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Abstract
Algebraic multigrid (AMG) is often viewed as a scalable OðnÞ solver for sparse linear systems. Yet, AMG lacks parallel
scalability due to increasingly large costs associated with communication, both in the initial construction of a multigrid
hierarchy and in the iterative solve phase. This work introduces a parallel implementation of AMG that reduces the cost of
communication, yielding improved parallel scalability. It is common in Message Passing Interface (MPI), particularly in the
MPI-everywhere approach, to arrange inter-process communication, so that communication is transported regardless of
the location of the send and receive processes. Performance tests show notable differences in the cost of intra- and
internode communication, motivating a restructuring of communication. In this case, the communication schedule takes
advantage of the less costly intra-node communication, reducing both the number and the size of internode messages.
Node-centric communication extends to the range of components in both the setup and solve phase of AMG, yielding an
increase in the weak and strong scaling of the entire method.
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1. Introduction

Algebraic multigrid (AMG) (Brandt et al., 1984; McCor-

mick and Ruge, 1982; Ruge and Stüben, 1987) is an itera-

tive solver for sparse linear systems, such as those arising

from discretized partial differential equations. AMG tar-

gets linear cost in the number of unknowns and is domi-

nated in cost by sparse matrix operations such as the

sparse matrix-matrix multiplication (SpGEMM) and

sparse matrix-vector multiplication (SpMV). As state-of-

the-art supercomputers are continuously increasing in per-

formance capabilities, there is pressure on numerical

methods to fully exploit the potential of these machines.

Due to large costs associated with parallel communica-

tion, for example, on the coarse levels (Baker et al., 2011),

AMG lacks parallel scalability. This article explores a

method of altering the parallel implementation of commu-

nication throughout AMG to improve both performance

and parallel scaling.

Standard parallel AMG typically exhibits strong scaling

to 5 or 10000 degrees of freedom per core before communi-

cation costs outweigh local computation. Further extending

the core count yields an increase in total solve time due to

dominant communication costs. Figure 1 shows the time

required to solve a Laplacian system, created with MFEM

(Lawrence Livermore National Laboratory (LLNL), 2010),

and described in detail in example 2.1. The timings are parti-

tioned into local computation and inter-process communica-

tion costs. As the processor count reaches the strong scaling

limit, communication becomes increasingly dominant. The

problem scales to 512 processes, after which communication

costs outweigh any reductions in local computation.

Most methods for reducing communication costs in

AMG focus on a redesign of the method or on the under-

lying sparse matrix operations. Aggressive coarsening, for

example, reduces the dimensions of coarse levels at a faster

rate, yielding reduced density and communication require-

ments (Sterck et al., 2005, 2008; Yang, 2010). Similarly,

the smoothed aggregation solver allows large aggregates,

coarsening a larger number of fine points into a single

coarse point (Treister and Yavneh, 2015; Tuminaro and

Tong, 2000). Small nonzero entries resulting from fill-in

on coarse levels may be systematically removed, adding

sparsity into coarse-grid operators (Bienz et al., 2016;
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Falgout and Schroder, 2014; Treister and Yavneh, 2015).

Furthermore, matrix ordering and graph partitioning yield

reduced communication costs throughout sparse matrix

operations (Hendrickson and Kolda, 2000; Pinar and Ayka-

nat, 2004; Vastenhouw and Bisseling, 2005; Çatalyürek

and Aykanat, 1999, 2010), and coarse-level repartitioning

has potential to reduce the cost of the solver (Adams et al.,

2004). Likewise, coarse-level redistribution and duplica-

tion of the coarsest level solves yield large reductions in

communication time. MPI þ X approaches have shown

improvements to communication requirements by reducing

the number of processes active in communication as well as

overlapping communication and computation (AlOnazi

et al., 2017; Baker et al., 2011). Similarly, asynchrony can

be introduced through additive approaches, allowing for

multiple levels to be operated on at once, yielding reduced

load imbalance (AlOnazi et al., 2017; Vassilevski and

Yang, 2014). The approach presented in this article aug-

ments these approaches, reducing off-node message counts

and sizes through aggregation of data.

