
Modeling Data Movement Performance on
Heterogeneous Architectures

Amanda Bienz∗, Luke N. Olson†, William D. Gropp† and Shelby Lockhart†
∗ Department of Computer Science

University of New Mexico
Albuquerque, USA

bienz@unm.edu
† Department of Computer Science

University of Illinois at Urbana-Champaign
Champaign, USA

{lukeo,wgropp,sll2}@illinois.edu

Abstract—The cost of data movement on parallel systems
varies greatly with machine architecture, job partition, and
nearby jobs. Performance models that accurately capture the
cost of data movement provide a tool for analysis, allowing for
communication bottlenecks to be pinpointed. Modern heteroge-
neous architectures yield increased variance in data movement as
there are a number of viable paths for inter-GPU communication.
In this paper, we present performance models for the various
paths of inter-node communication on modern heterogeneous
architectures, including the trade-off between GPUDirect com-
munication and copying to CPUs. Furthermore, we present a
novel optimization for inter-node communication based on these
models, utilizing all available CPU cores per node. Finally, we
show associated performance improvements for MPI collective
operations.

Index Terms—performance modeling, GPU, data movement,
CUDA-aware, GPUDirect, MPI

I. INTRODUCTION

Parallel architectures are continually advancing in compute
power and energy efficiency, allowing for increasingly large
high performance computing (HPC) applications. However,
the performance of parallel applications often lags behind
the hardware capabilities. There is a large effort to improve
the performance and scalability of parallel applications, from
numerical algorithms to machine learning methods, on state-
of-the-art architectures.

The parallel performance of applications varies greatly
with machine architecture, job partition, and compiler. This
performance variance is largely due to data movement, from
memory access to inter-process communication. The cost
of data movement is often unpredictable, varying with the
memory layer and the relative locations of sending and re-
ceiving processes. Moreover, data movement bottlenecks are
amplified on heterogeneous architectures, with high flop rates
on GPUs in comparison to the limited speeds of inter-GPU
data movement. Furthermore, data movement variation is also
magnified on heterogeneous architectures as the number of
viable communication paths between two GPUs is increased.

Performance models, such as the max-rate model [1], can be
used to analyze the cost of communication, allowing users to

pinpoint application bottlenecks. Performance model measure-
ments, including message latency and per-byte transport rates,
can be used to analyze all communication for a single compiler
on one computer. Therefore, measurements at small scales can
provide an accurate analysis of costs and bottlenecks at larger
scales. In addition, these models can expose performance bugs
in applications as well as in lower-level libraries, such as MPI
and CUDA.

In this paper, we present performance models for data
movement on both Summit [2] and Lassen [3]. We fit these
models to both Spectrum MPI and MVAPICH2-GDR im-
plementations. We analyze the various paths of inter-GPU
communication, and present a novel strategy for commu-
nicating large amounts of data between GPUs on different
nodes. Finally, we present MPI collective case studies, which
show that the performance models accurately predict optimal
communication strategies.

The remainder of the paper is outlined as follows. Section II
discusses background information, describing heterogeneous
architectures and standard performance models. Section III
profiles the various paths of inter-GPU data movement on
Summit and Lassen and presents performance modeling results
for these various paths. Data movement optimizations that
utilize all available CPU cores per node are presented in
Section IV while Section V analyzes the benefits of these op-
timizations when multiple messages are sent from each GPU.
Case studies for the MPI_Alltoall and MPI_Alltoallv
are presented in Section VI. Finally, Section VII presents
concluding remarks and future directions.

II. BACKGROUND

While the postal model [4] accurately captures the cost
of communicating a single message between two processes,
the max-rate model [1] penalizes symmetric multiprocessing
nodes with injection bandwidth limits.

The LogP [5] and LogGP [6] models improve upon the
postal model with measures for the idle time that often
dominates methods with synchronization, such as collective
operations. The LogP model accounts for latency bounds

1

ar
X

iv
:2

01
0.

10
37

8v
3 

 [
cs

.D
C

] 
 1

6 
Ju

l 2
02

1



associated with asynchrony of processes, while the LogGP
model improves upon the LogP models for large messages by
adding a per-byte cost.

