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A B S T R A C T

The efficient solution of sparse, linear systems that arise through the discretization of partial differential
equations remains a key challenge for a range of high performance scientific simulations. One approach for
reducing data movement and improving performance is by exposing and exploiting structure in a problem
through the use of robust structured multilevel solvers. By choosing coarsening that preserves the structure
of the problem, these methods maintain efficient structured computation and communication throughout the
multigrid hierarchy. However, when coarsening is not permitted to be dependent on the operator, anisotropy
must be addressed by the smoother — producing error compatible for coarse-grid correction with structured
coarsening. In this paper, the components required in a scalable parallel structured solver are described
with a focus on memory and communication efficiency of robust smoothers. While the implementation of
communication and memory reduction techniques in smoothers integrated in a complete 3D solver present a
significant engineering challenge, a novel approach is proposed that addresses these challenges systematically
through a change to the solver’s execution model. Enabled by user-level threading paired with a set of
data and communication abstractions, this approach permits seamless aggregation of communication in plane
smoothers — directly reusing code for a 2D distributed multilevel cycle. Results show an effective reduction in
communication costs for coarse-grid problems, and result in a speedup of 8.7× in smoothing routines shown in
Fig. 12 using this approach. This produces a significant improvement to strong scalability while maintaining
favorable weak scaling behavior. Finally, a parallel scaling study using a series of refined meshes is included
that demonstrates the effectiveness of this approach in an application of interest.
1. Introduction

The efficient solution of sparse, linear systems that arise through
the discretization of partial differential equations remains a key chal-
lenge for a range of high performance scientific simulations. While
algebraic multigrid solvers are robust for a variety of problems, their
parallel performance continues to be challenged by modern HPC ar-
chitectures [1–3]. By exposing and exploiting structure in a problem,
additional performance improvements and parallel scalability may be
achieved [4]. For example, robust variational multigrid methods on
logically structured grids, such as Black Box Multigrid (BoxMG) [5,6],
take advantage of structure using direct memory addressing and stencil-
based operators throughout the multigrid hierarchy. This avoids growth
in operator complexity and communication costs at coarse levels typ-
ical in AMG [3] by maintaining fixed and predictable communication
patterns of a structured computation.

✩ Los Alamos Report LA-UR-20-23447.
∗ Corresponding author.

Relaxation methods, such as Gauss–Seidel or weighted Jacobi, play
an important role in the success of a multilevel methods (see Section 2
for a detailed description). Yet, in many scenarios such as stretched
meshes or anisotropic diffusion operators, more robust relaxation tech-
niques may be necessary. For example, considering discretizations on
logically structured grids that lead to nearest neighbor stencils, re-
laxation along entire lines or planes of the mesh and in alternating
directions often improve convergence significantly, and at a substantial
cost if parallel communication is not addressed properly, as we show
in this paper.

As an example, consider the cylindrical domain in Fig. 1a with
a curvilinear discretization of a Poisson problem. Here, the mesh
mapping introduces an anisotropy into the resulting operator. Using
standard pointwise weighted Jacobi relaxation in a multigrid scheme
(BoxMG) results in stagnation of the iterates as shown in Fig. 1b.
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Fig. 1. Impact of anisotropy introduced by mesh mapping on solver convergence using
ine and point relaxation. This anisotropy leads to poor convergence of BoxMG using
oint relaxation.

n contrast, using relaxation methods that annihilate the residual on
ubsets of points (rather than individual points) is more effective.
ndeed, for this example, alternating line smoothing (in the radial and
n the concentric directions) significantly improves performance, as
hown in Fig. 1b.

In a parallel setting, operating on entire lines or planes of a mesh
as is the case in line and plane relaxation) presents a challenge for
he parallel efficiency of structured solvers. Unlike point relaxation,
hese methods involve global operations over a subset of dimensions in

the problem. Parallel scalability necessitates matching the dimensions
of the grid partition to the problem. This implies the global connec-
tions will span a non-constant number of processors and increase the
communication requirements of the routine. In this paper, we focus on
reducing the communication costs in line and plane relaxation methods
to improve the parallel performance of structured multilevel solvers.

Distributed-memory parallel tridiagonal solves are heavily used in
line and plane relaxation. Efficient tridiagonal solvers, such as the spike
algorithm [7–10] target both fine and coarse-grained parallelism to
achieve a high-throughput solution to tridiagonal linear systems on
both CPU on GPU based architectures. In line and plane relaxation,
the solution of many simultaneous tridiagonal systems involving the
entire computational grid are needed. In this context, memory effi-
2

ciency is increasingly important including the need to avoid the storage c
Fig. 2. Updated data in the case of point relaxation (green), 𝑦-line relaxation (red),
nd 𝑥-line relaxation (blue).

equirements of local block factorizations. For this reason, we consider
he memory efficient tridiagonal solver from [11] although a hybrid
pproach or memory pooling could be considered to reduce these
ignificant memory costs.

In this paper, the recursive version of the parallel tridiagonal solver
roposed in [11] is implemented to improve the parallel scalability of
ine smoothing in Black Box Multigrid. Parallel results are introduced
hat confirm the expected communication complexity of this solver.
n three dimensions, an automated strategy for aggregating parallel
ommunication in plane smoothing is proposed. This strategy relies on
fficient context switching to synchronize communication phases of 2D
olvers used in plane smoothing. This approach permits communication
ithin existing 2D solvers to be aggregated when used in a plane

moothing operation. This is especially valuable for parallel 2D solvers
ith nontrivial communication patterns; for example, a 2D solver that

ecursively redistributes coarse-grid problems. Parallel results using
odel problems in addition to a selected application are included to
emonstrate the utility of this approach.

