
FFT, FMM, and Multigrid on the Road to Exascale:
performance challenges and opportunities

Huda Ibeida,∗, Luke Olsona, William Groppa

aUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

FFT, FMM, and multigrid methods are widely used fast and highly scalable
solvers for elliptic PDEs. However, emerging large-scale computing systems are
introducing challenges in comparison to current petascale computers. Recent ef-
forts [1] have identified several constraints in the design of exascale software that
include massive concurrency, resilience management, exploiting the high perfor-
mance of heterogeneous systems, energy efficiency, and utilizing the deeper and
more complex memory hierarchy expected at exascale. In this paper, we per-
form a model-based comparison of the FFT, FMM, and multigrid methods in
the context of these projected constraints. In addition we use performance mod-
els to offer predictions about the expected performance on upcoming exascale
system configurations based on current technology trends.

Keywords: Fast Fourier Transform, Fast Multipole Method, Multigrid,
Exascale, Performance modeling

1. Introduction

Elliptic PDEs arise in many applications in computational science and en-
gineering. Classic examples are found in computational astrophysics, fluid dy-
namics, molecular dynamics, plasma physics, and many other areas. The rapid
solution of elliptic PDEs remains of wide interest and often represents a signif-
icant portion of simulation time.

The fast Fourier transform (FFT), the fast multipole method (FMM), and
multigrid methods (MG) are widely used fast and highly scalable solvers for
elliptic PDEs. The FFT, FMM, and MG methods have been used in a wide
variety of scientific computing applications such as particle-in-cell methods, the
calculation of long-range (electrostatic) interactions in many-particle systems,
such as molecular dynamics and Monte Carlo sampling [2], and in signal anal-
ysis. The performance expectations of these methods helps guide algorithmic

∗Corresponding author
Email addresses: hibeid@illinois.edu (Huda Ibeid), lukeo@illinois.edu (Luke

Olson), wgropp@illinois.edu (William Gropp)

Preprint submitted to Journal of Parallel and Distributed Computing

ar
X

iv
:1

81
0.

11
88

3v
2

 [
cs

.D
C

]
 2

7
M

ar
 2

02
0

changes and optimizations to enable migration to exascale systems, as well as to
help identify potential bottlenecks in exascale architectures. In addition, mod-
eling helps assess the trade-offs at extreme scales, which can assist in choosing
optimal methods and parameters for a given application and specific machine
architecture.

Each method has advantages and disadvantages, and all have their place
as PDE solvers. Generally, the FFT is used for uniform discretizations, FMM
and geometric MG are efficient solvers on irregular grids with local features
or discontinuities, and algebraic MG can handle arbitrary geometries, variable
coefficients, and general boundary conditions. The focus of this study is on
FFT, FMM, and geometric MG, although several observations extend to an
algebraic setting as well [3].

One aim of the International Exascale Software Project (IESP) is to enable
the development of applications that exploit the full performance of exascale
computing platforms [1]. Although these exascale platforms are not yet fully
specified, it is widely believed that they will require significant changes in com-
puting hardware architecture relative to the current petascale systems. The
IESP roadmap reports that technology trends impose severe constraints on the
design of an exascale software. Issues that are expected to affect system software
and applications at exascale are summarized as

Concurrency: Future supercomputing performance will depend mainly on in-
creases in system scale. Processor counts of one million or more for current
systems [4] whereas exascale systems are likely to incorporate one billion
processing cores, assuming GHz technology. As a result, this 1000× in-
crease in concurrency necessitates new paradigms for computing for large-
scale scientific applications to ensure extrapolated scalability.

Resiliency: The exponential increase in core counts expected at exascale will
lead to increases in the number of routers, switches, interconnects, and
memory systems. Consequently, resilience will be a challenge for HPC
applications on future exascale systems.

Heterogeneity: As accelerators advance in both performance and energy ef-
ficiency, heterogeneity has become a critical ingredient in the pursuit of
exascale computing. Exploiting the performance of these heterogeneous
systems is a challenge for many methods.

Energy: Power is a major challenge. Current petascale systems would reach
the level of 100 MW if extended to exascale1. This imposes design con-
straints on both the hardware and software to improve the overall ef-
ficiency. Likewise, exascale algorithms need to focus on maximizing the

1For example, the Piz Daint supercomputer, which is ranked third and tenth on the
TOP500 and Green500 lists, respectively, has power efficiency of 10.398 GFLOPs/W. An
exascale machine with the same power efficiency will require 96 MW per exaFLOP.

2

achieved ratio of performance to power/energy consumption (power/energy
efficiency), rather than focusing on raw performance alone.

Memory: The memory hierarchy is expected to change at exascale based on
both new packaging capabilities and new technologies to provide the mem-
ory bandwidth and capacity required at exascale. Changes in the memory
hierarchy will affect programming models and optimizations, and ulti-
mately performance.

In this manuscript, we perform model-based comparison of the FFT, FMM,
and MG methods vis-à-vis these challenges. We also use performance models
to estimate the performance on hypothetical future systems based on current
technology trends. The rest of the manuscript is organized as follows. A short
description of the FFT, FMM, and MG methods is provided in Section 2. In
the following sections, we present, compare, and discuss the performance of
these methods relative to the exascale constraints imposed by technology trends.
These constraints are: concurrency (Section 4), resiliency (Section 5), hetero-
geneity (Section 6), energy (Section 7), and memory (Section 8). Observations
and conclusions are drawn in Sections 9 and 10, respectively.

2. Methods

In this section we provide a brief description of FFT, FMM, and MG, in
order to establish notation and as preamble to the performance analysis.

2.1. Fast Fourier Transform

The FFT is an algorithm for computing the N -point Discrete Fourier Trans-
form (DFT) withO(N logN) computational complexity. Let x = (x1, x2, . . . , xN)
be a vector of N complex numbers, the 1-D DFT of x is defined as

x̂k =

N∑
j=1

xje
−i 2πkN j . (1)

The 3-D FFT is performed as three successive sets of independent 1-D FFTs.

2.1.1. Parallel Domain Decomposition

To compute the parallel 3-D FFT, the computational domain is decomposed
across processors. There are two popular decomposition strategies for paral-
lel computation: the slab decomposition (1-D decomposition) and the pencil
decomposition (2-D decomposition).

In the case of a slab decomposition a 3-D array is partitioned into slabs

along one axis so that each processor consists of
3√
N
P ×

3
√
N × 3

√
N points. This

decomposition scheme is unsuitable for massively parallel supercomputer as the
number of processors that can be used is limited by the number of slabs. In con-
trast, in pencil decomposition (a 2-D decomposition) a 3-D array is partitioned

3

MPI all-to-all

x à y Transpose

1-D FFT
x-direction

1-D FFT
y-direction

1-D FFT
z-direction

MPI all-to-all

y à z Transpose

Figure 1: Illustration of the 3-D FFT calculation flow using pencil decomposition.

in two dimensions, which allows the number of processors to increase. Two of
the three dimensions of the cube are divided by

√
P . Hence, each processor has

3√
N√
P
×

3√
N√
P
× 3
√
N points. A pencil decomposition is used in the current analysis.

2.1.2. FFT Calculation Flow

The pencil decomposition of a 3-D FFT consists of three computation phases
separated by two all-to-all communication phases. Each computation phase
computes 3

√
N × 3

√
N 1-D FFTs of size 3

√
N in parallel. Each all-to-all com-

munication requires O(
√
P) exchanges for the transpose between pencil-shaped

subdomains on P processes. This calculation flow is illustrated in Figure 1.
The solution of the Poisson equation −∆u = f based on FFT is

x = x̂−1(f̂/|k|2), (2)

where f̂ is the Fourier transform of f and x̂−1 is the inverse Fourier transform
of x. Thus, solving the Poisson equation using Fourier transform can be broken
down into three steps: 1) compute the FFT of f ; 2) scale f̂ by |k|2 in Fourier
space; and 3) compute the inverse Fourier transform of the result.

2.2. Fast Multipole Method

N -body problems are used to simulate physical systems of particle interac-
tions under a physical or electromagnetic field [5]. The N -body problem can be
represented by the sum

f(yj) =

N∑
i=1

wiK(yj , xi), (3)

where f(yj) represents a field value evaluated at a point yj that is generated
by the influence of sources located at the set of centers {xi}. {xi} is the set
of source points with weights given by wi, {yj} is the set of evaluation points,
and K(y, x) is the kernel that governs the interactions between evaluation and
source points.