Locality-awareness can further improve models by distin-
guishing between on-socket, on-node/off-socket, and inter-
node messages. Moreover, models for irregular communica-
tion, where processes communicate many messages with non-
neighboring processes, require additional parameters for ac-
curately capturing queue search costs and estimating network
contention penalties [7].

Improved architecture-aware performance models, such as
the max-rate and node-aware models, have led to the devel-
opment of methods for improving communication costs. For
instance, the large performance differences between intra- and
inter-node communication motivate node-aware communica-
tion optimizations on previous generation architectures [8]–
[10].

Current large-scale supercomputers, such as Summit at Oak
Ridge National Laboratory and Lassen at Lawrence Livermore
National Laboratory, are comprised of heterogeneous nodes,
similar to Figure 1. Each node of Summit, for example,

GPU0 GPU1 GPU2 GPU3

CPU0 CPU1

Network Interface Card

Fig. 1: A schematic of a heterogeneous node.

contains 6 GPUs whereas each node on Lassen contains 4;
both computers have 40 CPU cores per node. Furthermore,
each node has two IBM Power9 processors with half of
the GPUs directly connected to each. Finally, links directly
connect GPUs on the same Power9 processor in addition to
the Network Interface Card (NIC).

The heterogeneous architecture provides many different
levels of data movement between GPUs. For instance, two
GPUs that are directly connected — e.g., GPU0 and GPU1
in Figure 1 — can pass messages directly. Furthermore, inter-
node data can be copied directly to the NIC without being first
copied to a CPU. Finally, any message can be communicated
by first copying data to a CPU core.

CUDA-aware MPI allows data to be communicated between
GPU memories with the MPI API. GPUDirect [11] allows for
data to be communicated directly between GPUs without first
copying to the CPU. Together, these optimizations provide in-
creased performance of inter-GPU data movement by avoiding
unnecessary copies. Unified memory also affects data move-
ment performance, allowing allocated memory to be accessed

by both CPU and GPU cores. These various optimizations
increase the variability of data movement performance on
heterogeneous architectures.

Benchmarking and performance modeling are critical in
pinpointing performance bottlenecks in methods and applica-
tions. A large variety of benchmarks are available to capture
the performance of MPI applications. However, few capture
inter-GPU data movement performance. Recently, a variety of
benchmarks have been extended to capture the performance
of heterogeneous architectures [12]–[14].

III. BENCHMARKING GPU TO GPU COMMUNICATION

Data movement bottlenecks reduce the performance and
scalability of parallel applications. Heterogeneous architec-
tures typically have data split across a large number of GPUs;
consequently, rather than relying on inter-CPU communi-
cation, data must be communicated between GPUs. Com-
munication bottlenecks can be determined by benchmarking
and modeling the performance of inter-GPU communication.
There are two main paths of inter-GPU communication on
modern heterogeneous architectures:

• CUDA-Aware GPUDirect Communication: data is sent
directly between the GPU and the NIC without being
copied to the CPU, and

• 3-Step Communication: data is first copied to the CPU,
then communicated between two CPUs, and finally re-
ceived data is copied to the destination GPU.

Throughout the remainder of this section, we will bench-
mark and model the performance of communicating a single
message between two GPUs, through each viable path of com-
munication using Spectrum MPI on Summit and MVAPICH2-
GDR on Lassen. The postal model [4] accurately captures
the cost of communicating a single message between two
processes and is formulated as

T = α+ β · s (1)

where α is the message start-up cost, or latency, β is the
per-byte transport cost, and s is the number of bytes to be
communicated.

Modern heterogeneous architectures support CUDA-aware
MPI and GPUDirect, allowing inter-node data to be trans-
ported directly to the NIC without first being copied to the
CPU. This path of data movement can be measured and
modeled with simple postal models corresponding to CUDA-
aware communication. Each message protocol is modeled,
including short, in which messages fit in the envelope and are
communicated directly; eager, which assumes sufficient buffer
space and communicates immediately; and finally rendezvous,
which waits for the receiving process to allocate required
buffer space before sending data. The corresponding values
for α and β are measured for each applicable protocol.