The paper is organized as follows. Section 2 introduces smoothers
sed in structured solvers and motivates the need for block smoothers
hen structure is preserved on coarse levels. In Section 3, parallel algo-

ithms for block smoothing in two and three dimensions are discussed.
ection 4 proposes an automated strategy for reducing communication
atency costs in plane smoothing. Performance studies included in Sec-
ion 5 demonstrate the effectiveness of this approach and Section 6
rovides conclusions.

. Background

.1. Smoothers for structured solvers

Given an 𝑛 × 𝑛 matrix problem

𝐱 = 𝐛

he 𝑖th entry if 𝐱 is denoted 𝑥𝑖. Given a vector 𝐱, a pointwise weighted
acobi scheme is defined for each 𝑖 = 1,… , 𝑛 as

(new)
𝑖 ← 𝑥𝑖 + 𝜔 1

𝐴𝑖𝑖

⎛

⎜

⎜

⎝

∑

𝑗, 𝐴𝑖𝑗≠0
𝑏𝑖 − 𝐴𝑖𝑗𝑥𝑗

⎞

⎟

⎟

⎠

,

or some weight 𝜔. In matrix form this becomes
(new) = 𝐱 + 𝜔𝐷−1(𝐛 − 𝐴𝐱), (1)

here 𝐷 is the diagonal of 𝐴. The method effectively annihilates the
esidual at each successive element of the vector 𝐱 to form a new
terate. Point-wise iterative methods, such as Gauss–Seidel or weighted
acobi, operate on single entries of a vector (see Fig. 2) and are effective
moothers for isotropic problems. With anisotropic problems, either

oarsening or relaxation must be modified to account for the anisotropy
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(see Fig. 1b). Coarsening in a single direction, referred to as semicoars-
ening, can be effective for problems where the anisotropy is aligned
to the grid [12,13]. For general anisotropy, semicoarsening must be
combined with block smoothers for robustness [14]. Semicoarsening
also has a drawback of increasing the total work in each cycle, since
coarsening is less rapid — e.g. coarsening by a factor of 2 is common in
2D, whereas full coarsening reduces the coarse problem size by a factor
of 4.

When coarsening is fixed, block smoothers are used to address
anisotropy [14–16]. For example, line smoothing operates on matrix
entries corresponding to the same logical grid line collectively —
see Fig. 1b. That is, 𝑥-line relaxation refers to logical grid lines of
constant 𝑥. Consider the case of a 2D 9-point discretization on a regular
𝑛 × 𝑛 mesh, which has the sparsity pattern given in Fig. 3a in the case
of 𝑛 = 5.

Here, the matrix problem can be written in block form, say by
groups of points in 𝑦-lines, in the following way

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐷1 𝑈1
𝐿2 𝐷2 𝑈2

𝐿3 𝐷3 𝑈3
⋱ ⋱ ⋱

𝐿𝑝 𝐷𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑏1
𝑏2
𝑏3
⋮
𝑏𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

n each case 𝐷𝑖, 𝐿𝑖, and 𝑈𝑖 are tridiagonal matrices.
In line relaxation, each step is a block solve, which has the form

⎧

⎪

⎨

⎪

⎩

𝐷𝑖𝑥𝑖 = 𝑏𝑖 − 𝑈𝑖𝑥𝑖+1 if 𝑖 = 1
𝐷𝑖𝑥𝑖 = 𝑏𝑖 − 𝐿𝑖𝑥𝑖−1 − 𝑈𝑖𝑥𝑖+1 if 1 < 𝑖 < 𝑛
𝐷𝑖𝑥𝑖 = 𝑏𝑖 − 𝐿𝑖𝑥𝑖−1 if 𝑖 = 𝑛.

(3)

This type of block smoothing is effective for grid aligned anisotropy
by collectively processing strongly connected unknowns. By simply
alternating directions in each smoothing step, line relaxation in two
dimensions is robust for anisotropy that is not aligned to the grid
[14–16].

Similar to line smoothing in two dimensions, plane smoothing can
be used in three dimensions as a robust smoother for anisotropic
problems. In plane smoothing, rows in the matrix are grouped by
logical planes to reach the structure shown in (2). Consider a 3D 27-
point discretization on an 𝑛 × 𝑛 × 𝑛 mesh. In the case of 𝑛 = 4, the
sparsity patterns is given in Fig. 3b. In this case, each block of (2)
represents a 2D problem (with corresponding tridiagonal blocks as
in the 2D example above). Each 𝐷𝑖, for example, is a structured 2D
operator for each plane — plane relaxation then requires successive
2D solves. While a full 2D solve is relatively expensive, in practice it is
unnecessary to solve these subproblems exactly. For example, in [14]
a single V(1,1) cycle is shown to be sufficient for recovering expected
convergence factors.

2.2. Parallel structured decomposition implementation

In a distributed parallel setting, the processor layout adds an ad-
ditional layer of mappings to the block structures outlined above. In
this paper we consider Cartesian processor topologies, where logically
structured problems (e.g. Fig. 1a) are decomposed on a processor grid
by dividing the points among the processors by dimension.

Stencil-based communication is accomplished using halo regions
with a halo width of one. Parallel grid coarsening is used considering
standard coarsening by a factor of two in each dimension. When the
local problem size becomes too small, recursive coarse-grid redistribu-
tion is used to repartition the work on a subset of involved processors
3

as described in [4].
3. Parallel structured smoothing

Efficient parallel smoothers are critical in achieving high perfor-
mance in structured solvers as they dominate the cost of a solve. In
point smoothing, computation and communication is straightforward.
The computation consists of stencil-based updates for each grid point
and the communication is performed through single-layer halo ex-
changes. In the case of line and plane smoothing, however, global
operations are executed over a subset of dimensions. The increased
communication requirements of these operations motivates the need for
scalable and efficient methods for processing a sequence of distributed
block solves from (3). In line relaxation, these blocks correspond to
tridiagonal systems, thus requiring a scalable distributed memory tridi-
agonal solver. In plane relaxation, efficient processing of a series of
distributed two dimensional cycles is needed.

