. The inverse compact WY algorithm
maintains O(ε)κ(A) loss of orthogonality.

3 QR Update Methods in AA

In this section, we discuss the QRAdd kernel, Line 7
of Algorithm 2, employed to update the AA iteration
space with the ∆fi−1 vector. We present the baseline
QRAdd MGS (modified Gram Schmidt) algorithm along-
side three low synchronization variants of the kernel im-
plemented within AA in SUNDIALS. For each of the
QRAdd kernels, we discuss the form of the projectors ap-
plied to orthogonalize the given set of vectors, Fi, as
well as, their predicted parallel performance.

Throughout this section and the remainder of the
paper, matrix entries are referenced via subscripts with
0-based indexing. For example, M0,0 refers to the first
row, first column of a matrix M , and slices of a matrix
are inclusive, i.e. M:,0:k−1 refers to all rows of the matrix
and columns 0, . . . , k − 1.

3.1 Modified Gram Schmidt The standard ap-
proach for updating the QR factorization within AA
is to apply MGS, outlined in Algorithm 3.

Algorithm 3 QRAdd MGS

Input: Q, R, ∆fi−1 and mi

Output: Q, R

1: for j = 0, . . . ,mi − 2 do

2: Rj,mi−1 ← QT:,j ∗∆fi−1 . Sync

3: ∆fi−1 ← ∆fi−1 −Rj,mi−1 ∗Q:,j

4: end for

5: Rmi−1,mi−1 ← ‖∆fi−1‖2 . Sync

6: Q:,mi−1 ← ∆fi−1/Rmi−1,mi−1

In each AA iteration, applying MGS requires mi dot
products; mi − 1 for the orthogonalization against all
previous vectors in the AA iteration space, and one for
the normalization at the end of the algorithm. This al-
gorithm results in mi synchronizations across all pro-
cesses, as the reductions form a chain of dependen-
cies and can not be performed in tandem. The high
costs of these synchronizations are exacerbated by the
lack of computational workload between each reduction,
namely the entire algorithm only requires O(min) flops.

3.2 ICWY Modified Gram Schmidt Low-synch
one-reduce Gram-Schmidt algorithms are based upon

two key ideas. First, the compact WY representation
relies on a triangular correction matrix T , which con-
tains a strictly lower triangular matrix L. One row or
block of rows of L is computed at a time in a single
global reduction. Each row

Lmi−2,0:mi−2 = (QT:,0:mi−2Qmi−2)T

is obtained within the current step, then the normaliza-
tion step is lagged and merged into a single reduction.
The associated orthogonal projector is based on Rühe
[21] and presented in Świryzdowicz et al. [23].

P = I −Q0:mi−2T0:mi−2,0:mi−2Q
T
:,0:mi−2,

T0:mi−2,0:mi−2 = ( I + Lmi−1 )−1

≈ (QT:,0:mi−2Q:,0:mi−2)−1.

The implied triangular solve requires an additional
(mi − 1)2 flops at iteration mi − 1 and thus leads to
a slightly higher operation count compared to the origi-
nal MGS algorithm. The operation QT:,0:mi−2Q:,mi−2 in-
creases ICWY-MGS complexity by min

2 for an overall
complexity of O(min

2), and reduces synchronizations
from mi − 1 at iteration mi to 1. Only one global re-
duction is required per iteration, and the amount of
inter-process communication does not depend upon the
number of rank–1 projections I − Q:,j Q

T
:,j applied at

each iteration.
When implementing ICWY-MGS in the context

of AA, lagging the normalization until the subsequent
iteration is not an option, as the factorization is applied
immediately after updating in the LSP solve on Line 6
of Algorithm 2. The resulting QR update algorithm
within AA is detailed in Algorithm 4.