The direct approach to simulate the N -body problem evaluates all pair-wise
interactions among the points which results in a computational complexity of
O(N2). This complexity is prohibitively expensive even for modestly large data
sets. For simulations with large data sets, many faster algorithms have been

4

(a) 2-D domain (b) Quad-tree

Figure 2: Decomposition of a 2-D computational domain into a quad-tree.

invented, e.g., tree code [6] and fast multipole methods [5]. The fast algorithms
cluster points at successive levels of spatial refinement. The tree code clusters
the far points and achievesO(N logN) complexity. The further apart the points,
the larger the interaction groups into which they are clustered. On the other
hand, FMM divides the computational domain into near-domain and far-domain
and computes interactions between clusters by means of local and multipole
expansions, providing O(N) complexity. Other N -body approaches follow a
similar strategy [7, 8]. FMM is more than an N -body solver, however. Recent
efforts to view the FMM as an elliptic PDE solver have opened the possibility
to use it as a preconditioner for even a broader range of applications [9].

2.2.1. Hierarchical Domain Decomposition

The first step of the FMM algorithm is the decomposition of the compu-
tational domain. This spatial decomposition is accomplished by a hierarchical
subdivision of the space associated with a tree structure. The 3-D spatial domain
of FMM is represented by oct-trees, where the space is recursively subdivided
into eight boxes until the finest level of refinement or “leaf level”. Figure 2
illustrates an example of a hierarchical space decomposition for a 2-D domain
that is associated with a quad-tree structure.

2.2.2. The FMM Calculation Flow

The FMM calculation begins by transforming the mass/charge of the source
points into multipole expansions by means of a Point-to-Multipole kernel (P2M).
Then, the multipole expansions are translated to the center of larger boxes us-
ing a Multipole-to-Multipole kernel (M2M). FMM calculates the influence of the
multipoles on the target points in three steps: (1) translation of the multipole
expansions to local expansions between well-separated boxes using a Multipole-
to-Local kernel (M2L); (2) translation of local expansions to smaller boxes using
a Local-to-Local kernel (L2L); and (3) translation of the effect of local expan-
sions in the far field onto target points using a Local-to-Point kernel (L2P). All-
pairs interaction is used to calculate the near field influence on the target points
by means of a Point-to-Point kernel (P2P). Figure 3 illustrates the FMM main
kernels: Point-to-Multipole (P2M), Multipole-to-Multipole (M2M), Multipole-
to-Local (M2L), Local-to-Local (L2L), Local-to-Point (L2P), and Point-to-Point
(P2P). The dominant kernels of the FMM calculation are P2P and M2L.

5

M2M	 and	 L2L	

M2L	
P2M	 and	 L2P	

P2P	

Figure 3: Illustration of the FMM kernels: P2M (Point-to-Multipole), M2M (Multipole-to-
Multipole), M2L (Multipole-to-Local), L2L (Local-to-Local), L2P (Local-to-Point), and P2P
(Point-to-Point).

Table 1: Amount of communication in FMM.

Boxes to send / level

Global M2L 26× 8

Local M2L (2i + 4)
3 − 8i

Local P2P (2i + 2)
3 − 8i

2.2.3. FMM Communication Scheme

In this study, we adopt a tree structure that is similar to the one described
in [10, 11] where FMM uses a separate tree structure for the local and global
trees. Each leaf of the global tree is a root of a local tree for a particular MPI
process. Therefore, the depth of the global tree depends only on the number
of processes P and grows with log8(P) in 3-D. Each MPI process stores only
the local tree, which depth grows with log8(N/P), and communicates the halo
region at each level of the local and global tree. Table 1 shows the number
of boxes that are sent at the “Global M2L”, “Local M2L”, and “Local P2P”
phases where i refers to the level in the local tree and 26 is the number of nearest
neighbors.

2.3. Multigrid

Multigrid methods are among the most effective solvers for a wide range of
problems. They target the solution of a sparse linear system Ax = b with N un-
knowns in a computational complexity of O(N). The basic idea behind MG is to

6

𝐴ℎ𝑥ℎ = 𝑏ℎ

𝑟ℎ = 𝑏ℎ − 𝐴ℎ𝑥ℎ

𝐴2ℎ𝑒2ℎ = 𝑟2ℎ

 𝑟2ℎ = 𝑟2ℎ − 𝐴2ℎ𝑒2ℎ
𝑒2ℎ ← 𝑒2ℎ + 𝑒2ℎ

𝐴2ℎ𝑒2ℎ = 𝑟2ℎ

𝑥ℎ ← 𝑥ℎ + 𝑒ℎ

𝐴ℎ𝑥ℎ = 𝑏ℎ

restriction interpolation

restriction interpolation

𝐴4ℎ𝑒4ℎ = 𝑟4ℎ

direct solver

𝑟2ℎ = 𝑅ℎ 𝑟ℎ

𝑟4ℎ = 𝑅2ℎ 𝑟2ℎ 𝑒2ℎ = 𝑃2ℎ 𝑒4ℎ

𝑒ℎ = 𝑃ℎ 𝑒2ℎ

Figure 4: Illustration of the multigrid V-cycle.

use a sequence of coarse grids to accelerate convergence of the fine grid solution.
The building blocks of the multigrid method are the smoothing, restriction, and
interpolation operators. These are usually 3-D stencil operations on a struc-
tured grid in the case of geometric multigrid (GMG) and sparse matrix-vector
multiplications (SpMV) in algebraic multigrid (AMG). In the current study,
multigrid refers to the geometric multigrid.

The V-cycle, shown in Figure 4, is the standard process of a multigrid solver.
Starting at the finest structured grid, a smoothing operation is applied to reduce
high-frequency errors followed by a transfer of the residual to the next coarser
grid. This process is repeated until the coarsest level is reached, at which point
the linear system is solved with a direct solver. The error is then interpolated
back to the finest grid. The V-cycle is mainly dominated by the smoothing and
residual operations on each level.

A multigrid solver is constructed by repeated application of a V-cycle. The
number of V-cycles required to reduce the norm of the error by a given tolerance
ε is estimated by

itr
MG

=
log ε

log ρ
, (4)

where ρ is the convergence rate. Generally, the convergence rate is bounded by
((κ− 1)/κ)

µ
where µ is the number of smoothing steps and κ is the condition

number of the matrix A [12].

3. Exascale Projection

In this paper we consider exascale systems built from hypothetical processors
based on extrapolating current technology trends. This section describes how
we project these hypothetical CPU-based and GPU-based exascale systems.
Similar concept was applied in 2010 by [13].

7

2008 2010 2012 2014 2016
Year

10
2

10
3

10
4

G
FL

O
P

/s

GPU
CPU

(a) Processor performance

2008 2010 2012 2014 2016
Year

10
1

10
2

10
3

10
4

C
or

es

GPU
CPU

(b) Cores per processor

2008 2010 2012 2014 2016
Year

10
2

10
3

G
B

yt
e/

s

GPU
CPU

(c) Memory bandwidth

1990 1995 2000 2005 2010 2015
Year

10
2

10
1

10
0

10
1

G
B

yt
e/

s

(d) Link bandwidth

Figure 5: Hardware trends.

We collect CPUs and GPUs peak performance, memory bandwidth, and
number of cores per processor for the period 2007 − 2017. Linear regression is
then used to find the doubling-time estimate for each parameter, as shown in
Figure 5. For the network link bandwidth, we begin with the data collected
in [13], which covers the period 1986− 2012. We then collect the same data for
systems that made the TOP500 list since 2012.

Table 2 shows processor architecture projections, from starting values on the
Argonne National Laboratory’s Cooley (GPU-based) and KAUSTs Shaheen II
system (CPU-based), both delivered in 2015. We assume that in 2025, we will be
able to build a 7 exaFLOP/s (double-precision) system, as projected in Figure 6.
The value “Processors” count in Table 2 is scaled to reflect this performance.

4. Concurrency

To gain some insight into the solvers’ performance on the massively con-
current systems expected at exascale, we derive analytical performance models
that include computation and both intra- and inter-node communication costs.
The intra-node communication along with the computation cost account for the
single node performance which is a critical building-block in scalable parallel
programs, whereas the inter-node term reflects the impact of network commu-
nication on the scalability.