Topology-aware methods and message agglomeration

are commonly used to reduce communication costs in MPI

applications. Topology-aware task mapping minimizes

message hop counts, reducing the cost associated with

communication (Bhatele and Kale, 2008; Bhatele et al.,

2012). Message agglomeration is commonly used to reduce

the cost of communication, for example, in MPI collectives

(Karonis et al., 2000; Kielmann et al., 1999; Sack and

Gropp, 2012; Solomonik et al., 2011). The Tram library

(Wesolowski et al., 2014) explores agglomeration of

point-to-point messages, by streamlining messages

between neighboring processes. Neighborhood collective

operations were added to MPI 3, allowing for topology-

aware communication patterns (Hoefler and Traff, 2009).

However, current implementations of neighborhood collec-

tives do not address topology, consisting only of standard

nonblocking sends and receive operations. Recent work has

combined messages in neighborhood collectives based on

common neighbors (Mirsadeghi et al., 2017).

This article presents, analyzes, and evaluates a method

for reducing communication costs in both the setup and

solve phases of parallel AMG through agglomeration of

messages among nodes. The novel contributions of this

article include applying an existing communication tech-

nique to the communication of sparse matrices, introducing

a second method for agglomeration of messages, analyzing

the performance of the various sparse communication stra-

tegies, and automatically selecting a communication

scheme based on a performance model. The article is out-

lined as follows. Section 2 covers AMG and common par-

allel implementations. Section 3 focuses on the node-aware

communication algorithm, with background and the origi-

nal node-aware communication approach described in sec-

tion 3.1, while a new variation is presented in section 3.2.

Section 3.3 presents performance models that differentiate

between communication strategies. Section 4 covers

numerical experiments in support of the approach, and sec-

tion 5 contains concluding remarks and future directions.

2. Background

Throughout this article, AMG methods are analyzed with

regard to the three-dimensional Laplacian in example 2.1.

This system is representative of the types of problems that

are often solved with AMG.

Example 2.1. Let the system Ax ¼ b result from a finite

element discretization of the Laplace problem�u ¼ 1, cre-

ated with MFEM (LLNL, 2010). The linear system is created

with MFEM’s escher-p3 mesh, a three-dimensional mesh

consisting of unstructured elements with structured refine-

ment. Furthermore, this system consists of 1884545 degrees

of freedom and 27870337 nonzeros, unless otherwise speci-

fied. The associated Ruge–Stüben (Ruge and Stüben, 1987)

hierarchies are created with Hybrid Modified Independent Set

(HMIS) (Sterck et al., 2005; Yang, 2010) coarsening and

extended þ i interpolation (Sterck et al., 2008), while the

smoothed aggregation solver (Tuminaro and Tong, 2000)

forms aggregates based on a distance-2 maximal independent

set (MIS-2) of the graph. Both classical and smoothed aggre-

gation hierarchies use a strength tolerance of 0:25. Classical

interpolation operators are truncated, as described in (Sterck

et al., 2008), with a threshold of 0:3. All tests are performed

with RAPtor (Bienz and Olson, 2017), an AMG codebase

containing both Ruge–Stüben and smoothed aggregation sol-

vers. The Ruge–Stüben hierarchy created with RAPtor is

identical to that created with the same parameters in HYPRE

(Lawrence Livermore National Laboratory (LLNL), 2008),

allowing for comparisons. All timings are performed on 8192

processes of Blue Waters (Bode et al., 2013; NCSA, 2012), a

Cray XK/XE supercomputer at the National Center for Super-

computing Applications, unless stated otherwise.

AMG consists of forming a hierarchy of successively

coarser levels, followed by an iterative solve phase.
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Figure 1. The total time required to solve a three-dimensional
Laplacian system with 1884545 degrees of freedom described in
example 2.1. The percentage of total time spent in communication
is listed at the top of the bars.
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Common algorithms for constructing an AMG hierarchy

include the Ruge–Stüben solver (Ruge and Stüben, 1987)

and the smoothed aggregation solver (Tuminaro and Tong,

2000). This setup phase, described in Algorithm 1, consists

of four methods: strength, splitting, interpola-

tion, and PT � A � P, regardless of the solver used. First,

the strength function determines nodes that are strongly

connected to one another. The resulting strength-of-

connection matrix is then partitioned in splitting to

determine the nodes influencing each coarse degree of free-

dom. The interpolation function uses the node parti-

tion to form a transfer operator, which projects data

between the fine and coarse nodes. Finally, the coarse-

grid operator is formed with a Galerkin product, PT � A � P.

The underlying algorithms for splitting and

interpolation are solver dependent. The Ruge–Stüben

solver partitions nodes into coarse (C) and fine (F) points.