Figure 2 highlights the cost of transporting data between
a set of CPUs (solid lines) or GPUs with GPUDirect (dotted
lines). The communication costs are split into on-socket, for
which communicating CPU cores lie on the same NUMA
node and GPUs are directly connected via a link; on-node, for

2



100 101 102 103 104 105

Message Size (Bytes)

10−6

10−5

10−4
M

ea
su

re
d

T
im

e
(S

ec
on

d
s)

On-Socket On-Node Network

(a) Summit, Spectrum MPI

100 101 102 103 104 105

Message Size (Bytes)

10−6

10−5

10−4

M
ea

su
re

d
T

im
e

(S
ec

on
d

s)

On-Socket On-Node Network

(b) Lassen, MVAPICH2-GDR

Fig. 2: The cost of communicating data directly between two CPUs (solid lines) or between two GPUs with GPUDirect (dotted
lines).

101 102 103 104 105

Message Size (Bytes)

10−5

10−4

T
im

e
(S

ec
on

d
s)

CUDA-Aware 3 Step

(a) Summit, Spectrum MPI

101 102 103 104 105

Message Size (Bytes)

10−4

10−5
T

im
e

(S
ec

on
d

s)

CUDA-Aware 3 Step

(b) Lassen, MVAPICH2-GDR

Fig. 3: The modeled cost of inter-GPU communication for various message sizes. Both viable paths of data movement are
modeled, indicating that GPUDirect communication outperforms the 3-step copy to CPU method when communicating a single
message between GPUs.

which data must cross NUMA node regions and GPUs are not
connected by a direct link; and network messages, which are
transported directly to the NIC before being communicated
across the interconnect. The parameters associated with the
postal models for both inter-CPU and inter-GPU communica-
tion are displayed in Table I.

A 3-step communication strategy requires copying all data
from a GPU to a corresponding CPU, communicating be-
tween CPU cores, and finally copying data to the destina-
tion GPU. Corresponding models require profiling not only
the cost of communicating between sets of CPUs, but also
copying data between the CPUs and GPUs. Table II dis-
plays the postal model parameters associated with performing
cudaMemcpyAsync between a GPU and CPU, both for
transferring from the host to the device as well as from
the device to the host. The cost of both on- and off-socket
data transfers are presented, with on-socket data transfers
copying between a CPU and GPU that are directly connected,
while off-socket data transfers require traversing non-uniform

memory access (NUMA) regions.
The model parameters presented in Tables I and II can be

used to analyze the cost of the various paths of inter-node data
movement. Figure 3 displays the modeled costs of communi-
cating inter-node messages of various sizes between two GPUs
through either GPUDirect communication or 3-step commu-
nication, which requires two on-socket cudaMemcpyAsync
operations. These models indicate that when sending a single
message between a set of GPUs, GPUDirect is more effi-
cient for all modeled sizes. The difference is most drastic
for small messages due to the large latency associated with
cudaMemcpyAsync.

IV. UTILIZING MANY CPU PROCESSES

Modern heterogeneous nodes are comprised of multiple
GPUs and also contain many CPU cores. The max-rate model

T = α+
ppn · s

max (RN , Rp · ppn)
β · s (2)

3



on-socket on-node off-node

Su
m

m
it

(S
pe

ct
ru

m
M

PI
)

CPU

Short α* 3.51e-07 9.08e-07 1.38e-06
β† 2.62e-10 1.46e-09 3.82e-10

Eager α* 4.73e-07 1.17e-06 1.85e-06
β† 6.95e-11 2.16e-10 2.93e-10

Rend α* 2.46e-06 5.81e-06 6.56e-06
β† 3.31e-11 1.46e-10 8.51e-11

GPU α* 1.68e-05 1.80e-05 4.96e-06
β† 1.86e-11 2.09e-11 1.69e-10

L
as

se
n

(M
VA

PI
C

H
2-

G
D

R
)

CPU
Eager α* 3.99e-07 7.07e-07 1.53e-06

β† 5.59e-11 2.23e-10 4.38e-10

Rend α* 3.62e-06 1.07e-05 6.90e-06
β† 3.71e-11 1.42e-10 4.63e-11

GPU
Eager α* 7.09e-07 1.04e-06 2.11e-06

β† 5.79e-11 2.15e-10 4.91e-10

Rend α* 6.39e-06 2.61e-05 6.87e-06
β† 3.38e-11 4.59e-13 4.73e-11

* measured in seconds †measured in seconds per byte

TABLE I: Measured parameters for inter-CPU and inter-
GPU communication. Note that messaging protocol de-
lineation for inter-GPU communication on Summit has
been excluded due to an insignificant difference in per-
formance between protocols.