Algorithm 4 QRAdd ICWY

Input: Q, R, T , ∆fi−1 and mi

Output: Q, R, T

1: Tmi−2,0:mi−2 ← QT:,0:mi−2 ∗Q:,mi−2 . Delayed Sync

2: R0:mi−2,mi−1 ← QT:,0:mi−2 ∗∆fi−1 . Sync

3: Tmi−2,mi−2 ← 1

4: R0:mi−2,mi−1 ← T−10:mi−2,0:mi−2R0:mi−2,mi−1

5: ∆fi−1 ← ∆fi−1 −Q:,0:mi−2 ∗R0:mi−2,mi−1

6: Rmi−1,mi−1 ← ‖∆fi−1‖2 . Sync

7: Q:,mi−1 ← ∆fi−1/Rmi−1,mi−1

Here, we present a two reduction variant of the ICWY-
MGS algorithm. The formation of the correction oper-
ator and the matrix R can be merged on Line 2. With
the inclusion of the normalization at the end of the algo-
rithm, this results in two synchronizations per iteration
until the AA iteration space is filled. Once AA reaches
Line 5 in Algorithm 2, the oldest vector in the factoriza-
tion is deleted. While this can be performed with Givens



rotations in cases where only Q and R are stored, the
explicit storage and application of T requires that this
correction matrix be updated by introducing a single
reduction. Overall, this process results in two global
reduction steps per iteration until m is reached, after
which, there are three global reductions per iteration.

3.3 CGS-2 The CGS-2 algorithm is simply CGS
with reorthogonalization, which, unlike CGS, is known
to mitigate large cancellation errors and maintain nu-
merical stability [1, 6, 15, 21]. Reorthogonalizing the
vectors in Q updates the associated orthogonal projec-
tor to include a correction matrix T , although this ma-
trix may not be explicitly formed in practice.

In Appendix 1 of [23], the form of the projection
and correction matrices was derived within the context
of DCGS-2 (discussed in Section 3.4), however, the
matrices remain the same and are given by

P = I −Q0:mi−2T0:mi−2,0:mi−2Q
T
:,0:mi−2,

T0:mi−2,0:mi−2 = I − L0:mi−2,0:mi−2 − LT0:mi−2,0:mi−2.

Here, L contains the same information as in the ICWY-
MGS case, namely each row of L is generated by
the reorthogonalization of the vectors within Q before
updating the factorization with an additional vector.

Algorithm 5 details the process of updating the AA
QR factorization with an additional vector without ex-
plicitly forming the correction matrix. Reorthogonal-
ization happens explicitly on Lines 3 and 4 before being
added back into the matrix R on Line 5.

Algorithm 5 QRAdd CGS2

Input: Q, R, ∆fi−1 and mi

Output: Q, R

1: s← QT:,0:mi−2 ∗∆fi−1 . Sync

2: y ← ∆fi−1 −Q:,0:mi−2 ∗ s
3: z ← QT:,0:mi−2 ∗ y . Sync

4: ∆fi−1 ← y −Q:,0:mi−2 ∗ z
5: R0:mi−2,mi−1 ← s+ z

6: Rmi−1,mi−1 ← ‖∆fi−1‖2 . Sync

7: Q:,mi−1 ← ∆fi−1/Rmi−1,mi−1

Overall, this process requires three reductions to be
performed per iteration—two for the orthogonalization
and reorthogonalization of ∆fi−1 against all the vectors
in Q and one for the final normalization of ∆fi−1. The
amount of computation per iteration has increased to
approximately 2min or O(min). While the amount of
computation is still on the same order as MGS, the
workload has approximately doubled, and, fortunately,
there are no additional storage requirements.

3.4 DCGS-2 DCGS-2, or CGS with delayed re-
orthogonalization, is based on the delayed CGS-2 al-

gorithm introduced by Hernandez et al. in [13]. As the
name suggests, the reorthogonalization of the vectors
in CGS-2 is delayed to the subsequent iteration. In his
original derivation, Hernandez notes that this process
is tantamount to updating the QR factorization with
a CGS vector, and a deteriorated loss of orthogonality
(between O(ε)–O(ε)κ2(A), that of CGS-2 and CGS) is
often observed.

A stable variant of DCGS-2 was derived by
Świryzdowicz et al. [23] and Bielich et al. [4] by exploit-
ing the form of the correction matrix T and introduc-
ing a normalization lag and delayed reorthogonalization.
The symmetric correction matrix T0:mi−2,0:mi−2 is the
same as in the context of CGS-2, namely

T0:mi−2,0:mi−2 = I − L0:mi−2,0:mi−2 − LT0:mi−2,0:mi−2.