8

2008 2012 2016 2020 2024
Year

10
0

10
1

10
2

10
3

10
4

PF
LO

P/
s

Figure 6: Top machine on the TOP500 list by year [4].

Table 2: Processor architecture projections.

Parameter
2015 values Doubling time 10-year1

Value
(in years) increase factor

Processor 1/tcpu 588.8 GF/s 2.0 32× 18.8 TF/s
peak 1/tgpu 1.45 TF/s 1.47 111.6× 161.8 TF/s

Memory 1/βcpu 68 GB/s 5.2 3.8× 258 GB/s
bandwidth 1/βgpu 240 GB/s 2.98 10.2× 2.4 TB/s

Cores
ρcpu 16 3.29 8.2× 132
ρgpu 2,496 1.87 40.7× 101.6k

Fast Zcpu 40 MB
2.0 32.0× 1.3 GB

memory Zgpu 1.5 MB 48 MB

Line size
Lcpu 64 B

10.2 2.0× 128 B
Lgpu 128 B 256 B

Link
1/βlink 10 GB/s 3.0 10× 100 GB/s

bandwidth

Machine
Rpeak 7 PF/s 1.0 1000.0× 7 EF/s

peak

Processors Pcpu 11,889 2.01 31.3× 372k
(Rpeak × t) Pgpu 4,828 3.15 9× 43.3k

1 The 10-year increase factor is calculated using 2
10/Doubling Time.

9

In this section we develop performance models for FFT, FMM, and MG on
P nodes for a total problem size of N = 3

√
N × 3

√
N × 3

√
N . Throughout, the

computation time is defined as the total number of floating-point operations,
multiplied by the time per floating-point operation, tc, in seconds. Memory
movement is modeled as the total data fetched into fast memory, multiplied by
the memory bandwidth inverse (βmem) in units of seconds per element. Assum-
ing arithmetic and memory operations are not overlapped, the total execution
time Texe is given by

Texe = Tcomp + Tmem, (5)

and with overlap, Texe is given by

Texe ≈ max(Tcomp, Tmem), (6)

where Tcomp is the computation time and Tmem is the time spent transferring
data in a two-level memory hierarchy between the main memory and cache.
Texe in (6) can be rewritten as

Texe = nFLOP · tc ·max(1,
Bτ
AI

), (7)

where nFLOP is the number of FLOPs, nmem is the number of main memory
operations, Bτ ≡ βmem/tc is the processor time balance, and AI ≡ nFLOP/nmem

is the arithmetic intensity. In order to minimize the execution time, AI must
be larger than Bτ . This condition is referred to as the balance principle.

Inter-node communication cost is modeled using the postal model or α–βlink

model for communication, where α represents communication latency, βlink is
the send time per element over the network (inverse the link bandwidth). Using
this basic model, communication cost can be represented as

Tnet = mα+ nβlink, (8)

where m and n are the maximum number of messages and total number of
elements sent by a process, respectively.

4.1. Fast Fourier Transform

4.1.1. Computation Costs

The 1-D Cooley-Tukey FFT of size 3
√
N consists of approximately (5 3

√
N log 3

√
N)

floating-point operations. Hence, the total computation time of the 3-D FFT is

Tcomp,FFT = 3 · 5N log 3
√
N

P
· tc, (9)

This model accounts for the three computational phases where each phase con-
sists of 3

√
N × 3

√
N 1-D FFTs performed in parallel.

10

4.1.2. Memory Access Costs

For a cache with size Z and cache-line length L in elements, a cache-oblivious
3
√
N -point 1-D FFT incurs Θ(1 +

3√
N
L (1 + logZ

3
√
N)) cache misses, for each

transferring line of size L [13, 14]. This bound is optimal, matching the lower
bound by Hong and Kung [15] when 3

√
N is an exact power of two. Thus, the

time spent moving data between the main memory and a processor in the 3-D
FFT is given by

Tmem,FFT = 3 · N logZ
3
√
N

P
· βmem. (10)

4.1.3. Network Communication Costs

In the pencil decomposed 3-D FFT, each processor performs two all-to-all
communications with

√
P other processors sending a total of N

P data points at
each communication phase. Hence, the FFT inter-node communication time is
approximated by

Tnet,FFT = 2 · (
√
P · α+

N

P
· βlink), (11)

where the factor of two accounts for the two communication phases. Since a
fully connected network is unlikely at exascale, a more realistic estimation of
the communication cost must include the topology of the interconnect [13]. For
example, on a 3-D torus network without task-aware process placement, the

communication time is bounded by the bisection bandwidth P 2/3

βlink
. Thus

Tnet,FFT = 2 · (
√
P · α+

N

P 2/3
· βlink). (12)

4.2. Fast Multipole Method

In this section, we present analytical models for the two phases of FMM
that consume most of the calculation time: P2P and M2L. We assume a nearly
uniform points distribution and therefore a full oct-tree structure.

4.2.1. Computation Costs

P2P. Assuming q points per leaf box, the computational complexity of the P2P
phase is 27q2N

q where 27 is the number of neighbors including the box itself.
This leads to a computation cost of

Tcomp,P2P = 27 · qN
P
· tc. (13)

M2L. The asymptotic complexity of the M2L phase depends on the order of
expansion k and the choice of series expansion. Table 3 shows the asymptotic
arithmetic complexity with respect to k for different expansions used in fast
N -body methods [16, 17].

11

Table 3: Asymptotic arithmetic complexity with respect to the order of expansion k for the
different series expansions (3-D).

Type of expansion Complexity

Cartesian Taylor O(k6)
Cartesian Chebychev O(k6)
Spherical harmonics O(k4)

Spherical harmonics+rotation O(k3)
Spherical harmonics+FFT O(k2 log2 k)

Planewave O(k3)
Equivalent charges O(k4)

Equivalent charges+FFT O(k3 log k)

The kernel-independent FMM (KIFMM) [18], which uses equivalent charges
and FFT, has a more precise operations count of k3 log k + 189k3 [19]. Hence,
the M2L phase of the KIFMM has a total computation cost of

Tcomp,M2L =
Nk3 log k

q · P
· tc + 189 · Nk

3

q · P
· tc, (14)

where 189 is the number of well-separated neighbors per box (63 − 33 = 189).
Another state-of-the-art FMM implementation is exaFMM [16] which uses

Cartesian series expansion. ExaFMM has operations count of 189k6. Hence

Tcomp,M2L = 189 · Nk
6

q · P
· tc. (15)

4.2.2. Memory Access Costs

As shown in [19], the outer loops of the P2P and M2L computations can
be modeled as sparse matrix-vector multiplies. A cache-oblivious algorithm [20]
for multiplying a sparse H ×H matrix with h non-zeros by a vector establishes
an upper bound on cache misses in the SpMV as

O
(
h

L
+

H

Z1/3

)
, (16)

for each transferring line of size L.

P2P. Applying (16) gives an upper bound on the number of cache misses for
the P2P phase as follows

QP2P ≤ 4 · N

L · P
+ b

P2P
· N/q
L · P

+ 4 · N

L · P
+

N/q

(Z4q)
1/3

· P
, (17)

where b
P2P

is the average number of source boxes in the neighbor list of a target
leaf box (b

P2P
= 26 for an interior box in a uniform distribution). The first two

terms on the right-hand side of (17) refer to read access for the source boxes and

12

the neighbor lists for each target box, while the third term refers to the update
access for the target leaf box potentials. In P2P communication, coordinates
and values of every point belonging to the box must be sent, resulting in a
multiplication factor of four. We model the dominant access time as

Tmem,P2P =
N

P
· βmem +

NL

(Z(1/3)q(2/3)) · P
· βmem. (18)

M2L. Applying (16) for the M2L phase gives an upper bound on the number
of cache misses as follows

QM2L ≤
(bt + bs)f(k)

L
+
b
M2L

bt
L

+
bt(
Z̄
f(p)

)1/3 , (19)

where bt is the number of target boxes, bs is the number of source boxes, b
M2L

is the average number of source boxes in the well-separated list of a target box
(b

M2L
= 189 for an interior box in a uniform distribution), f(k) is the asymptotic

complexity given in Table 3, and Z̄ is the effective cache size. For Z̄, we assume
that all possible M2L translation operators (73 − 33 = 316) are computed and
stored in the cache, leading to Z̄ = Z − 316 · f(k).