In this paper, Gauss–Seidel block smoothing is considered for line
and plane smoothing. To process blocks in parallel, red–black ordering
of blocks is used. However the techniques can be extended to any
number of structured smoothers.

3.1. Parallel line smoothing

An efficient tridiagonal solver is key to the performance of line
smoothing in parallel. In this paper, we consider a series of tridiagonal
systems in a distributed memory environment, which forms the basis of
the steps outlined in (3). Many parallel algorithms have been developed
for the direct solution of tridiagonal linear systems. Many of the early
algorithms, such as cyclic reduction [17] and recursive doubling [18]
target fine-grained parallelism. Later, a wide class of algorithms based
on parallel partitioning of the matrix rows were developed to target
coarse-grained parallelism [7,19–22]. In [23], a framework for the
unified analysis and development of such algorithms is also proposed.
While many of these algorithms focus on a single level of partition-
ing, recursive partitioning should be used to avoid the linear scaling
of computation and communication with respect to the number of
processes.

In this paper, the recursive parallel partitioning algorithm proposed
in [11] for scalable distributed line relaxation is considered. In this
approach, rows of the matrix are partitioned across 𝑝 processors. For
example in the case of 𝑝 = 3 and a single 𝑛 × 𝑛 tridiagonal matrix, the
matrix decomposition has the following form on the first processor:

⎡

⎢

⎢

⎢

⎢

⎣

𝑑0 𝑢0
𝑙1 𝑑1 𝑢1

⋱
𝑙𝑛∕3−1 𝑑𝑛∕3−1 𝑢𝑛∕3−1

⎤

⎥

⎥

⎥

⎥

⎦

, (4)

where 𝑑𝑖, 𝑙𝑖, and 𝑢𝑖 represent the diagonal and off-diagonal entries.
For example, Fig. 4 shows a tridiagonal matrix partitioned across three
processors. Rows adjacent to partition boundaries are called interface
rows, while rows not connected to a row across a partition boundary
are called interior rows. If the unknowns in each partition are reordered
with interface unknowns listed last, the tridiagonal system has the
following block structure:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴1 𝐴1,2
𝐴2,1 𝐴2 𝐴2,3

𝐴3,2 𝐴3 𝐴3,4
⋱ ⋱ ⋱

𝐴𝑝,𝑝−1 𝐴𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3
⋮
𝑧𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ℎ1
ℎ2
ℎ3
⋮
ℎ𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (5)

here vectors 𝑧𝑖 and ℎ𝑖 are defined

𝑖 =
[

𝑥𝑖
𝑦𝑖

]

and ℎ𝑖 =
[

𝑓𝑖
𝑔𝑖

]

, (6)

with 𝑥𝑖, 𝑓𝑖 corresponding to the interior solution and right-hand-side
components respectively and 𝑦𝑖, 𝑔𝑖 corresponding to the interface so-

lution and right-hand-side components respectively. Additionally, each
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Fig. 4. Rows of a tridiagonal system partitioned across three processors.

𝑖,𝑖−1, 𝐴𝑖, and 𝐴𝑖,𝑖+1 has the structure

𝑖,𝑖−1 =
[

0 0
0 𝐸𝑖,𝑖−1

]

(7)

𝐴𝑖 =
[

𝐵𝑖 𝐸𝑖
𝐹𝑖 𝐶𝑖

]

(8)

𝐴𝑖,𝑖+1 =
[

0 0
0 𝐸𝑖,𝑖+1

]

(9)

where 𝐵𝑖 represents the matrix of interior rows, 𝐸𝑖 and 𝐹𝑖 represent
oupling to and from the interface rows, and 𝐶𝑖 represents couplings
etween interface rows on a given partition. Fig. 5 depicts this structure
or the case of the matrix in Fig. 4 when the interface unknowns are
rdered last.
4

The underlying idea in this algorithm is to decouple the interface
oints from interior points. This is accomplished in three phases.
The first phase: decouple interface system
To form a decoupled reduced system involving only the interface

ows, the interior rows are used to eliminate each 𝐹𝑖 block. To perform
his elimination, two cases are considered. For the lower interface
quation which has a nonzero in the last column of 𝐹𝑖, Gaussian
limination on

𝐵𝑖 𝐸𝑖
𝒆𝒌𝑇𝐹𝑖 𝒆𝒌𝑇𝐶𝑖

]

(10)

s used to eliminate this nonzero. Here, 𝒆𝒌 is the 𝑘th column of the
dentity matrix with 𝑘 equal to the number of rows in 𝐶𝑖. For the

upper interface equation which has a nonzero in the first column of
𝐹𝑖, Gaussian elimination on
[

𝐵𝑖 𝐸𝑖
𝒆𝟏𝑇𝐹𝑖 𝒆𝟏𝑇𝐶𝑖

]

(11)

s used to remove this nonzero. During each elimination step, the corre-
ponding row of 𝐶𝑖 is modified and fill is introduced from the nonzero
olumns of 𝐸𝑖. Letting 𝐶𝑖 denote the updated 𝐶𝑖 matrix and 𝑔𝑖 the
pdated right-hand side, the reduced system produced by eliminating
he 𝐹𝑖 block for each interface row has the structure:

𝐶1 𝐸1,2
𝐸2,1 𝐶2 𝐸2,3

𝐸3,2 𝐶3 𝐸3,4
⋱ ⋱ ⋱

𝐸𝑝,𝑝−1 𝐶𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑦1
𝑦2
𝑦3
⋮
𝑦𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑔1
𝑔2
𝑔3
⋮
𝑔𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(12)