When the matrix T0:mi−2,0:mi−2 is split into the pieces
I − L0:mi−2,0:mi−2 and LT0:mi−2,0:mi−2, then applied
across two iterations of the DCGS-2 algorithm coupled
with lagging the normalization of the added vector, the
resulting loss of orthogonality is O(ε) in practice. Per-
forming DCGS-2 in this way decreases the number of
reductions to one per iteration because the reorthogo-
nalization is performed “on-the-fly” and essentially op-
erates a single iteration behind. The authors note in
their paper that the final iteration of GMRES requires
an additional synchronization due to the required final
normalization.

Algorithm 6 details our QRAdd DCGS2 implementa-
tion in which there are two synchronizations per itera-
tion. Because AA requires using the QR-factorization
to solve the LSP at the end of every iteration, it is not
possible to lag the normalization of the vector ∆fi−1.

Algorithm 6 QRAdd DCGS2

Input: Q, R, ∆fi−1 and mi

Output: Q, R

1: R0:mi−2,mi−1 ← QT:,0:mi−2 ∗∆fi−1 . Delayed Sync

2: if mi > 3 then

3: s← QT:,0:mi−3Q:,mi−2 . Sync

4: Q:,mi−2 ← Q:,mi−2 −Q:,mi−3 ∗ s
5: R0:mi−3,mi−2 ← R0:mi−3,mi−2 + s

6: end if

7: ∆fi−1 ← ∆fi−1 −Q:,0:mi−2 ∗R0:mi−2,mi−1

8: Rmi−1,mi−1 ← ‖∆fi−1‖2 . Sync

9: Q:,mi−1 ← ∆fi−1/Rmi−1,mi−1

The global reduction for the reorthogonalization of
the vectors can be still be performed at the same
time as the orthogonalization of ∆fi−1 against Q.
The synchronization on Line 1 is lagged to coincide
with Line 3. The amount of computation for DCGS-
2 increases over that of CGS-2 except on the first
iteration where it performs the same number of flops as



MGS. Lagging the reorthogonalization and introducing
the operation QT:,0:mi−3Q:,mi−2, makes this method
O(min

2), the same as ICWY-MGS.

4 Performance Study

In this section we detail the GPU and CPU performance
of the QRAdd variants from Section 3. We differentiate
between two performance costs: the time required to fill
the AA iteration space, defined as “Start-Up Iterations”
and the time required to add an additional vector to the
space once it is filled, termed “Recycle Iteration”. In
the case of CPU performance, a parallel strong-scaling
study is performed. With GPUs, we perform a weak-
scaling study, because a common goal is to saturate the
devices, and thus avoid under-utilization.

Matrices and vectors containing n rows are par-
titioned row-wise across p processes when performing
strong-scaling studies on CPUs. That is, each process
(or CPU core) contains n/p contiguous rows of a given
matrix or vector. For GPU performance studies, we
provide the local vector size per GPU participating in
the computation. All tests are performed on the LLNL
Lassen supercomputer [12], which has two IBM Power-9
CPUs per node each with 20 available cores, and each
CPU is connected to two Nvidia V100 GPUs. For GPU
performance tests each GPU is paired with a single MPI
rank as the host process. Each test is performed 20
times and for 10 iterations (for a total of 200 timings);
for each individual test the maximum time required by
any single process or GPU is recorded, and the mini-
mum time across all tests is presented.

The results presented are based on the AA imple-
mentation within SUNDIALS. Parallel CPU tests are
implemented with a so-called node-local vector abstrac-
tion, called the Parallel N Vector. Similarly, the GPU
tests are implemented with the MPIPlusX N Vector
where the CUDA N Vector is used as the local vec-
tor for each MPI rank [3]. Notably, while we use the
CUDA N Vector as the local vector portion, this can be
switched with any N Vector implementation in SUNDI-
ALS. Due to this abstraction, communication between
GPUs is still performed by staging data through the
host process and not via CUDA-aware technologies.