The interpolation operator projects C-points directly

between fine and coarse levels, while F-points influence

neighboring coarse nodes. Alternatively, the smoothed

aggregation solver partitions the nodes into groups of

aggregates, each corresponding to a single coarse degree

of freedom. The transfer operator is initially created as a

point-wise constant, with a single column holding each

aggregate. Near-nullspace candidates are then fit to the

operator, and finally, the resulting matrix is smoothed.

The construction of a parallel AMG hierarchy requires

both local computation and point-to-point communication,

specifically communication of both vectors and sparse

matrices. Figure 2 partitions the per level cost of construct-

ing a hierarchy for example 2.1 into local computation,

vector communication, and sparse matrix communication.

Irrespective of which setup algorithm is used, the cost of

hierarchy construction is split into local computation and

Algorithm 1. AMG setup: setup.
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Figure 2. The setup phase cost for various AMG hierarchies
for the system from example 2.1. The total cost is partitioned
by level, with the finest level labeled 0, and further split into
communication and local computation. The percentage of total
time spent communicating is listed at the top of the bars: (a)
Ruge–Stüben, (b) smoothed aggregation. AMG: algebraic
multigrid.
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MPI communication, with communication dominating

coarse-level setup cost.

Point-to-point communication dominates the total cost of

the setup phase, particularly when a large number of pro-

cesses are active in construction of the hierarchy. Figure 3

displays the cost of forming a Ruge–Stüben hierarchy for

example 2.1, strongly scaled across a variety of core counts.

As the number of processes is increased, a larger percentage

of time is associated with point-to-point communication.

After the hierarchy is constructed, the solve phase iter-

ates over all levels until convergence. This phase, described

in Algorithm 2, consists of relax, which relaxes error with

a smoother such as Jacobi or Gauss–Seidel, calculating the

residual, and restricting this residual to a coarser level

where this process is repeated until error can be solved for

directly. Finally, error from the coarser level is interpolated

up the hierarchy, added to the current solution, and again

smoothed with a relaxation method.

Figure 4 displays the cost of iteratively solving the

Ruge–Stüben and smoothed aggregation hierarchies for

example 2.1. The solve phase costs are partitioned into

local computation and MPI vector communication,

associating the large increase in cost on coarse levels with

point-to-point communication.

MPI communication dominates the cost of the AMG

solve phase, particularly on coarse levels and at large

scales, as analyzed in Bienz et al. (2016). Figure 5 shows

the full cost of the iterative solve phase of AMG at various

scales. As the number of processes increases, the percent-

age of cost due to communication also increases, even as

the problem size stays constant.

2.1. Parallel matrix operations. Parallel vector and

sparse matrix communication dominates the cost of AMG,

particularly at large scales. This point-to-point communi-

cation is required for parallel sparse matrix operations in

methods of both the setup and solve phases.

Assuming a row-wise partition of a linear system, as

displayed in Figure 6, each process holds a contiguous

subset of the rows of the matrix, along with corresponding

vector values. The local rows of the matrix are further split

into an on-process block, associated with local vector val-

ues, as well as off-process columns, which correspond to

vector entries stored on other processes. As a result, matrix

operations such as SpMV communication require commu-

nication of vector values corresponding to nonzero off-

process columns. Hence, vector communication consists

of each process sending vector values to any process with

corresponding nonzero columns. This communication pat-

tern is initialized during the construction of the matrix.

Similarly, matrix communication depends on the non-

zero off-process columns. Figure 7 shows two matrices, A

and B, partitioned row-wise across four processes, with the

local rows again partitioned into on- and off-process col-

umns. Matrix operations such as SpGEMM multiplication

require communication of the rows of B that correspond to

nonzero off-process columns of A. In essence, matrix com-

munication retains the same communication pattern as that

of vectors, but requiring entire rows of the matrix rather

than single values.

Communication (Gropp et al., 1996) dominates the total

time (both setup and solve), as shown in Figure 1. More
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Figure 3. The cost of creating a Ruge–Stüben hierarchy for
example 2.1 on various core counts. The percentage of total time
spent communicating is listed at the top of the bars.

Algorithm 2. AMG solve: solve
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precisely, the coarse-level matrix operations are dominated

by point-to-point communication of vectors and sparse

matrices, as displayed in Figures 2 to 5. The cost associated

with communication increases on coarse levels.

3. Node-aware communication

The cost associated with standard point-to-point communi-

cation throughout AMG can be reduced through the use of

node-aware communication, particularly when a large

number of messages are communicated, as is the case on

coarse levels of AMG. This concept is introduced in Bienz

et al. (2019) for the SpMV and is extended here to all

components of the AMG setup and solve phases. In partic-

ular, a new two-step communication process is introduced

for the finest levels of the AMG hierarchy.