The second phase: solve interface system The reduced system in
(12) is a tridiagonal system with 2𝑝 − 2 rows. To solve this system,
recursion can be used by partitioning (12) to 𝑠 processors with 𝑠 <
𝑝. This is done by grouping processors from the original partition.
Recursion is terminated when 𝑠 = 1. In this case, the reduced system is
gathered to one processor. To solve the reduced system any sequential
tridiagonal solver can be used, such as the Thomas algorithm. When
this phase is complete, the solution 𝑦𝑖 is scattered from processors in
the merged partition to their corresponding processors in the original

partition.
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Fig. 5. Block structure of partitioned tridiagonal matrix (left) and decoupling of interface rows (right). �̂�𝑖 denotes 𝑏𝑖 values modified by elimination and 𝑓𝑖 denotes fill resulting
from elimination.
Fig. 6. Weak scaling of line relaxation on Blue Waters with 100 × 100 local problem
using single level and recursive partitioning.

The third phase: solve local system The nonzero elements in
𝑖 are first eliminated by substituting the solution values 𝑦𝑖 from

he second phase. Once complete, the interior rows form independent
ridiagonal systems which can be solved on each processor using a
equential tridiagonal solver such as the sequential Thomas algorithm.

By grouping a constant number of processors in the second phase,
his approach provides a direct solver with a communication complex-
ty that is logarithmic with respect to the number of processors. As
escribed in [11], the Gaussian elimination steps in the first phase
an be completed using storage for only six values to build the 𝐶𝑖
locks thus avoiding the increased cost of storing a factorization. This is
specially important in reducing the significant memory requirements
n line and plane relaxation where a tridiagonal solve is used on every
ogical grid line.

Fig. 6 shows the importance of using recursive partitioning to avoid
serial fraction that grows linearly with the number of processes.

.2. Parallel plane smoothing

Plane smoothing in parallel involves a series of distributed 2D multi-
evel cycles to solve (3) (see Fig. 8). Using red–black ordering of planes,
alf of the planes can be processed in parallel without communication
cross planes. This involves a series of independent parallel tasks with
D structured communication. Planes on a given processor have uni-
orm communication and computation patterns. They perform the same
5

2D operations on the same logically structured region. Communication
phases for planes on a given processor then involve the same remote
processors. Instead of processing the planes sequentially, the uniform
communication pattern of planes on a process can be exploited to
aggregate communication. As noted in [15,24], the parallel efficiency
of plane relaxation can be improved by collecting data to be sent from
each 2D parallel solver. This data can then be sent as a single message
to reduce the overall latency cost in plane relaxation. To aggregate
communication across planes in this way, concurrent execution of 2D
parallel plane cycles is needed. In the context of a scalable robust
structured solver, coordination of the concurrent execution of these 2D
plane cycles is not trivial.

Fig. 7 shows a high-level view of operations needed when using
block smoothing with a scalable 3D structured solver. Within each 3D
V-cycle, plane smoothing is used at a variety of resolutions. Each plane
smoothing step performs a series of 2D V-cycles each of which includes
line smoothing at a variety of resolutions. The line smoothing oper-
ations use multilevel tridiagonal solvers which recursively repartition
data to improve parallel scalability. In addition to the block smoothing
operations, each 2D and 3D distributed V-cycle performs coarse-grid
redistribution needed for parallel scalability. Since these operations
lead to nontrivial execution, we focus on automating the coordination
of 2D cycling needed to aggregate communication in plane smoothing.

3.3. Structured data redistribution

Recursive data redistribution is employed in various structured
multigrid components to avoid communication complexities that scale
proportional to the number of processors used. One dimensional struc-
tured data redistribution is used in multilevel line smoothing to solve
(12) on a subset of involved processors. This is accomplished by group-
ing processors into processor blocks that will share the same rows of the
reduced system. In this case, a fixed processor grid coarsening factor is
used representing the minimum size of a processor group. Some proces-
sor groups may be larger than this coarsening factor if it does not evenly
divide the total number of processors. An MPI_Gather operation is
then used within each processor block to gather the interface rows for
a block to a single processor. The root processors from each processor
block proceed to solve (12). This process is repeated recursively as the
parallel solution of (12) forms another interface system on the reduced
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Fig. 7. High-level view of operations in a scalable 3D robust structured V-cycle using
block smoothers. A local view of operations is shown, that is, the number of 2D V-
cycles (visualized as pages) represents the approximate number of planes per process
at a given plane smoothing step. After 3D redistribution, more local work is again
available and the number of 2D V-cycles increases. In this example, the first level of
3D plane smoothing includes four local 2D planes. After coarsening, the next level of
plane smoothing involves two 2D planes on each process. Finally, after 3D redistribution
the local problem size increases and four local planes are again involved in 3D plane
smoothing.

Fig. 8. Distributed plane solves. The colors denote processors, points degrees of
reedom, and lines connections in the mesh. The original 3D problem distributed on four
rocessors is shown on the left and distinguished by color. The right visualizes plane
olves for this distribution where off plane coefficients are moved to the right-hand
ide.

et of processors. Once solved, an MPI_Scatter is used to propagate
the solution to all processors in a processor block.

Structured data redistribution is utilized in two and three dimen-
sions to handle coarse-grid problems. As parallel structured coarsening
proceeds, in 2D for plane smoothing and 3D for the outer solve,
processors eventually run out of local data. Once a local problem di-
mension reaches a parameterized minimum size, redistribution of data
is considered. For simplicity, a fixed processor grid coarsening factor is
used to reduce the processor grid for each dimension that reaches the
minimum local size. In the future, development of performance models
for line and plane smoothing would enable the use of [4] to optimize
this redistribution.