Considering the higher order terms, the memory access cost of the M2L
phase can be approximated by

Tmem,M2L =
Nf(k)

q · P
· βmem +

Nf(k)
1/3
L

qZ̄1/3 · P
· βmem. (20)

4.2.3. Network Communication Costs

P2P. The P2P communication is executing only at the lowest level of the FMM
tree where each node communicates with its 26 neighbors. In total, each node

communicates one layer of halo boxes which create a volume of (2l + 2)
3 − 8l

where l = log8(N/P). Using the α–βlink model, the inter-node communication
cost of the P2P phase can be represented by

Tnet,P2P = 26α+ n
P2P

βlink, (21)

where nP2P is the number of elements in (((NP)
1
3 + 2)3 − N

P) leaf boxes.

M2L. Similar to the P2P phase, the number of communicating nodes in the
M2L phase is always the 26 neighbors. To use the α–βlink model, we estimate
the amount of data that is sent at each level of the FMM hierarchy. Table 1
shows the number of boxes that are sent at the “Global M2L”, “Local M2L”,
and “Local P2P” phases where i refers to the level in the local tree. Thus, the
communication cost of the M2L phase at level l is represented by

T lnet,M2L = 26α+ nl
M2L

βlink, (22)

where nl
M2L

is the number of elements sent at level l.

13

4.3. Multigrid

The basic building blocks of the classic geometric multigrid algorithm are
all essentially stencil computations. In this section, the multigrid solve time is
modeled as the sum of the time spent smoothing, restricting, and interpolating
at each level as follows

TMG
solve = TS + TR + TI , (23)

where TS , TR, and TI are the smoothing, restriction, and interpolation times,
respectively.

In the classical multigrid there are more grid points than processors at fine
levels. Hence, all processors are active. On coarse grids, however, there are
fewer grid points than processors. Therefore, some processors execute on one
grid point while others are idle. Some approaches to alleviate this problem in-
clude redistributing the coarsest problem to a single process and redundant data
distributions. We assume a näıve multigrid implementation where the number
of points decreases by a constant factor γ in each dimension after each restriction
operation. For simplicity of analysis, we assume restriction and interpolation
require only communication with neighbors [21].

4.3.1. Computation Costs

The smoother is a repeated stencil application. Each smoothing step is
performed η1 times before restriction and η2 times after interpolation. Thus,
the computation cost on a seven-point stencil can be approximated by

Tcomp,S = 7η ·

(blogγ3
N
P c∑

i=0

N

γ3iP
+

blogγ3 Nc∑
i=blogγ3

N
P c+1

1

)
· tc, (24)

where the number of smoothing phases η = η1 + η2. In our analysis we assume
one smoothing step before restricting and one smoothing step after interpola-
tion.

4.3.2. Memory Access Costs

A cache oblivious algorithm for 3-D stencil computations incurs at most
O(N/Z1/3) cache misses for each transferring line of size L [22]. This number of
cache misses matches the lower bound of Hong and Kung [15] within a constant
factor. We apply this bound to the stencil computations within the multigrid
method. Therefore, the memory access cost of smoothing can be represented
by

Tmem,S = 7η ·

(blogγ3
N
P c∑

i=0

N

γ3iP
+

blogγ3 Nc∑
i=blogγ3

N
P c+1

1

)
L

Z1/3
· βmem. (25)

14

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 1024
Arithmetic Intensity (FLOP/Byte)

10
1

10
0

10
1

10
2

10
3

10
4

10
5

P
er

fo
rm

an
ce

 (G
FL

O
P

/s
)

FF
T

FM
M

 P
2P

FM
M

 M
2L

 (C
ar

te
si

an
)

FM
M

 M
2L

 (E
C

+F
FT

)

S
pM

V

S
te

nc
il

2025
2015

Figure 7: Roofline model and computation intensity of various phases of the FFT, FMM, and
MG methods with N = (32K)3.

4.3.3. Network Communication Costs

Communication within the V-cycle takes the form of nearest-neighbor halo
exchanges. In the 3-D multigrid, each processor communicates with its six
neighbors where the amount of data exchanged decreases by a factor of c2 on
each subsequent level. Thus, the communication time at level l is given by

T lnet,S = T lnet,R = T lnet,I = 6α+
6(N/P)2/3

γ2l
· βlink. (26)

4.4. Model Interpretation

4.4.1. Roofline Model

Arithmetic intensity (AI) is the ratio of total floating-point operations (FLOPs)
to total data movement (Bytes). Applications with low arithmetic intensity are
typically memory-bound. This means their execution time is limited by the
speed at which data can be moved rather than the speed at which computations
can be performed, as in compute-bound applications. Hence, memory-bound ap-
plications achieve only a small percentage of the theoretical peak performance
of the underlying hardware.

The roofline model can be used to assess the quality of attained floating-point
performance (GFLOP/s) by combining machine peak performance, machine
sustained bandwidth, and arithmetic intensity as follows

Attainable (GFLOP/s) = min(Peak (GFLOP/s),Memory BW×AI). (27)

Figure 7 shows a roofline model along with the arithmetic intensity of various
phases of the FFT, FMM, and MG methods. The ridge point on the roofline
model is the processor balance point. All intensities to the left of the balance
point are memory bound, whereas all to the right are compute bound. Compar-
ing the three methods shows that the FMM computations have higher arithmetic

15

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 1024
Arithmetic Intensity (FLOP/Byte)

10
11

10
10

10
9

10
8

10
7

10
6

Ti
m

e,
 re

la
tiv

e
to

 n
FL

OP

N2

NlogN
N

Figure 8: Execution time (normalized to nFLOP) for various computational complexities.

intensity due to its matrix-free nature. On the other hand, SpMV and stencil
operations, which are the basic building blocks of the classic algebraic and ge-
ometric multigrid methods, have low arithmetic intensities. The 3-D FFT has
an intermediate arithmetic intensity that grows slowly with the problem size.

In order to understand the relation between computation time and arith-
metic intensity, the algorithmic efficiency must be taken into account. Using (7),
Figure 8 shows that computation time is independent of the algorithmic com-
putational complexity up until the processor balance point. Beyond that point,
it increases as a function of the algorithmic complexity.

4.4.2. Projecting Forward

Figure 7 also shows the roofline model of a possible future CPU proces-
sor. The characteristics of the processor are based on extrapolating historical
technology trends. These trends are summarized in Table 2. From Figure 7
we observe that although FMM is compute-bound on contemporary systems, it
could become memory-bound at exascale.

5. Resiliency

The focus of this section is on the main memory and network errors. There-
fore, to assess the resilience of FFT, FMM, and MG, we quantify the vulner-
ability of the data structures and communication patterns used within these
methods.

For data structures, we use the data vulnerability factor (DV F) introduced
in [23]. The DV F for a specific data structure (DV Fd) is defined as

DV Fd = FIT × Texe × Sd ×Nha, (28)

where FIT is the failure in time (failures per billion hours per Mbit), Texe is the
application execution time, Sd is the size of the data structure, and Nha is the

16

number of accesses to the hardware (main memory in this study). To estimate
Nha, we use the number of cache misses approximated for FFT, FMM, and MG
in Section 4.

The DVF of an application (DV Fa) can be calculated by

DV Fa =

D∑
i=1

DV Fdi , (29)

where D is the number of major data structures in the application.
For communication, we introduce the communication vulnerability factor

(CV F) which reflects the communication pattern and network characteristics.
The CV F for a specific kernel (CV Fk) is defined as

CV Fk = m× Tnet ×RFn, (30)

where m is the maximum number of messages sent, Tnet is the application com-
munication time, and RFn is the network resilience factor defined for uniform
deterministic traffic [24] as follows

RFn = h̄pe + bp2
b , (31)

where h̄ is the average route length and pe is the effective link failure probability
given by

pe = apa + 2bpb − bp2
b , (32)

where a is the probability of the occurrence of an event A that can only affect
the status of a link, b is the probability of the occurrence of an event B that
can affect the status of all the links incident at a node, and pa and pb are the
probability that events A and B, respectively, can lead to link failure. Here, we
define h̄ as the diameter of the network formed by P nodes.

