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Statement of need
PyAMG is a Python package of algebraic multigrid (AMG) solvers and supporting tools for
approximating the solution to large, sparse linear systems of algebraic equations,

Ax = b,

where A is an n × n sparse matrix. Sparse linear systems arise in a range of problems in
science, from fluid flows to solid mechanics to data analysis. While the direct solvers available
in SciPy’s sparse linear algebra package (scipy.sparse.linalg) are highly efficient, in many
cases iterative methods are preferred due to overall complexity. However, the iterative methods
in SciPy, such as CG and GMRES, often require an efficient preconditioner in order to achieve
a lower complexity. Preconditioning is a powerful tool whereby the conditioning of the linear
system and convergence rate of the iterative method are both dramatically improved. PyAMG

constructs multigrid solvers for use as a preconditioner in this setting. A summary of multigrid
and algebraic multigrid solvers can be found in Olson (2015a), in Olson (2015b), and in Falgout
(2006); a detailed description can be found in Briggs et al. (2000) and Trottenberg et al.
(2001).

Summary
The overarching goals of PyAMG include both readability and performance. This includes
readable implementations of popular variations of AMG (see the Methods section), the
ability to reproduce results in the literature, and a user-friendly interface to AMG allowing
straightforward access to the variety of AMG parameters in the method(s). Additionally,
pure Python implementations are not efficient for many sparse matrix operations not already
available in scipy.sparse — e.g., the sparse matrix graph coarsening algorithms needed
by AMG. For such cases in PyAMG, the compute (or memory) intensive kernels are typically
expressed in C++ and wrapped through PyBind11, while the method interface and error
handling is implemented directly in Python (more in the next section).

In the end, the goal of PyAMG is to provide quick access, rapid prototyping of new AMG solvers,
and performant execution of AMG methods. The extensive PyAMG Examples page highlights
many of the package’s advanced AMG capabilities, e.g., for Hermitian, complex, nonsymmetric,
and other challenging system types. It is important to note that many other AMG packages
exist, mainly with a focus on parallelism and performance, rather than quick access and rapid
prototyping. This includes BoomerAMG in hypre (Henson & Yang, 2002; hypre, 2022), MueLu
in Trilinos (The MueLu Project Team, 2020; The Trilinos Project Team, 2020), and GAMG
within PETSc (Balay et al., 2021), along with other packages focused on accelerators (Bell et
al., 2012), such as AmgX (Naumov et al., 2015), CUSP (Dalton et al., 2014), and AMGCL
(Demidov, 2019).
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Design
The central data model in PyAMG is that of a MultiLevel object, which is constructed in the
setup phase of AMG. The multigrid hierarchy is expressed in this object (details below) along
with information for the solve phase, which can be executed on various input data, b, to solve
Ax = b.

The MultiLevel object consists of a list of multigrid Level objects and diagnostic information.
For example, a MultiLevel object named ml contains the list ml.levels. Then, the data on
level i (with the finest level denoted i=0) accessible in ml.levels[i] includes the following
information:

• A: the sparse matrix operator, in CSR or BSR format, on level i;
• P: a sparse matrix interpolation operator to transfer grid vectors from level i+1 to i;
• R: a sparse matrix restriction operator to transfer grid vectors from level i to i+1; and
• presmoother, postsmoother: functions that implement pre/post-relaxation in the solve

phase, such as weighted Jacobi or Gauss-Seidel.

Other data may be retained for additional diagnostics, such as grid splitting information,
aggregation information, etc., and would be included in each level.

Specific multigrid methods (next section) in PyAMG and their parameters are generally described
and constructed in Python, while key performance components of both the setup and solve
phase are written in C++. Heavy looping that cannot be accomplished with vectorized or
efficient calls to NumPy or sparse matrix operations that are not readily expressed as SciPy
sparse (CSR or CSC) operations are contained in short, templated C++ functions. The
templates are used to avoid type recasting the variety of input arrays. The direct wrapping to
Python is handled through another layer with PyBind11. Roughly 26% of PyAMG is in C++,
with the rest in Python.

Methods
PyAMG implements several base AMG methods, each with a range of options. The base forms
for a solver include

• ruge_stuben_solver(): the classical form of C/F-type AMG (Ruge & Stüben, 1987);
• smoothed_aggregation_solver(): smoothed aggregation based AMG as introduced in

(Vaněk et al., 1996);
• adaptive_sa_solver(): a so-called adaptive form of smoothed aggregation from (Brez-

ina et al., 2005); and
• rootnode_solver(): the root-node AMG method from (Manteuffel et al., 2017),

applicable also to some nonsymmetric systems.

In each of these, the base algorithm is available but defaults may be modified for robustness.
Options such as the default pre/postsmoother or smoothing the input candidate vectors (in
the case of smoothed aggregation AMG), can be modified to tune the solver. In addition,
several cycles are available, including the standard V and W cycles, for the solve phase. The
resulting method can also be used as a preconditioner within the Krylov methods available in
PyAMG or with SciPy’s Krylov methods. The methods in PyAMG (generally) support complex
data types and nonsymmetric matrices.

Example
As an example, consider a five-point finite difference approximation to a Poisson problem,
−∆u = f , given in matrix form as Ax = b. The AMG setup phase is called with
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1 import pyamg

2 A = pyamg.gallery.poisson((10000,10000), format='csr')

3 ml = pyamg.smoothed_aggregation_solver(A, max_coarse=10)

For this case, with 100M unknowns, the following multilevel hierarchy is generated for smoothed
aggregation (using print(ml)):

MultilevelSolver

Number of Levels: 9

Operator Complexity: 1.338

Grid Complexity: 1.188

Coarse Solver: 'pinv'

level unknowns nonzeros

0 100000000 499960000 [74.76%]

1 16670000 149993328 [22.43%]

2 1852454 16670676 [2.49%]

3 205859 1852805 [0.28%]

4 22924 208516 [0.03%]

5 2539 23563 [0.00%]

6 289 2789 [0.00%]

7 34 332 [0.00%]

8 4 16 [0.00%]

In this case, the hierarchy consists of nine levels, with SciPy’s pseudoinverse (pinv) being used
on the coarsest level. Also displayed is the ratio of unknowns (nonzeros) on all levels compared
to the fine level, also known as the grid (operator) complexity.

The solve phase, using standard V-cycles, is executed with the object’s solve:

1 import numpy as np

2 x0 = np.random.rand(A.shape[0])

3 b = np.zeros(A.shape[0])

4 res = []

5 x = ml.solve(b, x0, tol=1e-8, residuals=res)

This leads to the residual history shown in Figure 1.
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Figure 1: Algebraic multigrid convergence (relative residual).
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