4. Automated communication aggregation

The automation of communication aggregation in plane smoothing
enables the reuse of complex distributed solver components, such as
scalable 2D multilevel cycling with optimized coarse-grid redistribu-
tion and multilevel line smoothing. This approaches involves a simple
change to the solver’s execution model combined with a set of com-
munication and memory abstractions. This facilitates a 2D distributed
6

solver to be used directly in a plane smoothing routine while having its
communication aggregated behind-the-scenes.

4.1. Service abstractions

To automate communication aggregation, we introduced a software
layer realized as a set of services to be provided to a distributed multi-
level solver instance. The services used for aggregating communication
are:

1. Memory Pool: Services requests for grid function memory allo-
cations

2. Halo Exchange: Exchanges halo data on each multigrid level
3. Message Passing: Provides a message passing interface

Implementations of these services are selected dynamically to facilitate
aggregation when a 2D solver instance is used within plane relaxation.
The memory pool service is used to ensure allocations of fine and
coarse-grid vectors that will later be involved in communication are
contiguous in memory across planes of the same color. This service is
provided to a 2D solver instance and used as a memory backend for its
data structures. When a solver instance is involved in plane relaxation
and memory for a vector is requested, a memory region is allocated
collectively with space for all vectors of a given relaxation color and
an address returned with the correct offset into the collective buffer.
When the manager plane performs communication, it then has direct
access to this collective buffer. This removes the need for the data
collection stage when aggregating plane communication thus providing
improved memory efficiency. The halo exchange and message passing
services provide an interface through which communication in the 2D
solver is performed. In this way, aggregated communication routines
may be selected when used within a plane relaxation sweep. Even when
communication aggregation is not used, the message passing service is
necessary to avoid creating redundant MPI communicators in plane re-
laxation. For instance, coarse-grid redistribution involves creating new
communicators for redistributed cycling. Multilevel line relaxation also
creates communicators for collective communication at each level and
halo exchange libraries typically duplicate the communicator passed to
them. When run at scale, the plane relaxation routine quickly reaches
the MPI communicator limit in modern implementations if each plane
creates these communicators independently.

In plane relaxation, the two main communication routines are a
halo exchange and the gather/scatter operations used in multilevel line
relaxation. Since vectors involved in communication are contiguous in
memory across planes of the same color, the aggregated halo exchange
service is implemented by simply using a 3D halo exchange with
communication in the direction orthogonal to the plane disabled. The
halo regions communicated are then 2D regions consisting of the 1D
halos of each plane on a processor. To implement aggregated gather
and scatter operations without needing a data collection stage, an MPI
user defined data type is used to correctly interleave plane data as
shown in Fig. 9.

4.2. Execution model with user-level threading

While the service layer provides a mechanism for presenting differ-
ent data layouts and communication routines to the plane solvers, a
method for coordinating the concurrent execution of the planes is also
needed. In contrast to the entirely parallel operation of plane solves of
the same color, the addition of communication aggregation necessitates
synchronization for each communication operation. Since each 2D
solve involves the nontrivial control flow and communication patterns
associated with recursive coarse-grid redistribution and multilevel line
relaxation, avoiding manual coordination is desired. Context switching
is well suited for this type of coordination thus allowing for planes to
be suspended and resumed when communication occurs. Using context

switching, plane coordination is implemented using Algorithm 1 for
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Fig. 9. Aggregated gather/scatter operation of four planes on two processors. Data associated with the first, second, third, and fourth plane are denoted by , , , and .
n the case of the first plane, denoted by , the points reside on two processors labeled in blue and in red: , and . In the right two figures, all data resides on the blue

processor; the edge is colored by its original location — i.e., represents data on the square plane now on the blue process and originally on the red process. The gather and
catter operations interleave plane data to keep consecutive planes contiguous in memory. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
ach communication routine. This assumes a one-to-one mapping of
lane execution on an MPI rank to computational resources, although
ynchronization constructs could be added if extra cores are available
e.g., fewer MPI ranks than compute cores). To manage the concurrent
xecution of plane solves and provide efficient context switching, the
ightweight user-level threading library Argobots1 [25] is used.

Algorithm 1: Aggregated Communication Coordination
Input:

communicate(. . . )
aggregated communication routine

switch_context(i)
routine to switch to plane i

nplanes
number of planes

plane_idx
index of plane (0,… , nplanes − 1)

1 switch_context(mod(plane_idx+1, nplanes))
2 if plane_idx = 0 // manager plane
3 communicate(. . . )

Fig. 10 shows the execution of planes on an MPI rank. Planes
re grouped by color into teams of manager and worker planes. The
anager plane is then responsible for running the aggregated commu-
ication routines and splitting MPI communicators. During each red
weep, execution of local work begins on the manager plane. When a
ommunication phase is reached, execution is suspended on this plane
s a context switch to the first red worker thread is processed. This
rocess repeats until the first stage of local work is completed on each
ed plane. At this point, a context switch from the last red worker plane
ack to the red manager plane is processed. The manager plane then
erforms communication for all red planes and this process continues
s the manager plane continues to its next chunk of local work. The
verhead of using user-level threads to automate aggregation in this ap-
roach is specifically the overhead of the lightweight context switches
etween each plane incurred by the user-level threading library.

1 http://www.argobots.org.
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Using lightweight user-level threads with the service layer provides
an automated method for aggregating communication for a sequence of
distributed tasks with uniform communication patterns. In the context
of plane smoothing in a 3D structured solver, this allows the 3D
smoothing routine to directly use 2D solver routines for each plane and
have their communication aggregated.

5. Experimental results

To assess the parallel efficiency of the approach detailed in Sec-
tion 4, we consider a number of scaling studies in this section. Through-
out these tests, we use the Blue Waters2 system, a Cray XE machine
at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana–Champaign. MPI without multithread-
ing was used with the number of MPI ranks matching the number of
floating-point units for all multi node jobs. User-level threading with
Argobots was used to orchestrate plane execution; however, only one
user-level thread on a process was run at a given time. To improve com-
munication performance for structured grids, we use a rank ordering
that matches the application topology to the machine topology [26].
The line and plane smoothers described in this article were imple-
mented in the Cedar framework [27]. This open source package was
used for the results in this section.