For multilevel methods, the CV F is calculated at each level individually.
Thus, the application CV Fa is given by

CV Fa =

K∑
k=1

CV Fk, (33)

where K is the number of key kernels in the application and CV Fk is given by

CV Fk =

L∑
l=1

CV F lk, (34)

where L is the number of levels.

5.1. Model Interpretation

5.1.1. Data Structures Vulnerability

Table 4 shows the DVF of the FFT, FMM, and MG methods. FMM has
random memory access pattern as memory accesses to the tree are random.

17

Table 4: Data vulnerability factors of FFT, FMM, and MG.

2015 2025

FFT 0.003 0.431
FMM 0.376 41.20
MG 0.037 2.101

Table 5: Communication vulnerability factors of FFT, FMM, and MG.

2015 2025

FFT 0.020 2.934
FMM 3.4e-4 0.004
MG 1.2e-5 4.9e-5

FFT and MG, on the other had, have template-based memory access pattern
where accesses to elements of the data structure mesh follow specific topology
or stencil information instead of arbitrarily constructed. Table 4 shows that
algorithms with random memory access pattern, such as FMM, have higher DVF
than algorithms with template-based memory access pattern, such as FFT and
MG. Therefore, the FMM data structures are more sensitive to memory errors
compared to FFT and MG. These observations are consistent with the ones
in [23].

5.1.2. Communication Vulnerability

The communication vulnerability factors of FFT, FMM, and MG are shown
in Table 5. As expected, the all-to-all communication pattern of FFT makes it
more sensitive to network failures compared to the hierarchical methods, FMM
and MG. The hierarchical nature of FMM and MG reduces the O(

√
P) com-

munication complexity of FFT to O(logP). This communication complexity
is likely to be optimal for elliptic problems, since an appropriately coarsened
representation of a local forcing must somehow arrive at all other parts of the
domain for the elliptic equation to converge.

5.1.3. Projecting Forward

For exascale projections, we scale the problem size by the “Cores” 10-year
increase factor from Table 2. In Tables 4 and 5, the problem size per processor
is N/P = 323 for 2015 and N/P = 653 for 2025. We also scale the number of
processes by the “Processors” increase factor from P = 11, 889 to P = 372k
and assume that the effective link failure probability pe remains constant over
time. The results show that both the DVF and CVF are expected to increase
on future exascale systems with more drastic increase in the DVF.

18

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 1024
Arithmetic Intensity (FLOP/Byte)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

P
er

fo
rm

an
ce

 (G
FL

O
P

/s
)

FF
T

FM
M

 P
2P

FM
M

 M
2L

 (C
ar

te
si

an
)

FM
M

 M
2L

 (E
C

+F
FT

)

S
pM

V

S
te

nc
il

2025
2015

Figure 9: Roofline model of NVIDIA Tesla GPU and computation intensity of various phases
of the FFT, FMM, and MG methods with N = (32K)3.

6. Heterogeneity

In this section we adapt the FFT, FMM, and MG execution models intro-
duced in Section 4 to accelerators. In particular, we consider NVIDIA GPUs.
One of the main architectural differences between GPUs and CPUs is the rel-
atively small caches on GPUs which makes reusing data in the fast memory
more difficult. Another bottleneck to consider on heterogeneous systems is the
the PCIe bus. Due to the high compute capability of the GPU, the PCIe bus
can have a significant impact on performance. The PCle transfer time for n
elements is given by

TPCIe(n) = nβPCIe, (35)

where βPCIe is the I/O bus bandwidth inverse in seconds per element. For FFT,
FMM, and MG, the PCle transfer time is given by

TPCIe = 2× N

P
βPCIe, (36)

where the factor of two accounts for the two ways transfer. Here, we assume
that each processor has a direct network connection, optimistically avoiding
PCIe channels.

6.1. Model Interpretation

6.1.1. Roofline Model

Figure 9 shows roofline models of NVIDIA Tesla GPU and of a possible fu-
ture GPU processor that is based on extrapolating historical technology trends.
Similar to the CPU exascale projection results, Figure 9 shows that kernels that
are compute-bound on contemporary systems could become memory-bound at
exascale.

19

GPU CPU

0

1

2

3
Ti

m
e

(s
)

1e1
Network
Memory

(a) FFT

GPU CPU

0.0

0.5

1.0

Ti
m

e
(s

)

1e 1
Network
Memory

(b) FMM

GPU CPU

0

1

2

Ti
m

e
(s

)

1e 1
Network
Memory

(c) Multigrid

Figure 10: Exascale projections of the FFT, FMM, and MG methods on GPU- and CPU-only
systems with N = (65K)3.

6.1.2. Projecting Forward

Using the analytical models, we predict the communication time of FFT,
FFM, and MG for large-scale problems on possible future GPU-only and CPU-
only exascale systems. The machine characteristics of the exascale systems are
based on the trends summarized in Table 2.

Figure 10 shows the communication time of FFT, FMM, and MG split into
memory and network access costs. We consider extrapolated GPU-only and
CPU-only systems that have the same peak performance of 7 exaFLOPS. The
GPU-only system has 43.3K processors while the CPU-only system has 372K
processors. The results show that all methods spend less time in both forms
of communication on the CPU-only system. However, this system requires al-
most 8.7× as many processors as the GPU-only system. This cost could be
prohibitive.

Figure 10 shows that the FFT communication time is dominated by the
network access cost which is expected given the all-to-all communication pattern
of FFT. On the other hand, memory access cost dominates MG communication
time. This implies that intra-node communication could become the bottleneck
that limits the scalability of MG on exascale systems.

7. Energy

To characterize power and energy efficiency of the FFT, FMM, and MG
methods, we use the energy roofline model introduced in [25]. This model
bounds power consumption as a function of the total floating-point operations
and total amount of data moved. The energy cost (Joules) is defined by

E ≡ E
FLOP

+ E
mem

+ E0(Texe), (37)

where E
FLOP

is the total energy consumption of the computation, E
mem

is the
total energy consumption of memory traffic, and E0 is a measure of energy
leakage as a function of execution time, Texe.

Suppose the energy cost is linear in Texe with a fixed constant power π0, (37)
can be written as

E = nFLOP · εFLOP
+ nmem · εmem

+ π0 · Texe, (38)

20

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512
Arithmetic Intensity (FLOP/Byte)

10
2

10
1

10
0

P
er

fo
rm

an
ce

 (G
FL

O
P

/J
)

FF
T

FM
M

 P
2P

FM
M

 M
2L

 (C
ar

te
si

an
)

FM
M

 M
2L

 (E
C

+F
FT

)

S
pM

V

S
te

nc
il

GPU
CPU

Figure 11: Energy roofline model of NVIDIA GTX 580 GPU and Intel i7-950 (double-
precision) along with the computation intensity of various phases of FFT, FMM, and MG
(GPU: εFLOP ≈ 212 pJ per FLOP, εmem ≈ 513 pJ per Byte, π0 ≈ 122 Watts, tc ≈ 5.1 ps per
FLOP, and βmem ≈ 5.2 ps per Byte; CPU: εFLOP ≈ 670 pJ per FLOP, εmem ≈ 795 pJ per
Byte, π0 ≈ 122 Watts, tc ≈ 18 ps per FLOP, and βmem ≈ 39 ps per Byte [26]).

where nFLOP is the number of FLOPs, nmem is the number of main memory
operations, and ε

FLOP
and ε

mem
are fixed energy per computation and per memory

operation, respectively. Defining the energy balance Bε ≡ εmem/εFLOP , the above
equation becomes

E = nFLOP · εFLOP
· (1 +

Bε
AI

+
π0 · Texe

ε
FLOP

· nFLOP
), (39)

Using (39), Figure 11 shows the energy roofline model along with the arith-
metic intensity of various phases of FFT, FMM, and MG. The figure shows that
algorithms with higher arithmetic intensity have better energy efficiency. How-
ever, total energy consumption depends heavily on the algorithmic efficiency.
Similar to Figure 8, Figure 12 shows that total energy consumption is indepen-
dent of the algorithmic computational complexity for all intensities to the left of
the processor balance point whereas energy consumption increases as a function
of the algorithmic complexity beyond that point.