The low synchronization methods added to SUN-
DIALS leverage the fused dot product operation to per-
form matrix-vector products with QT . This operation
enables computing the dot product of a single vector
with multiple vectors (the columns of Q) as a single op-
eration requiring only one MPI call. For ICWY and
DCGS-2 a new N Vector operation was introduced in
SUNDIALS enabling delayed synchronization by sepa-
rating the local reduction computation and final global
reduction into separate operations. Both of these fused

operations perform a one-time copy of the independent
vector data pointers into a device buffer accessed by the
fused operations. In addition to combining multiple re-
ductions into a single call, these operations reduce the
number of kernel launches in the GPU case. We discuss
further in Section 4.1.

4.1 Start-Up Iterations We first consider the start-
up iteration times, displayed in Figures 1 and 2. On the
CPU we use a global vector of size 1 048 576, and for
the GPU a local vector size of 1 500 000. The number
of iterations performed is equivalent to the number of
vectors, m, in the AA iteration space.

The top rows of Figure 1 (CPU) and Figure 2
(GPU) display the time required to fill the AA itera-
tion space. As part of this operation, QRAdd MGS re-

quires
∑m
k=1 k = m2+m

2 total synchronizations, while
QRAdd ICWY, QRAdd CGS2, and QRAdd DCGS require 2m−
1, 3m− 2, and 2m− 1, respectively.

Predicting performance based solely on the number
of dot products performed, we expect that QRAdd ICWY

and QRAdd DCGS2 will become faster than QRAdd MGS af-
ter m = 3 and QRAdd CGS2 will outperform QRAdd MGS

after m = 6, for processor counts where the synchro-
nization imposed by dot products is the dominate cost.
This is consistent with the CPU performance seen in
Figure 1. The benefits of applying low synchronization
QRAdd algorithms is not observed until the processor
count reaches 1600 or higher when the global reduction
costs lead to larger bottlenecks. As m increases, the
disparity between the time required for QRAdd MGS and
the low synchronization variants greatly increases.

Our observed GPU performance depends on the
number of kernel calls for each QRAdd subroutine in ad-
dition to the number of global reductions. Compared
to QRAdd MGS, QRAdd ICWY performs fewer CUDA ker-
nels each iteration for m > 3, while QRAdd CGS2 and
QRAdd DCGS2 perform four additional CUDA kernel calls
for m > 1. Also, all three low synchronization vari-
ants perform sequential on-CPU updates to R, unlike
QRAdd MGS. Finally, in addition to the kernel launches
and sequential updates, the low synchronization rou-
tines increase the amount of data being moved between
the host and the GPU. Specifically, the fused dot prod-
ucts employed by these routines require that at most
mi − 1 values be copied to and from the GPU multiple
times per iteration while QRAdd MGS copies only a single
value per individual dot product.

All three low synchronization variants incur the
cost of two kernel launches that require data transfers
to and from the host process. However, in the case
of QRAdd ICWY, the lower computational requirements
result in fewer overall CUDA kernel calls than for
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Figure 1: The cumulative time for the start-up iterations (top) and single recycle iteration (bottom) of the four

different QRAdd kernels within AA for a vector of size 1 048 576 on a varying number of Lassen CPU cores.

QRAdd CGS2 and QRAdd DCGS2. Specifically, Line 2 in
Algorithm 5 and Line 4 in Algorithm 6 correspond
to additional vector updates that are not required
by QRAdd ICWY; hence their performance times remain
higher than QRAdd ICWY independent of GPU count
or m. There are minimal performance gains when
using QRAdd CGS2 or QRAdd DCGS2 for filling the AA
iteration space, as QRAdd DCGS2 is only slightly faster
than QRAdd MGS when more than 8 GPUs are used and
only for m = 15 and larger.

4.2 Recycle Iterations We next consider the cost
of the QRAdd kernel once the AA iteration space is
filled, namely the time required to orthogonalize a single
vector against m−1 vectors. Assuming a large iteration
count is required for convergence, this cost reflects the
expected run-time of the QRAdd kernel for the majority
of a given solve. We label these times as the “Recycle
Iteration” time in Figures 1 and 2. The CPU and
GPU timings presented are for the same global and local
vector size as presented in Section 4.1, and the results
are for a single iteration. Note that this time does
not include the additional synchronization introduced
by ICWY into QRDelete, first mentioned in Section 3.2
and discussed further in Section 5.