5.1. Series of uniform distributed tasks

In this section we consider a series of uniform distributed tasks to
highlight the value of aggregated communication.

Strong scaling
In the first suite of numerical experiments, we focus on the effective-

ness of communication aggregation in reducing communication costs.
To this end, we consider a series of uniform distributed tasks comprised
of 2D smoothing routines. These routines are run on a sequence of
2D problems with the same parallel data distribution. Runtimes are
then compared using automated communication aggregation versus
independent execution of the 2D routines.

We consider a 2D model diffusion problem discretized with finite
differences on a series of 100 separate 1024 × 1024 grids. The number

2 https://bluewaters.ncsa.illinois.edu/blue-waters.

http://www.argobots.org
https://bluewaters.ncsa.illinois.edu/blue-waters
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Fig. 10. Execution schedule for red–black plane relaxation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Strong scaling: 2D grid and processor layouts for a series of distributed smoothing
sweeps.

Grid points Cores Grid points per core

1024 × 1024 8 × 8 16,384 = 128 × 128
1024 × 1024 16 × 16 4,096 = 64 × 64
1024 × 1024 32 × 32 1,024 = 32 × 32
1024 × 1024 64 × 64 256 = 16 × 16
1024 × 1024 128 × 128 64 = 8 × 8

of cores in each coordinate direction is doubled from 8 to 128 cores,
to create a range from 16,384 to 64. The corresponding local problem
sizes also vary from 64 to 16,384 degrees of freedom per core as
summarized in Table 1.

Fig. 11 shows strong scaling behavior of point and line relaxation
on a series of 2D grids. In both cases, communication aggregation
significantly improves strong scaling with greater speedup as the local
problem size decreases.

In the case of sequential point smoothing, parallel efficiency is
under 10% at approximately 4k cores in contrast to aggregated point
smoothing which reaches an efficiency of 37%. Aggregation in this case
extends the strong scaling limit of 10% efficiency from approximately
1k cores to 4k cores. Similarly, sequential line smoothing reaches an ef-
ficiency under 10% at approximately 4k cores whereas aggregated line
smoothing reaches an efficiency of 30%. Even at 16k cores, aggregated
line smoothing retains an efficiency above 10% and the strong scaling
limit is extended from 1k cores to 16 cores using aggregation.

The extension of the strong scaling is attributed to dominance of
the latency cost, in contrast to local computation and communication
bandwidth, as the local problem size decreases. Since communication
aggregation specifically targets the overhead of latency, it is most useful
in reducing communication on coarser grids.

The use of user-level threads (ULTs) to automate communication
aggregation also incurs the overhead of a lightweight context switch
for each plane when a communication phase is reached. To quantify
this, we consider point smoothing routine that is implemented directly
to aggregate communication. This is shown in Fig. 11 as the ‘‘manual
aggregate point’’ line. By manually aggregating communication, the
overhead incurred by context switches among the 100 2D problems is
avoided. As seen in Fig. 11, this overhead is relatively small due to the
lightweight user-level threading provided by Argobots.
8

Fig. 11. Strong scaling relaxation routines on Blue Waters with problem size:
1024 × 1024 as in Table 1. The ‘‘aggregate’’ label refers to relaxation run with
automated communication aggregation using ULTs; the ‘‘sequential’’ label refers to
relaxation that is run independently; and the ‘‘manual aggregate’’ label serves as a
baseline, implementing relaxation that is hard-coded to aggregate communication. The
parallel efficiency (%) relative to 64 processors is shown for each data point.

Table 2
Weak scaling: 2D grid and processor layouts for a series of distributed smoothing
sweeps.

Grid points Cores Grid points per core

6,400 = 80 × 80 8 × 8 10 × 10
25,600 = 160 × 160 16 × 16 10 × 10
102,400 = 320 × 320 32 × 32 10 × 10
409,600 = 640 × 640 64 × 64 10 × 10

1,638,400 = 1280 × 1280 128 × 128 10 × 10
640,000 = 800 × 800 8 × 8 100 × 100

2,560,000 = 1600 × 1600 16 × 16 100 × 100
10,240,000 = 3200 × 3200 32 × 32 100 × 100
40,960,000 = 6400 × 6400 64 × 64 100 × 100
163,840,000 = 12,800 × 12,800 128 × 128 100 × 100

Weak scaling
Turning to weak scaling, we again use the 2D model diffusion

problem on a series of 100 grids. Local problem sizes are selected near
both ends of the strong scaling range, with one chosen away from the
strong scaling limit and one near this limit where weak scalability is
best challenged, as summarized in Table 2.

Fig. 12 shows that aggregation is critical for improving the perfor-
mance of point smoothing for the smaller local problem size where
communication latency costs dominate. For the larger problem size,
aggregation also improves weak scaling efficiency above 1k cores. For
this problem size, sequential point smoothing reached an efficiency of
68 percent at approximately 4k cores in contrast to aggregated point
smoothing which retains an efficiency of 99 percent. The overhead
of using user-level threading to coordinate aggregation is more pro-
nounced in the smaller problem size; however, this cost is relatively
low and does not significantly impact weak scalability.

Similar to Fig. 12, Fig. 13 highlights the importance of aggrega-
tion for line smoothing in the case of the smaller local problem size
of 10 × 10. Unlike the constant communication complexity of point
smoothing, line smoothing communication scales logarithmically with
respect to the number of processors. As result, we observe an increase
in cost as the number of processors increases.