7.1. Projecting Forward

The classic equation for dynamic power is given by

Powerdyn = αCV 2f, (40)

where C is the load capacitance, a physical property of the material, V is the
supply voltage, and f is the clock frequency. Hence, ε

FLOP
and ε

mem
become

ε
FLOP

= tc · Powerdyn, (41)

21

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 1024
Arithmetic Intensity (FLOP/Byte)

10
9

10
8

10
7

10
6

10
5

10
4

10
3

E
ne

rg
y,

 re
la

tiv
e

to
 n

FL
OP

N2

NlogN
N

Figure 12: Energy consumption (normalized to nFLOP) for various computational complexi-
ties.

Table 6: Component scaling with node size. Ratios are given in reference to 45 nm [27].

Tech node (nm) Frequency Voltage Capacitance Power

45 1.00 1.00 1.00 1.00
32 1.10 0.93 0.75 0.71
22 1.19 0.88 0.56 0.52
16 1.25 0.86 0.42 0.39
11 1.30 0.84 0.32 0.29
8 1.34 0.84 0.24 0.22

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512

Arithmetic Intensity (FLOP/Byte)

10
2

10
1

10
0

P
er

fo
rm

an
ce

 (G
FL

O
P

/J
)

FF
T

FM
M

 P
2P

FM
M

 M
2L

 (C
ar

te
si

an
)

FM
M

 M
2L

 (E
C

+F
FT

)

S
pM

V

S
te

nc
il

8 nm
11 nm
16 nm
22 nm
32 nm
45 nm

Figure 13: Energy roofline model of various technology nodes along with the computation
intensity of FFT, FMM, and MG.

22

Table 7: Approximate bandwidths and capacities of memory subsystem.

Configuration Bandwidth Capacity

Single-Level HMC 240 GB/s per stack 16 GB per stack

Multi-Level DRAM
HBM 200 GB/s per stack 16 GB per stack
DDR 20 GB/s per channel 64 GB per DIMM

High Capacity Memory NVRAM 10 GB/s 4− 8 × DRAM

and
ε
mem

= βmem · Powerdyn. (42)

To estimate the energy efficiency of future multicore chips, we use the tran-
sistor scaling projection model presented in [27]. This model provides the area,
voltage, and frequency scaling factors for technology nodes from 45nm through
8nm. These factors are summarized in Table 6. Figure 13 shows how the energy
efficiency is predicted to improve as the node size decreases. Nevertheless, the
per-transistor power efficiency improvements have slowed in comparison to the
historic rates. Microarchitecture innovations are needed to improve the energy
efficiency.

8. Memory

Memory hierarchy is expected to change at exascale based on both new
packaging capabilities and new technologies to provide the required bandwidth
and capacity. Local RAM and non-volatile-memory (NVRAM) will be available
either on or very close to the nodes to reduce wire delay and power consumption.
One of the leading proposed mechanism to emerge in the memory hierarchy
is the 3-D stacked memory which enables DRAM devices with much higher
bandwidths than traditional DIMMs (dual in-line memory module).

Deeper memory hierarchy is expected at exascale with each level composed
of a different memory technology. One proposed memory hierarchy for exascale
systems consists of [28]: a high-bandwidth 3-D stacked memory, such as high
bandwidth memory (HBM) standard or hybrid memory cube (HMC) technol-
ogy, a standard DRAM, and NVRAM memory. Approximate bandwidths and
capacities of the proposed memory subsystem are shown in Table 7.

Figure 14 shows memory-aware roofline models of the different memory tech-
nologies. The roofline models can be derived by substituting the bandwidth
values from Table 7 into (27). Emerging 3-D stacked DRAM devices, such as
HBM and HMC, will significantly increase available memory bandwidth. How-
ever, with the exponential increase in core counts, stacked DRAM will only
move the memory wall and is unlikely to break through it [29]. Figure 14 also
shows the large difference in attainable performance between different levels of
the memory hierarchy. Exascale applications need to exploit data locality and

23

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 1024
Arithmetic Intensity (FLOP/Byte)

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

P
er

fo
rm

an
ce

 (G
FL

O
P

/s
)

FF
T

FM
M

 P
2P

FM
M

 M
2L

 (C
ar

te
si

an
)

FM
M

 M
2L

 (E
C

+F
FT

)

S
pM

V

S
te

nc
il

HMC
HBM
DDR
NVRAM

Figure 14: Memory-aware roofline model of a possible exascale machine along with the com-
putation intensity of various phases of FFT, FMM, and multigrid methods with N = (32K)3.

explicitly manage data movement to minimize the cost of memory accesses and
to make the most effective use of available bandwidth.

9. Observations

• Algorithms that are known to be compute-bound on current architectures,
such as the FMM, could become memory-bound on future CPU- and GPU-
based exascale systems.

• Execution time and energy consumption are independent of the algorith-
mic computational complexity up until the processor balance point. They
increase as a function of the algorithmic complexity beyond that point.

• Heterogeneous systems are important for energy efficient scientific com-
puting.

• It is well known that GPUs deliver more peak performance and bandwidth
relative to high-end CPUs. This performance gap is likely to increase
towards exascale, as shown in Figure 15.

• Emerging 3-D stacked DRAM devices will significantly increase avail-
able memory bandwidth. However, with the exponential increase in core
counts, stacked DRAM will only move the memory wall and is unlikely to
break through it.

10. Conclusions

Recent efforts [1] have identified several constraints in the design of exascale
software that include massive concurrency, resilience management, exploiting

24

1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 1024
Arithmetic Intensity (FLOP/Byte)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

P
er

fo
rm

an
ce

 (G
FL

O
P

/s
)

FF
T

FM
M

 P
2P

FM
M

 M
2L

 (C
ar

te
si

an
)

FM
M

 M
2L

 (E
C

+F
FT

)

S
pM

V

S
te

nc
il

GPU 2025
CPU 2025
GPU 2015
CPU 2015

Figure 15: CPU- and GPU-based roofline models.

the high performance of heterogeneous systems, energy efficiency, and utilizing
the deeper and more complex memory hierarchy expected at exascale. In this
manuscript, we perform model-based comparison of the FFT, FMM, and MG
methods vis-à-vis these challenges. We believe that the importance of each
of these challenges is application dependent. This paper provides metrics for
researchers to quantify these challenges and their importance relative to the
applications of interest.

Modeling FFT, FMM, and MG relative to these challenges has contributed
to our understanding of the main steps that must be taken on both application
and architecture sides to help overcoming these challenges.

On the application side:

• Rethink algorithms to reduce memory requirements. Data movement is the
dominant factor that limits performance and efficiency on contemporary
architecture. Attainable floating-point performance of memory-bound ap-
plications is limited by the memory bandwidth. Furthermore, a significant
portion of the energy consumption of modern supercomputers is caused by
memory operations. Reducing data movements leads to higher arithmetic
intensity, lower memory bandwidth usage, lower energy consumption, and
better scalability with the number of cores.

• Rethink algorithms to improve arithmetic intensity. High arithmetic in-
tensity is essential for achieving good performance and efficiency. Possible
approaches to increase the arithmetic intensity include improving data lo-
cality, combining multiple kernels into a single high arithmetic intensity
kernel, and reducing the memory footprint by, for example, using matrix-
free approaches as in the FMM.

• Design for sustainability. Resilience is a major obstacle on the road to
exascale. Our projections show that resilience is expected to be a much

25

larger issue on exascale systems than it is on current petascale computers.
New resilience paradigms are required.

• Enable energy-efficient software. In addition to reducing memory opera-
tions and improving arithmetic intensity, power consumption can be re-
duced at the software side by efficiently exploiting thread level parallelism
to ensure balance between performance gains and increases in energy con-
sumption.

On the architectural side:

• Increasing memory bandwidth. Radical technology advances are needed
to improve local memory bandwidth.

• Enable energy-efficient computers. Ongoing research efforts to improve
energy efficiency include [30]: dynamic frequency scaling, power-aware ap-
plications, energy management throughout the hardware/software stack,
and optimization techniques for balancing performance and power. Nev-
ertheless, disruptive technology breakthroughs are still needed to enable
energy efficient computers.

Acknowledgments

The authors would like to thank Prof. David Keyes (KAUST) for many
insightful discussions. This material is based in part upon work supported by
the Department of Energy, National Nuclear Security Administration, under
Award Number DE-NA0002374.