Once the AA iteration space is filled, the per itera-
tion cost is greatly decreased by using one of the low syn-
chronization orthogonalization algorithms when operat-
ing on CPUs (see the bottom row of Figure 1). While
the “Startup Iterations” did not result in performance
gains on CPUs until after 1600 processes, for m > 5, we
observe performance gains with QRAdd ICWY with pro-
cess counts as low as 784. QRAdd MGS is still faster at
smaller scales for all values of m due to the reduced
synchronization costs of performing an MPIAll Reduce

on a small, closed-set number of processes. The perfor-
mance gains of the low synchronization algorithms at
larger scales ranges from 2–8× speedup for m = 10, 15,
and 20 at 8100 processes. With this drastic speedup
for each iteration, we expect much larger performance
gains for test problems that run to convergence.

Unlike the CPU performance for AA, QRAdd ICWY

demonstrates performance gains independent of the
number of GPUs participating in the computation or
the size of the AA iteration space, m. This is seen in the
bottom row of Figure 2, which displays the performance
for a single “Recycle Iteration” on multiple GPUs.
While QRAdd CGS2 and QRAdd DCGS2 do not see the
same performance improvements as QRAdd ICWY, they
do begin exhibiting faster performance than QRAdd MGS
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Figure 2: The cumulative time for the start-up iterations (top) and single recycle iteration (bottom) of the four

different QRAdd kernels within AA for a local vector of size 1 500 000 on a varying number of Lassen GPUs.

beginning at 8 GPUs and for m = 10 and larger, though
gains are modest.

5 Numerical Experiments

In this section, we highlight the strong-scaling parallel
efficiency of standard AA compared with AA with low
synchronization orthogonalization for test problems run
to convergence. The example problems provided are not
exhaustive, but the selected tests do stress the perfor-
mance of low synchronization AA. In addition, applica-
tion specific tests are used to demonstrate the benefits of
low synchronization AA for both distributed CPU and
GPU computing environments. All experiments are per-
formed on the LLNL Lassen supercomputer [12], with
the same setup as described in Section 4. To account
for machine variability, each run is executed 10 times
and we report the minimum.

5.1 Anisotropic 2D Heat Equation + Nonlinear
Term This test problem highlights the performance
of all AA variants for various m and iterations to
convergence. We consider a steady-state 2D heat

equation with an additional nonlinear term c(u),

uxx + uyy + c(u) = f in D = [0, 1]× [0, 1]

u = 0 on ∂D.

The chosen analytical solution is

uexact = u(x, y) = sin2(πx) sin2(πy),

hence, the static term f is defined as follows

f(x, y) = 2π2(cos2(πx)− sin2(πx)) sin2(πy)

+ 2π2(cos2(πy)− sin2(πy)) sin2(πx)

+ c(uexact).

The spatial derivatives are computed using second-order
centered differences, with the data distributed over
1024 × 1024 points on a uniform spatial grid, resulting
in a system of equations of size 1 048 576 × 1 048 576.
The Laplacian term is implemented as a matrix-vector
product giving the the algebraic system as

Au + c(u) = b.

where u denotes the discrete vector of unknowns. Solv-
ing for u results in the following FP formulation

u = G(u) = A−1(b− c(u)).



We use the SUNDIALS PCG solver to solve the linear
system with the hypre PFMG preconditioner perform-
ing two relaxation sweeps per iteration. Both the FP
nonlinear solver and the PCG linear solver set a stop-
ping criteria with a tolerance of 10−10. A zero vector is
used as the starting guess in all cases.

5.1.1 Nonlinear Term 1 As a first example, con-
sider the nonlinear reaction term

c(u) = u+ ueu + ue−u + (u− eu)2.