5.2. Plane relaxation

To investigate the performance of communication aggregation with
plane relaxation, we consider a 3D problem on a range of grids —
see Table 3 for details on the strong scaling study. We consider a
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Fig. 12. Weak scaling point relaxation for the problems in Table 2. The ‘‘aggregate’’
label refers to relaxation with automated communication aggregation using ULTs, while
the ‘‘sequential’’ label resents the case when the 2D routines were run independently.
The parallel efficiency (%) relative to 64 processors is shown for each data point.

Fig. 13. Weak scaling line relaxation for the problems in Table 2. The ‘‘aggregate’’ label
refers to relaxation with automated communication aggregation using ULTs, while the
‘‘sequential’’ label resents the case when the 2D routines were run independently. The
parallel efficiency (%) relative to 64 processors is shown for each data point.

problem size of 128 × 128 × 128. The number of processors in each
imension ranged from 2 to 16, and the local problem size ranged
rom 8 to 64 degrees of freedom in each dimension. Ten V(1,1) 3D
ultigrid cycles are run using red–black plane relaxation with each
lane performing a single V(1,1) cycle. Both the 2D plane cycles and
uter 3D cycle use recursive coarse-grid redistribution [4] to balance
ommunication and computation costs at coarse levels. Using a min-
mum local problem size of 4 grid points in each dimension with
oarsening by a factor of 2, a total of 6 multigrid levels are used.
he final 4 × 4 × 4 coarse-grid problem is solved using a Cholesky
actorization. With the exception of the communication in coarse-
rid redistribution, all communication in the multigrid solve phase is
ggregated.

Fig. 14 shows strong scaling on Blue Waters where the planes at
ach level are processed sequentially, and where user-level threads
re used to aggregate plane communication on each level. This figure
hows communication aggregation improves the strong scalability of
he solve — approximately doubling the parallel efficiency.
9

Fig. 14. Strong scaling 3D solve with plane relaxation. The ‘‘aggregate’’ label refers
to relaxation with automated communication aggregation using user-level threads, and
‘‘sequential’’ represents independent 2D sweeps. The parallel efficiency (%) relative to
8 processors is shown for each data point.

Table 3
Strong scaling: 3D grid and processor layouts.

Grid points Cores Grid points per core

128 × 128 × 128 2 × 2 × 2 262,144 = 64 × 64 × 64
128 × 128 × 128 4 × 4 × 4 32,768 = 32 × 32 × 32
128 × 128 × 128 8 × 8 × 8 4,096 = 16 × 16 × 16
128 × 128 × 128 16 × 16 × 16 512 = 8 × 8 × 8

5.3. Application

To examine the performance of the approach of Section 4 with an
application, we consider calculating the electric potential on several
simulation meshes for the ACT-II facility at Illinois [28]. To this end, we
will first consider the efficiency of smoothers on an application mesh
and then examine the parallel scalability.

Fig. 15 shows a schematic of this facility and the corresponding sim-
ulation meshes. To mesh this facility, overlapping logically structured
grids are used. The potential of the electric field is given by

−∇ ⋅ 𝜖∇𝜙 = 𝑓, (13)
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Fig. 15. ACT-II facility at Illinois [28]: (a) a schematic of the upstream section of the
facility with labeled electrodes; (b) the set of overset meshes used for simulations; (c)
the mesh used for the numerical study; and (d) a zoomed region of the mesh where the
cells are most skewed. Mesh and image files produced by Kyle Mackay at the University
of Illinois.

where 𝜖 is the permittivity of the electric field. Computation on each
mesh is performed in the logical space Ξ = (𝜉1, 𝜉2, 𝜉3) given by the unit
cube. In curvilinear coordinates, (13) in logical space becomes

− 𝜕
𝜕𝜉𝑖

(

𝜖𝐽𝑔𝑖𝑗
𝜕𝜙
𝜕𝜉𝑗

)

= 𝐽𝑓 , (14)

where 𝐽 is the Jacobian of the transformation, 𝑔𝑖𝑗 the contravariant
metric tensor [29]. The additional metric terms in (14) can introduce
anisotropy in the operator depending on the physical geometry of the
mesh. To conduct a single-mesh performance study, the main appli-
cation mesh, shown on the bottom of Fig. 15, is selected. This mesh
includes stretching appropriate for plane smoothing and includes the
region where the effects of the electric field are most significant to the
problem. For this performance study, 𝜖 is set to 1.

Three resolutions of the mesh in Fig. 15 are considered, with
dimensions listed in Table 4. The processor grid sizes are chosen to
keep the local problem size approximately constant. In addition, to
simplify the study we consider (14) with a constant right hand side
and homogeneous Dirichlet boundary conditions.
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Table 4
ACT-II mesh sizes.

Grid points Logical grid Cores

Mesh1 1,002,177 191 × 159 × 33 4 × 2 × 2
Mesh2 10,000,650 550 × 319 × 57 8 × 5 × 4
Mesh3 100,035,208 1003 × 959 × 104 16 × 12 × 8

Fig. 16. Convergence of Cedar using a variety of smoothers with Mesh1 from Table 4.
This corresponds to the mesh shown in Fig. 15(c). Alternating and 𝑦𝑧-plane smoothing
result in the best convergence for this mesh.

Fig. 16 shows convergence of Cedar with Mesh1 from Table 4 using
a variety of smoothers. Using point smoothing with this problem re-
sulted in the poorest convergence. This is due to anisotropy introduced
from mapping this mesh to logical space in (13). Alternating plane
smoothing — i.e., alternates among 𝑥𝑦, 𝑥𝑧, 𝑦𝑧 planes — is a robust
smoother for anisotropic problems and results in the best convergence
for this problem. For this problem, 𝑦𝑧 plane smoothing exhibits similar
convergence to alternating plane smoothing, in contrast to both 𝑥𝑦 and
𝑥𝑧 plane smoothing. This shows coupling for this problem is in the 𝑦𝑧
direction.