References

[1] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello, B. Chap-
man, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore, A. Geist,
B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie, K. Hotta, Z. Jin,
Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes, B. Kramer,
J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas, B. Maccabe, S. Mat-
suoka, P. Messina, P. Michielse, B. Mohr, M. S. Mueller, W. E. Nagel,
H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Seidel, J. Shalf, D. Skin-
ner, M. Snir, T. Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumimoto,
W. Tang, J. Taylor, R. Thakur, A. Trefethen, M. Valero, A. van der Steen,
J. Vetter, P. Williams, R. Wisniewski, K. Yelick, The international exascale
software project roadmap, The International Journal of High Performance
Computing Applications 25 (1) (2011) 3–60. arXiv:https://doi.org/10.
1177/1094342010391989, doi:10.1177/1094342010391989.
URL https://doi.org/10.1177/1094342010391989

26

https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
http://arxiv.org/abs/https://doi.org/10.1177/1094342010391989
http://arxiv.org/abs/https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989

[2] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hof-
mann, M. Pippig, D. Potts, G. Sutmann, Comparison of scalable fast
methods for long-range interactions, Phys. Rev. E 88 (2013) 063308.
doi:10.1103/PhysRevE.88.063308.
URL https://link.aps.org/doi/10.1103/PhysRevE.88.063308

[3] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, J. B. Schroder, Reducing
parallel communication in algebraic multigrid through sparsification, SIAM
Journal on Scientific Computing 38 (5) (2016) S332–S357.

[4] TOP500.org, TOP500 Supercomputer Site (2016).
URL www.top500.org

[5] L. Greengard, V. Rokhlin, A fast algorithm for particle simula-
tions, Journal of Computational Physics 135 (2) (1997) 280 – 292.
doi:https://doi.org/10.1006/jcph.1997.5706.
URL http://www.sciencedirect.com/science/article/pii/

S0021999197957065

[6] J. Barnes, P. Hut, A hierarchical O(N logN) force-calculation algorithm,
Nature 324 (1986) 446–449. doi:10.1038/324446a0.

[7] N. Beams, L. Olson, J. Freund, A finite element based P3M method for
N-body problems, SIAM Journal of Scientific Computing 38 (3) (2016)
A1538–A1560. doi:10.1137/15M1014644.

[8] C. Burstedde, L. C. Wilcox, O. Ghattas, p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees, SIAM Journal on
Scientific Computing 33 (3) (2011) 1103–1133. doi:10.1137/100791634.

[9] H. Ibeid, R. Yokota, J. Pestana, D. Keyes, Fast multipole precondi-
tioners for sparse matrices arising from elliptic equations, Computing
and Visualization in Science 18 (6) (2018) 213–229. doi:10.1007/

s00791-017-0287-5.
URL https://doi.org/10.1007/s00791-017-0287-5

[10] H. Ibeid, R. Yokota, D. Keyes, A performance model for the communication
in fast multipole methods on high-performance computing platforms, The
International Journal of High Performance Computing Applications 30 (4)
(2016) 423–437. arXiv:https://doi.org/10.1177/1094342016634819,
doi:10.1177/1094342016634819.
URL https://doi.org/10.1177/1094342016634819

[11] M. Abduljabbar, G. S. Markomanolis, H. Ibeid, R. Yokota, D. Keyes, Com-
munication reducing algorithms for distributed hierarchical n-body prob-
lems with boundary distributions, in: J. M. Kunkel, R. Yokota, P. Bal-
aji, D. Keyes (Eds.), High Performance Computing, Springer International
Publishing, Cham, 2017, pp. 79–96.

27

https://link.aps.org/doi/10.1103/PhysRevE.88.063308
https://link.aps.org/doi/10.1103/PhysRevE.88.063308
https://doi.org/10.1103/PhysRevE.88.063308
https://link.aps.org/doi/10.1103/PhysRevE.88.063308
www.top500.org
www.top500.org
http://www.sciencedirect.com/science/article/pii/S0021999197957065
http://www.sciencedirect.com/science/article/pii/S0021999197957065
https://doi.org/https://doi.org/10.1006/jcph.1997.5706
http://www.sciencedirect.com/science/article/pii/S0021999197957065
http://www.sciencedirect.com/science/article/pii/S0021999197957065
https://doi.org/10.1038/324446a0
https://doi.org/10.1137/15M1014644
https://doi.org/10.1137/100791634
https://doi.org/10.1007/s00791-017-0287-5
https://doi.org/10.1007/s00791-017-0287-5
https://doi.org/10.1007/s00791-017-0287-5
https://doi.org/10.1007/s00791-017-0287-5
https://doi.org/10.1007/s00791-017-0287-5
https://doi.org/10.1177/1094342016634819
https://doi.org/10.1177/1094342016634819
http://arxiv.org/abs/https://doi.org/10.1177/1094342016634819
https://doi.org/10.1177/1094342016634819
https://doi.org/10.1177/1094342016634819

[12] R. E. Bank, C. C. Douglas, Sharp estimates for multigrid rates of conver-
gence with general smoothing and acceleration, SIAM Journal on Numer-
ical Analysis 22 (4) (1985) 617–633. arXiv:https://doi.org/10.1137/

0722038, doi:10.1137/0722038.
URL https://doi.org/10.1137/0722038

[13] K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P.-K. Yeung,
R. Vuduc, On the communication complexity of 3D FFTs and its implica-
tions for exascale, in: Proceedings of the 26th ACM International Confer-
ence on Supercomputing, ICS ’12, ACM, New York, NY, USA, 2012, pp.
205–214. doi:10.1145/2304576.2304604.
URL http://doi.acm.org/10.1145/2304576.2304604

[14] M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran, Cache-oblivious
algorithms, ACM Trans. Algorithms 8 (1) (2012) 4:1–4:22. doi:10.1145/

2071379.2071383.
URL http://doi.acm.org/10.1145/2071379.2071383

[15] H. Jia-Wei, H. T. Kung, I/O complexity: The red-blue pebble game, in:
Proceedings of the Thirteenth Annual ACM Symposium on Theory of
Computing, STOC ’81, ACM, New York, NY, USA, 1981, pp. 326–333.
doi:10.1145/800076.802486.
URL http://doi.acm.org/10.1145/800076.802486

[16] R. Yokota, An FMM based on dual tree traversal for many-core ar-
chitectures, Journal of Algorithms & Computational Technology 7 (3)
(2013) 301–324. arXiv:https://doi.org/10.1260/1748-3018.7.3.301,
doi:10.1260/1748-3018.7.3.301.
URL https://doi.org/10.1260/1748-3018.7.3.301

[17] R. Yokota, H. Ibeid, D. Keyes, Fast multipole method as a matrix-free
hierarchical low-rank approximation, in: T. Sakurai, S.-L. Zhang, T. Ima-
mura, Y. Yamamoto, Y. Kuramashi, T. Hoshi (Eds.), Eigenvalue Problems:
Algorithms, Software and Applications in Petascale Computing, Springer
International Publishing, Cham, 2017, pp. 267–286.

[18] L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive fast
multipole algorithm in two and three dimensions, Journal of
Computational Physics 196 (2) (2004) 591 – 626. doi:https:

//doi.org/10.1016/j.jcp.2003.11.021.
URL http://www.sciencedirect.com/science/article/pii/

S0021999103006090

[19] A. Chandramowlishwaran, J. Choi, K. Madduri, R. Vuduc, Brief an-
nouncement: Towards a communication optimal fast multipole method
and its implications at exascale, in: Proceedings of the Twenty-fourth
Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’12, ACM, New York, NY, USA, 2012, pp. 182–184. doi:

28

https://doi.org/10.1137/0722038
https://doi.org/10.1137/0722038
http://arxiv.org/abs/https://doi.org/10.1137/0722038
http://arxiv.org/abs/https://doi.org/10.1137/0722038
https://doi.org/10.1137/0722038
https://doi.org/10.1137/0722038
http://doi.acm.org/10.1145/2304576.2304604
http://doi.acm.org/10.1145/2304576.2304604
https://doi.org/10.1145/2304576.2304604
http://doi.acm.org/10.1145/2304576.2304604
http://doi.acm.org/10.1145/2071379.2071383
http://doi.acm.org/10.1145/2071379.2071383
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1145/2071379.2071383
http://doi.acm.org/10.1145/2071379.2071383
http://doi.acm.org/10.1145/800076.802486
https://doi.org/10.1145/800076.802486
http://doi.acm.org/10.1145/800076.802486
https://doi.org/10.1260/1748-3018.7.3.301
https://doi.org/10.1260/1748-3018.7.3.301
http://arxiv.org/abs/https://doi.org/10.1260/1748-3018.7.3.301
https://doi.org/10.1260/1748-3018.7.3.301
https://doi.org/10.1260/1748-3018.7.3.301
http://www.sciencedirect.com/science/article/pii/S0021999103006090
http://www.sciencedirect.com/science/article/pii/S0021999103006090
https://doi.org/https://doi.org/10.1016/j.jcp.2003.11.021
https://doi.org/https://doi.org/10.1016/j.jcp.2003.11.021
http://www.sciencedirect.com/science/article/pii/S0021999103006090
http://www.sciencedirect.com/science/article/pii/S0021999103006090
http://doi.acm.org/10.1145/2312005.2312039
http://doi.acm.org/10.1145/2312005.2312039
http://doi.acm.org/10.1145/2312005.2312039
https://doi.org/10.1145/2312005.2312039
https://doi.org/10.1145/2312005.2312039

10.1145/2312005.2312039.
URL http://doi.acm.org/10.1145/2312005.2312039

[20] G. E. Blelloch, P. B. Gibbons, H. V. Simhadri, Low depth cache-oblivious
algorithms, in: Proceedings of the Twenty-second Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’10, ACM,
New York, NY, USA, 2010, pp. 189–199. doi:10.1145/1810479.1810519.
URL http://doi.acm.org/10.1145/1810479.1810519

[21] H. Gahvari, W. Gropp, An introductory exascale feasibility study for FFTs
and multigrid, in: 2010 IEEE International Symposium on Parallel Dis-
tributed Processing (IPDPS), 2010, pp. 1–9. doi:10.1109/IPDPS.2010.

5470417.

[22] M. Frigo, V. Strumpen, Cache oblivious stencil computations, in: Pro-
ceedings of the 19th Annual International Conference on Supercomput-
ing, ICS ’05, ACM, New York, NY, USA, 2005, pp. 361–366. doi:

10.1145/1088149.1088197.
URL http://doi.acm.org/10.1145/1088149.1088197

[23] L. Yu, D. Li, S. Mittal, J. S. Vetter, Quantitatively modeling application
resilience with the data vulnerability factor, in: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14, IEEE Press, Piscataway, NJ, USA, 2014, pp. 695–
706. doi:10.1109/SC.2014.62.
URL https://doi.org/10.1109/SC.2014.62

[24] G. Liu, C. Ji, Scalability of network-failure resilience: analysis using multi-
layer probabilistic graphical models, IEEE/ACM Transactions on Network-
ing 17 (1) (2009) 319–331. doi:10.1109/TNET.2008.925944.
URL doi.ieeecomputersociety.org/10.1109/TNET.2008.925944

[25] J. W. Choi, D. Bedard, R. Fowler, R. Vuduc, A roofline model of energy, in:
Proceedings of the 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, IPDPS ’13, IEEE Computer Society, Wash-
ington, DC, USA, 2013, pp. 661–672. doi:10.1109/IPDPS.2013.77.
URL http://dx.doi.org/10.1109/IPDPS.2013.77

[26] J. Choi, M. Dukhan, X. Liu, R. Vuduc, Algorithmic time, energy, and
power on candidate hpc compute building blocks, in: 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, 2014, pp.
447–457. doi:10.1109/IPDPS.2014.54.

[27] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, D. Burger,
Power challenges may end the multicore era, Commun. ACM 56 (2) (2013)
93–102. doi:10.1145/2408776.2408797.
URL http://doi.acm.org/10.1145/2408776.2408797

29

https://doi.org/10.1145/2312005.2312039
https://doi.org/10.1145/2312005.2312039
http://doi.acm.org/10.1145/2312005.2312039
http://doi.acm.org/10.1145/1810479.1810519
http://doi.acm.org/10.1145/1810479.1810519
https://doi.org/10.1145/1810479.1810519
http://doi.acm.org/10.1145/1810479.1810519
https://doi.org/10.1109/IPDPS.2010.5470417
https://doi.org/10.1109/IPDPS.2010.5470417
http://doi.acm.org/10.1145/1088149.1088197
https://doi.org/10.1145/1088149.1088197
https://doi.org/10.1145/1088149.1088197
http://doi.acm.org/10.1145/1088149.1088197
https://doi.org/10.1109/SC.2014.62
https://doi.org/10.1109/SC.2014.62
https://doi.org/10.1109/SC.2014.62
https://doi.org/10.1109/SC.2014.62
doi.ieeecomputersociety.org/10.1109/TNET.2008.925944
doi.ieeecomputersociety.org/10.1109/TNET.2008.925944
https://doi.org/10.1109/TNET.2008.925944
doi.ieeecomputersociety.org/10.1109/TNET.2008.925944
http://dx.doi.org/10.1109/IPDPS.2013.77
https://doi.org/10.1109/IPDPS.2013.77
http://dx.doi.org/10.1109/IPDPS.2013.77
https://doi.org/10.1109/IPDPS.2014.54
http://doi.acm.org/10.1145/2408776.2408797
https://doi.org/10.1145/2408776.2408797
http://doi.acm.org/10.1145/2408776.2408797

[28] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook,
D. Donofrio, S. D. Hammond, K. S. Hemmert, S. M. Kelly, H. Le, V. J.
Leung, D. R. Resnick, A. F. Rodrigues, J. Shalf, D. Stark, D. Unat, N. J.
Wright, Abstract machine models and proxy architectures for exascale com-
puting, in: 2014 Hardware-Software Co-Design for High Performance Com-
puting, 2014, pp. 25–32. doi:10.1109/Co-HPC.2014.4.

[29] M. Radulovic, D. Zivanovic, D. Ruiz, B. R. de Supinski, S. A. McKee,
P. Radojković, E. Ayguadé, Another trip to the wall: How much will
stacked DRAM benefit HPC?, in: Proceedings of the 2015 International
Symposium on Memory Systems, MEMSYS ’15, ACM, New York, NY,
USA, 2015, pp. 31–36. doi:10.1145/2818950.2818955.
URL http://doi.acm.org/10.1145/2818950.2818955

[30] V. Getov, A. Hoisie, P. Bose, New frontiers in energy-efficient computing
[guest editors’ introduction], Computer 49 (10) (2016) 14–18. doi:10.

1109/MC.2016.315.

30

https://doi.org/10.1109/Co-HPC.2014.4
http://doi.acm.org/10.1145/2818950.2818955
http://doi.acm.org/10.1145/2818950.2818955
https://doi.org/10.1145/2818950.2818955
http://doi.acm.org/10.1145/2818950.2818955
https://doi.org/10.1109/MC.2016.315
https://doi.org/10.1109/MC.2016.315

	1 Introduction
	2 Methods
	2.1 Fast Fourier Transform
	2.1.1 Parallel Domain Decomposition
	2.1.2 FFT Calculation Flow

	2.2 Fast Multipole Method
	2.2.1 Hierarchical Domain Decomposition
	2.2.2 The FMM Calculation Flow
	2.2.3 FMM Communication Scheme

	2.3 Multigrid

	3 Exascale Projection
	4 Concurrency
	4.1 Fast Fourier Transform
	4.1.1 Computation Costs
	4.1.2 Memory Access Costs
	4.1.3 Network Communication Costs

	4.2 Fast Multipole Method
	4.2.1 Computation Costs
	4.2.2 Memory Access Costs
	4.2.3 Network Communication Costs

	4.3 Multigrid
	4.3.1 Computation Costs
	4.3.2 Memory Access Costs
	4.3.3 Network Communication Costs

	4.4 Model Interpretation
	4.4.1 Roofline Model
	4.4.2 Projecting Forward

	5 Resiliency
	5.1 Model Interpretation
	5.1.1 Data Structures Vulnerability
	5.1.2 Communication Vulnerability
	5.1.3 Projecting Forward

	6 Heterogeneity
	6.1 Model Interpretation
	6.1.1 Roofline Model
	6.1.2 Projecting Forward

	7 Energy
	7.1 Projecting Forward

	8 Memory
	9 Observations
	10 Conclusions