HostToDevice DeviceToHost

Su
m

m
it on-socket α* 1.09e-05 1.09e-05

β† 2.38e-11 2.36e-11

off-socket α* 1.26e-05 1.25e-05
β† 2.71e-11 2.72e-11

L
as

se
n on-socket α* 1.33e-05 1.35e-05

β† 1.80e-11 1.75e-11

off-socket α* 1.42e-05 1.40e-05
β† 2.84e-11 2.83e-11

* measured in seconds †measured in seconds per byte

TABLE II: Measured parameters for
cudaMemcpyAsync.

captures the cost of communication when multiple processes
are active per node. In this model, ppn is equal to the number
of communicating processes per node, Rp is the inter-process
data transport rate, and RN is the rate at which data can be
injected into the network. If Rp · ppn is less than RN , this
model reduces to the postal model from Equation 1. Table III

RN

[bytes/sec]

Summit inter-CPU 3.0e-11
inter-GPU 5.1e-11

Lassen inter-CPU 2.5e-11
inter-GPU –

TABLE III: Measured parameters for injection bandwidth
limits. Note, inter-GPU injection bandwidth limit are excluded
for Lassen, as these limits were not reached with the four
available GPUs per node.

displays the injection bandwidth rate for both inter-CPU and

inter-GPU communication.

100 101 102 103 104 105

Message Size (Bytes)

1e-6

1e-5

1e-4

M
ea

su
re

d
T

im
e

(S
ec

on
d

s)

PPN 1

PPN 5

PPN 10

PPN 20

PPN 30

PPN 40

Fig. 4: The cost of communicating data between two nodes of
Summit, splitting the data evenly across PPN CPU processes.
Note, Lassen results were excluded due to similarities.

Figure 4 displays the measured cost of communicating
various amounts of data between two nodes, splitting the data
across a portion of the available 40 CPU cores per node.
Even with injection bandwidth limits, it is most efficient to
have all processes active in inter-node communication, with
data evenly split across them. Therefore, the three-step inter-
GPU communication can be further optimized by utilizing all
available CPUs rather than copying data to a single CPU.

There are multiple methods for distributing data across all
CPU cores per node. Data can be copied to a single CPU core
with cudaMemcpyAsync, and then communicated to the
other processes through intra-node MPI communication. Alter-
natively, CUDA Multi-Process Service (MPS) allows multiple
processes to overlap memcpy operations. Furthermore, an
allocated region of device memory can be shared among
multiple MPI processes. Therefore, multiple CPU processes
can each use memcpy to move a portion of the data from
the GPU, enabling the data to be evenly distributed across all
processes without extra MPI intra-node communication.

V. OPTIMIZING MULTIPLE MESSAGES

In practice, applications often require multiple messages
to be sent from and received by each GPU. The cost of
communicating multiple messages can be modeled with the
max-rate model used for each message such as

T = α · n+
ppn · s

max (RN , Rp · ppn)
β · s (3)

where n is the number of messages communicated from
any process. As the latency term α is correlated with the
number of messages, larger message counts greatly reduce
the performance of GPUDirect communication, which has
significantly higher latency than inter-CPU communication.

While the latency of inter-CPU communication is much
smaller than that between GPUs, there is a significant latency
associated with cudaMemcpyAsync. However, this opera-
tion can be performed one time regardless of the number
of messages to be communicated. Furthermore, as the same

4



101 102 103 104 105

Message Size (Bytes)

10−5

10−4

10−3

T
im

e
(S

ec
on

d
s)

1 Msgs

5 Msgs

10 Msgs

50 Msgs

(a) Summit, Spectrum MPI

101 102 103 104 105

Message Size (Bytes)

10−5

10−4

10−3

T
im

e
(S

ec
on

d
s)

1 Msgs

5 Msgs

10 Msgs

50 Msgs

100 Msgs

(b) Lassen, MVAPICH2-GDR

Fig. 5: The modeled cost of GPUDirect (solid) and 3-Step copy to CPU (dotted) approaches when communicating between 1
and 100 messages of various sizes.

data is often communicated in multiple messages, there is also
the potential for the cudaMemcpyAsync to be significantly
smaller than the inter-CPU communication as each data value
only needs to be copied to the CPU once.