To analyze the various relaxation sweeps further, we consider the
stretching in the 𝑥, 𝑦, and 𝑧 directions. Fig. 17 shows that there is less
stretching in the 𝑦 and 𝑧 directions, which leads to stronger coupling
in the operator when mapped to the computational domain. Fig. 17
also shows stretching in the 𝑦 and 𝑧 directions are related, leading to a
nearly isotropic 𝑦𝑧 plane. For this reason line smoothing is not needed
for the 𝑦𝑧 planes. This is shown in the similar convergence behavior
of Cedar with 𝑦𝑧 planes using point smoothing and line smoothing
from Fig. 16.

Fig. 18 shows reduction in the residual norm over wall-clock time
using Cedar with a variety of smoothers using Mesh1 from Table 4.
𝑥𝑧 and 𝑥𝑦 plane smoothing results in the slowest overall residual
reduction. These smoothers demonstrate poor convergence with this
problem as seen in Fig. 16 while incurring the cost of plane smoothing.
Point smoothing and alternating plane relaxation result in a similar rate
of residual reduction for this problem as they are balanced on opposing
sides of convergence and cost per iteration.

Fig. 19 shows multigrid setup and solve times of Cedar using
point and plane relaxation using the meshes and processor decom-
positions shown in Table 4. Setup and solve times for the parallel
algebraic multigrid solver BoomerAMG from Hypre [30] are also in-
cluded; this highlights the potential performance benefit of using a
robust structured solver for this problem.

The effectiveness of the solver strongly depends on the metric terms
in (14). To provide a measure of the anisotropy introduced to the
operator from mapping each mesh from Table 4 to a logically structured
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Fig. 17. Components of normalized cell diagonals 𝑐𝑖 from (15) on the mesh. Larger values on the 𝑥-axis indicate strong stretching in that coordinate direction. Stretching for each
esh is strongest in the 𝑥 direction as there is a higher percentage of cells with large values in that direction. 𝑦𝑧 plane smoothing is effective with these meshes due to the strong

oupling in the 𝑦𝑧 plane.
Fig. 18. Residual reduction over wall-clock time of Cedar using a variety of smoothers
with Mesh1 from Table 4. (lines) and (point) indicate whether line or point smoothing
was used for each plane cycle. YZ-Plane smoothing results in the fastest residual
reduction for this problem.

grid with unit spacing, the following metric is considered. For each
interior vertex on the mesh, the vector

𝐜 = 1
√

(𝛥𝑥)2 + (𝛥𝑦)2 + (𝛥𝑧)2

⎡

⎢

⎢

⎣

𝛥𝑥
𝛥𝑦
𝛥𝑧

⎤

⎥

⎥

⎦

(15)

is computed. This represents the normalized diagonal of each cell on
the mesh. The scalar projection of 𝐜 onto 𝟏 ∈ R3 is then used as a single
number to quantify mesh anisotropy. Computed for each cell of the
mesh, this is used as a metric for mesh stretching as shown in Fig. 20.
With a higher percentage of cells close to square, Mesh2 results in a
smaller amount of anisotropy compared to Mesh1 and Mesh3. This im-
pacts solver convergence with point smoothing — the iteration counts
to reach the fixed relative tolerance using point smoothing in Fig. 19
were 48 with Mesh1, 27 with Mesh2, and 49 with Mesh3. This resulted
in a smaller solve time using point smoothing with Mesh2 compared to
Mesh1 even though Mesh2 had approximately ten times the number of
grid points.
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Fig. 19. Scaling study with an approximately constant number of grid points on each
processor. Multigrid setup and solve times are shown with BoomerAMG from Hypre
and structured multigrid from Cedar using both point and plane relaxation.

6. Conclusions

To achieve performance at scale, robust structured solvers require
efficient coarse-grid correction and smoothing routines. While opti-
mized coarse-grid redistribution [4] provides an efficient strategy for
scaling the application topology with diminishing local work, efficient
smoothing routines to handle anisotropic problems are also needed
for robustness. In this paper, the scalable parallel tridiagonal solver
proposed in [11] is used to provide efficient line relaxation without the
need to store a factorization for each line. Parallel results from Fig. 6
confirm the logarithmic communication complexity. To improve the
efficiency of robust structured smoothing in 3D, an automated strategy
for aggregating communication for a series of distributed tasks with
uniform communication patterns is proposed. Using lightweight user-
level threads to manage the concurrent execution of plane solves and
a service layer to specialize communication routines and memory
allocation, manual coordination and data collection among planes is
avoided. Parallel results show this approach is effective in reducing
communication costs for coarse-grid computations—producing an 8.7×
speedup in relaxation routines shown in Fig. 12. This significantly
improves strong scalability—approximately doubling parallel efficiency
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Fig. 20. Scalar projection of normalized mesh cell diagonals onto 𝟏 ∈ R3. Values of 1.0 indicate square mesh cells.
in plane smoothing for local problem sizes between 8k and 32k degrees
of freedom per processor.

Using user-level threads to orchestrate plane execution in a multi-
level solve also exposes additional communication optimizations. The
ability to inexpensively switch contexts among planes facilitates com-
munication and computation overlap across planes. For example, com-
munication from one plane can be overlapped with computation from
another using nonblocking communication routines. Communication
aggregation can then be used to maintain useful overlap at a variety
of resolutions by aggregating communication for a subset of planes
on a process. This is applicable when plane smoothing is used within
a multilevel V-cycle where smoothing at a variety of resolutions is
required.

The focus of this work is dedicated to solvers on large structured
meshes. Revisiting this approach in a multiblock setting may require
hybrid methods and a potential avenue for future work.
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