In this case, AA exhibits rapid convergence when m =
5, requiring 11 iterations to converge for all variants.
Figure 3 displays the overall time to convergence, split
into G(u) evaluation time and time spent in AA. In
general, the G(u) performance is volatile, most likely
due to the sparse matrix operations required for the
linear solve; thus we focus on the AA performance in
the bottom of Figure 3.
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Figure 3: Time to convergence for Heat 2D + Nonlinear

Term 1 (11 iterations for all cases), using FP + AA with

m = 5, including the function evaluation, G(u), (top) and

only time in AA (bottom).

The time spent in AA meets expectations, based
on the results in Section 4. For such a small m,
we observe minimal performance improvements over
AA with MGS, particularly at small process counts.
However, the observed improvements begin around 1600
processes.

5.1.2 Nonlinear Term 2 As a second example,
consider

c(u) = 100 · (u− u2).

With m = 10, AA requires more time to converge than
for the c(u) in Section 5.1.1, better highlighting poten-
tial performance benefits of the low synchronization or-
thogonalization algorithms.

Figure 4 displays the overall timing results, with the
number of iterations required to converge listed beneath
each bar. In most cases, the number of iterations is be-
tween 27 and 42, depending on the orthogonalization
method and processor count. The three exceptions are
for AA with DCGS-2, which requires more iterations to
converge, particularly for 1600–6400 processes. This is
expected since our QRAdd DCGS2 cannot lag the normal-
ization and exhibits the same instability as Hernandez’s
original algorithm.
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Figure 4: Time to convergence for Heat 2D + Nonlinear

Term 2, using FP + AA with m = 10, including the

function evaluation, G(u), and the number of iterations to

convergence (top) and only the time spent in AA (bottom).

In most cases, AA with DCGS-2 results in degraded
performance in comparison to the other variants due to
the high number of iterations required to converge. AA
with CGS-2 performs best, starting at 1600 processes
and continues to be the fastest through 8100 processes.
Although QRAdd ICWY only requires two global synchro-
nizations per iteration, there is an additional synchro-
nization in QRDelete to update the matrix T , resulting
in an implementation that is more comparable to AA
with CGS-2 at higher process counts.



5.2 2D Bratu Problem We next consider an ex-
ample from [24] (and originating from [8]). The Bratu
problem is a nonlinear PDE boundary value problem
defined as:

uxx + uyy + λeu = 0 in D = [0, 1]× [0, 1]

u = 0 on ∂D.

We again solve the problem with centered differencing,
resulting in a system of the form

Au + λeu = 0.

The associated FP function is then

G(u) = A−1 (−λeu) = u.

We use a uniform grid of 1024 × 1024 points, which
results in a system of equations of size 1 048 576 ×
1 048 576. We select λ = 6.7 for testing, as it is close
to the theoretical critical point, as discussed in [18],
and is a difficult problem to solve. The SUNDIALS
PCG solver is applied to perform the linear system solve
with the hypre PFMG preconditioner performing two
relaxation sweeps. Both the nonlinear and linear solver
employed a tolerance of 10−10. A zero vector is set as
the starting guess.

For this example problem, m = 30, and the number
of iterations required to converge for all variants of
AA is less than 30; hence the timing results reflect
the performance benefits of the QRAdd subroutines for
the startup iterations. The strong-scaling timing and
convergence results are presented in Figure 5. For this
test case, we observe improvements with ICWY from
the very beginning with 400 processes (although only
slightly in this case). AA with ICWY continues to
outperform up to 8100 processes. This is consistent
with the results in Section 4.1 in which QRAdd ICWY

performed best for m = 20 as it only requires two dot
products per iteration, one fewer than QRAdd CGS2 and
has approximately the same amount of computation as
QRAdd DCGS2.