Figure 5 shows the modeled speedup associated with copy-
ing to the CPU versus GPUDirect MPI when sending various
message counts. Assuming no data is duplicated, the models
indicate that copying to the CPU is faster than GPUDi-
rect for nearly all message sizes when sending at least 10
messages on Summit with Spectrum MPI. However, when
using MVAPICH2-GDR on Lassen, around 100 messages are
required before this three-step approach pays off. There is the
potential for additional speedup at all message counts if the
same data values are sent in multiple messages, decreasing
the size of the cudaMemcpyAsync operation. Furthermore,
speedups can be amplified by evenly splitting data across all
available CPU cores.

VI. CASE STUDIES: MPI COLLECTIVES

MPI collective operations require communication of data
among all processes in an MPI communicator. On hetero-
geneous architectures, the data is typically communicated
between all GPUs. Therefore, the number of messages is
proportional to the active number of GPUs.

CUDA-aware implementations of the MPI collectives utilize
GPUDirect in both Spectrum MPI and MVAPICH2-GDR.
However, the performance models in Section V show that
when communicating a large number of messages, the three-
step copy to CPU approach should outperform the CUDA-
aware algorithm. Furthermore, the models show speedup for
large messages sizes when data is distributed across all CPU
processes.

All CPU processes are utilized during the MPI collectives
by distributing data across all available cores so that each
core holds a portion of the data to be sent to each GPU. For
example, as Summit has 6 GPUs and 40 CPU cores per node,
6 CPU cores are utilized per GPU . A GPU rank between 0
and 5 is then assigned to each CPU core. Each of the CPU

cores holds 1
6

th of the data and performs the collective on
this smaller data size among all processes with the same GPU
rank. This optimizes inter-node communication by having each
available CPU core communicate an equal portion of data.

Four different options are tested for MPI_Alltoalland
MPI_Alltoallv:
1. CUDA-Aware: data allocated in GPU memory is passed to
the collective operation, utilizing GPUDirect to avoid copying
data to the CPUs.
2. 3-Step: all data is copied to a single CPU. An inter-CPU
collective is then performed, and finally all received data is
copied from the receiving CPU to the destination GPU.
3. Extra Msg: all data is copied to a single CPU. Data is then
redistributed across all available CPU cores per GPU so that
each process holds an equal portion of the values to be sent to
each GPU. Each process then calls the collective operation on
this smaller portion of data. Received data is then sent back
to a single CPU core per GPU. Finally, a single CPU transfers
all received data to the destination GPU.
4. Dup Devptr: each CPU core per GPU transfers a portion
of the data from the GPU before calling the collective on this
portion of data. Each process then transfers the portion of
received data back to the GPU.

All communication between sets of CPUs or sets of GPUs
is performed with MPI, which data is moved between a CPU
and GPU with cudaMemcpyAsync. A single test consists of
performing a collective many times to reach timer precision
and taking the maximum time across all processes. Further-
more, each test is performed three times, and the minimum
of all timings is presented. The methods are tested using all
available GPUs on 32 nodes, using Spectrum MPI on Summit
and MVAPICH2-GDR on Lassen.

The MPI_Alltoall operation consists of distributing
equal amounts of data to every other process, yielding a
large number of messages. When distributing data across all
available CPU cores, each core sends an equal portion of the
data. However, in the tested implementation, utilizing all CPU
cores does not reduce the number of messages per process.

5



100 101 102 103 104

Message Size (Bytes)

10−4

10−3

10−2

M
ea

su
re

d
T

im
e

(S
ec

on
d

s)

Cuda-Aware

3-Step

Extra Msg

Dup Devptr

100 101 102 103 104

Message Size (Bytes)

10−4

10−3

10−2

M
ea

su
re

d
T

im
e

(S
ec

on
d

s)

Cuda-Aware

3-Step

Extra Msg

Dup Devptr

(a) Summit, Spectrum MPI, MPI_Alltoall (left) and MPI_Alltoallv (right)

100 101 102 103 104

Message Size (Bytes)

10−4

10−3

10−2

M
ea

su
re

d
T

im
e

(S
ec

on
d

s)

Cuda-Aware

3-Step

Extra Msg

Dup Devptr

100 101 102 103 104

Message Size (Bytes)

10−2

10−3

10−4
M

ea
su

re
d

T
im

e
(S

ec
on

d
s)

Cuda-Aware

3-Step

Extra Msg

Dup Devptr

(b) Lassen, MVAPICH2-GDR, MPI_Alltoall (left) and MPI_Alltoallv (right)

Fig. 6: The performance of MPI Collectives across 32 nodes, using the various methods of communication.

The MPI_Alltoallv consists of sending messages of any
size to each of the other processes, allowing for communica-
tion among only a subset of the processes. Both Spectrum
MPI and MVAPICH-GDR implementations are outperformed
in many cases by using MPI_Isend and MPI_Irecv for
each message, and waiting for all messages to complete.
Therefore, this study tests both the existing implementation
of MPI_Alltoallv as well as communicating with point-
to-point messages, displaying the least costly of these two
strategies. When distributing the point-to-point communication
across CPU cores, the per-core message count is reduced. For
example, on Summit, each of the 6 CPU cores per GPU sends
1
6

th of the messages.

Figure 6 shows the cost of performing MPI_Alltoall
and MPI_Alltoallv with each of the communication
strategies. Equal-sized messages are sent to each GPU. In all
cases, the extra message approach outperforms all others for
very small messages and duplicate device pointer performs
best for very large messages. To achieve greater speedups,
the MPI_Alltoall can be implemented equivalently to the
MPI_Alltoallv. On Lassen, there is a large overhead asso-
ciated with duplicate device pointers for very small messages.
This overhead is consistently seen across all versions of MPI
on Lassen, and is not related to MVAPICH2-GDR.

VII. CONCLUSION AND FUTURE WORK

Accurate performance models are a useful tool that guide
the development of parallel applications. Performance models
for the various paths of inter-GPU communication show that,
while GPUDirect communication is optimal when sending a
single small message between GPUs, programs that send a
number of messages perform optimally by copying the data
to the CPU. Furthermore, the performance can be further
improved by evenly distributing the data across all available
CPU cores so that each process communicates a smaller
amount of data, and in some cases fewer messages, through
the network.

This work can be extended to other heterogeneous architec-
tures and alternative MPI implementations. Furthermore, while
this paper focuses on inter-node communication, performance
models for intra-node communication can also be analyzed to
improve application bottlenecks. Finally, optimizations from
this paper can be applied to HPC applications, as a large num-
ber of inter-GPU messages are required for many applications
from stencil codes to sparse matrix operations.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
Department of Energy, National Nuclear Security Administra-
tion, under Award Number DE-NA0002374.

6



REFERENCES

[1] W. Gropp, L. N. Olson, and P. Samfass, “Modeling MPI communication
performance on SMP nodes: Is it time to retire the ping pong test,”
in Proceedings of the 23rd European MPI Users’ Group Meeting,
ser. EuroMPI 2016. New York, NY, USA: ACM, 2016, pp. 41–50.
[Online]. Available: http://doi.acm.org/10.1145/2966884.2966919

[2] S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton,
J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell, V. G. V.
Larrea, A. Bertsch, R. Goldstone, W. Joubert, C. Chambreau, D. Appel-
hans, R. Blackmore, B. Casses, G. Chochia, G. Davison, M. A. Ezell,
T. Gooding, E. Gonsiorowski, L. Grinberg, B. Hanson, B. Hartner,
I. Karlin, M. L. Leininger, D. Leverman, C. Marroquin, A. Moody,
M. Ohmacht, R. Pankajakshan, F. Pizzano, J. H. Rogers, B. Rosenburg,
D. Schmidt, M. Shankar, F. Wang, P. Watson, B. Walkup, L. D. Weems,
and J. Yin, “The design, deployment, and evaluation of the CORAL
pre-exascale systems,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2018, pp.
661–672.

[3] W. A. Hanson, “The CORAL supercomputer systems,” IBM Journal of
Research and Development, vol. 64, no. 3/4, pp. 1:1–1:10, 2020.