5.3 Expectation-Maximization Algorithm for
Mixture Densities For this example, we consider a
variation of the expectation-maximization test problem
presented in [24]. Consider a mixture density of three
univariate normal densities with a mixture density given
by p(x) =

∑3
i=1 αipi(x|µi, σi), with

pi(x|µi, σi) =
1√

2πσi
e−(x−µi)

2/(2σ2
i ), 1 ≤ i ≤ 3

Mixture proportions {αi}3i=1 are non-negative and sum
to one. The mixture proportions and variances are as-
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Figure 5: Time to convergence for 2D Bratu, using FP +

AA with m = 30, including the function evaluation, G(u),

and the number of iterations to convergence (top) and only
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sumed to be known and the means {µi}3i=1 are esti-
mated from a set of unlabeled samples {xk}Nk=1, or sam-
ples of unknown origin. Determining the unknown mean
distribution parameters is given by the FP function

G(µi) = µi =

∑N
k=1 xk

αipi(xk|µi,σi)
p(xk)∑N

k=1
αipi(xk|µi,σi)

p(xk)

, 1 ≤ i ≤ 3

with current mean estimations {µi}3i=1 being applied
alongside the known mixture proportions and vari-
ances to determine the subsequent estimations until
convergence. We keep the same mixture proportions
and variances as the original test case, (α1, α2, α3) =
(0.3, 0.3, 0.4) and (σ1, σ2, σ3) = (1, 1, 1). We generated
100 000 samples for the mean distribution set (µ1 =
0, µ2 = 0.5, µ3 = 1.0), corresponding to a poorly sep-
arated mixture, and used the same AA parameter of
m = 3 as Walker and Ni [24].

For our test case, we estimate a single set of mean
distribution parameters redundantly for every entry in
a global vector, where the vector takes the form

u =
[
{µi}3i=1 · · · {µi}3i=1

]
.

We do this to simulate a function that requires no
communication other than that imposed by AA. The
resulting FP function to be solved is then given by

G(u) =
[
{G(µi)}3i=1 · · · {G(µi)}3i=1

]
.



Because m is small for this test, we expect to see
only modest improvements in performance of the low
synchronization routines over MGS. For m = 3, ICWY
and DCGS-2 reduce the number of synchronizations
per iteration by one over MGS, with ICWY gaining an
additional synchronization after the space is filled.

The test is performed as a weak-scaling study with
each GPU operating on a local vector size of 1 500 000
values. Tests were run with a tolerance of 10−8, and
each AA version requires 21 iterations to converge, inde-
pendent of the orthogonalization subroutine used. The
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results of these tests are presented in Figure 6 and are
consistent with the results of the weak-scaling study
since no communication is required for G(u). The func-
tion evaluation performance remains the same, indepen-
dent of GPU count or AA variant (differing only slightly
for runs on a single node with 4 GPUs). In addition,
the time spent in G(u) is lower for this example since
G(u) performance depends on the number of samples in
the mixture, while the performance of AA scales with
the number of values in the global vector.

Results are consistent with observations in the
GPU weak-scaling study in Section 4 where all of
the QRAdd subroutines performed similar for m = 5.
Additionally, because m is small, we do not incur a
large overhead for data movement and multiple kernel

launches in comparison to those observed with larger
values of m, as presented in Section 4.2. Because the
majority of the computation has moved to the GPU, we
observe the expected cross-over point for ICWY with its
performance being slightly faster than that of MGS for
GPU counts of 16 and larger. There are no consistent
improvements observed for CGS-2 or DCGS-2.

6 Conclusions

Anderson Acceleration (AA) is an efficient method
for accelerating the convergence of fixed point solvers,
but faces performance challenges in parallel distributed
computing environments mainly due to the number of
global synchronizations per iteration which is depen-
dent upon the size of the AA iteration space. In this
paper, we introduced low synchronization orthogonal-
ization subroutines into AA which effectively reduce the
number of global synchronizations to a constant number
per iteration independent of the size of the AA iteration
space. We presented a performance study that demon-
strated the improved strong-scalability of AA with these
low synchronization QRAdd subroutines when performed
in a CPU-only parallel environment, as well as demon-
strated performance and implementation concerns for
these subroutines when operating in a multi-GPU com-
puting environment. Furthermore, our numerical re-
sults display a realistic picture of the expected perfor-
mance of AA in practice that matches the predictions
of our performance analysis in Section 4 and suggests
the use of ICWY for large values of m when operating
in a CPU-only parallel environment and as the default
method for distributed GPU computing. Overall, this
paper provides a comprehensive study of low synchro-
nization orthogonalization routines within AA and their
parallel performance benefits.

The software used to generate the results in this
paper will be available in a future release of SUNDIALS.
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