[4] A. Bar-Noy and S. Kipnis, “Designing broadcasting algorithms in
the postal model for message-passing systems,” in Proceedings of
the Fourth Annual ACM Symposium on Parallel Algorithms and
Architectures, ser. SPAA ’92. New York, NY, USA: Association
for Computing Machinery, 1992, p. 13–22. [Online]. Available:
https://doi.org/10.1145/140901.140903

[5] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: Towards a realistic model
of parallel computation,” SIGPLAN Not., vol. 28, no. 7, p. 1–12, Jul.
1993. [Online]. Available: https://doi.org/10.1145/173284.155333

[6] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model for
parallel computation,” Journal of Parallel and Distributed Computing,
vol. 44, no. 1, pp. 71 – 79, 1997. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0743731597913460

[7] A. Bienz, W. D. Gropp, and L. N. Olson, “Improving performance
models for irregular point-to-point communication,” in Proceedings
of the 25th European MPI Users’ Group Meeting, Barcelona, Spain,
September 23-26, 2018, 2018, pp. 7:1–7:8. [Online]. Available:
https://doi.org/10.1145/3236367.3236368

[8] A. Bienz, L. Olson, and W. Gropp, “Node aware sparse matrix-vector
multiplication,” Journal of Parallel and Distributed Computing, vol.
130, pp. 166 – 178, 2019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0743731519302321

[9] A. Bienz, W. D. Gropp, and L. N. Olson, “Reducing communication in
algebraic multigrid with multi-step node aware communication,” The
International Journal of High Performance Computing Applications,
vol. 34, no. 5, pp. 547–561, 2020. [Online]. Available: https:
//doi.org/10.1177/1094342020925535

[10] A. Bienz, L. Olson, and W. Gropp, “Node-aware improvements to
allreduce,” in Proceedings of ExaMPI 2019, ser. Proceedings of ExaMPI
2019: Workshop on Exascale MPI - Held in conjunction with SC
2019: The International Conference for High Performance Computing,
Networking, Storage and Analysis. United States: Institute of Electrical
and Electronics Engineers Inc., Nov. 2019, pp. 19–28, 2019 IEEE/ACM
Workshop on Exascale MPI, ExaMPI 2019 ; Conference date: 17-11-
2019.

[11] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient inter-node MPI communication using GPUDirect RDMA for
Infiniband clusters with NVIDIA GPUs,” in 2013 42nd International
Conference on Parallel Processing, 2013, pp. 80–89.

[12] A. Lastovetsky, V. Rychkov, and M. O’Flynn, “MPIBlib: Benchmarking
MPI communications for parallel computing on homogeneous and
heterogeneous clusters,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, A. Lastovetsky, T. Kechadi, and J. Don-
garra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
227–238.

[13] T. Agarwal and M. Becchi, “Design of a hybrid MPI-CUDA benchmark
suite for CPU-GPU clusters,” in 2014 23rd International Conference on
Parallel Architecture and Compilation Techniques (PACT), 2014, pp.
505–506.

[14] J. Kraus, M. Pivanti, S. F. Schifano, R. Tripiccione, and M. Zanella,
“Benchmarking GPUs with a parallel Lattice-Boltzmann code,” in 2013

25th International Symposium on Computer Architecture and High
Performance Computing, 2013, pp. 160–167.

7

http://doi.acm.org/10.1145/2966884.2966919
https://doi.org/10.1145/140901.140903
https://doi.org/10.1145/173284.155333
http://www.sciencedirect.com/science/article/pii/S0743731597913460
http://www.sciencedirect.com/science/article/pii/S0743731597913460
https://doi.org/10.1145/3236367.3236368
http://www.sciencedirect.com/science/article/pii/S0743731519302321
http://www.sciencedirect.com/science/article/pii/S0743731519302321
https://doi.org/10.1177/1094342020925535
https://doi.org/10.1177/1094342020925535

	I Introduction
	II Background
	III Benchmarking GPU to GPU Communication
	IV Utilizing Many CPU Processes
	V Optimizing Multiple Messages
	VI Case Studies: MPI Collectives
	VII Conclusion and Future Work
	References