3.1. Background of node-aware communication

The cost of communication depends on many factors, such

as number of messages, size of the messages, and relative

locations of the send and receive processes. For instance,

messages between two processes on the same socket are

significantly cheaper than communication between pro-

cesses located on the same node but different sockets.

Communication cost is further increased when the send and

receive processes are on different nodes, requiring mes-

sages to be injected into the network. Figure 8 shows the

difference in the cost of sending a single message relative

to the location of participating processes, with measured
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Figure 4. The solve phase cost for various AMG hierarchies for
the system from example 2.1. The total cost is partitioned by
level, with the finest level displayed as 0, and further split into
communication and local computation. The percentage of total
time spent communicating is listed at the top of the bars: (a)
Ruge–Stüben, (b) smoothed aggregation. AMG: algebraic
multigrid.
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Figure 5. The cost of iteratively solving the Ruge–Stüben hier-
archies for the system from example 2.1 on various core counts.
The percentage of total time spent communicating is listed at the
top of the bars.
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Figure 7. Two matrices partitioned across four processes in a
row-wise manner.
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timings represented as scattered dots while the correspond-

ing thick lines display the associated model measurements.

The model is calculated with the max-rate model, which

adds bandwidth injection limits to the standard postal

model (Gropp et al., 2016), and the ping-pong tests are

measured with Nodecomm.1 Furthermore, the cost of com-

municating data between nodes is dependent on the number

of active processes, with the cost minimized as data is

distributed across a larger number of processes. Figure 9

displays the cost of sending a single message between two

nodes, with various numbers of active processes. Addi-

tional parameters not included in the max-rate model add

to the cost of communication, such as queue search costs,

which result from sending a large number of messages at

once, and network contention, which occurs when many

processes communicate large amounts of data across mul-

tiple links of the network (Bienz et al., 2018). The large

costs associated with internode messages motivate repla-

cing them with extra intra-node messages when possible.

However, a node’s communication load should remain

balanced with all ppn processes sending approximately
1

ppn
th of the data to minimize bandwidth costs, where ppn

is the number of processes per node (PPN).

Standard communication requires sending data directly

between processes, regardless of their locations within the

parallel topology. For example, Figure 10 displays standard

communication in which a number of processes on nodes n

and m send data directly to a process q. Furthermore, Fig-

ure 11 shows the standard process of communicating data

from some process p on node n to all processes on node m. In

both cases, multiple messages are communicated between

the two nodes. Furthermore, in the latter example, duplicate

data are sent to multiple processes on node m, indicating that

both the number and size of messages communicated

between nodes n and m are larger than ideal.

Three-step node-aware parallel (NAP-3) communica-

tion reduces the number and size of messages injected into

the network while increasing the amount of less-costly on-

node communication (Bienz et al., 2019). NAP-3 commu-

nication gathers all data to be sent to node m on some

process local to the node n on which it originates. These

data are then sent as a single message through the network,

before being distributed to the necessary processes on node

m. Figure 12 displays the steps of sending data from node n

to m, sending first to process p on node n. A single message

is then sent from process p on node n to process q on node
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Figure 8. The cost of sending a single message between two
processes located on the same socket, on different sockets of the
same node, or on different nodes. The scattered dots represent
timings, while the thick lines are corresponding models.
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processes per node.
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Figure 10. Standard communication between processes on node
n and a process q on node m yields multiple messages to be sent
between the two nodes.
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Figure 11. Standard communication from a process p to all
processes on node m yields multiple messages to be communi-
cated between nodes n and m, while also sending duplicate data
through the network.
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m. Finally, process q distributes the received data to pro-

cesses on node m that need it. In addition, all on-node

messages, or those for which the process of origin lies on

the same node as the destination process, are communi-

cated with the standard approach. Moreover, it is likely that

there are other nodes in the network to which processes on

node n must also be send. These data are gathered on some

process s on n that is not p. As a result, several PPN are

communicating.

NAP-3 communication greatly reduces both the number

of messages and the number of bytes injected into the net-

work by any node. When a node n is communicating sim-

ilar amounts of data to many other nodes, the per process

message size is also greatly reduced. However, in the case

that node n is communicating the majority of data to a

single node m, a large imbalance can occur in communica-

tion requirements of the processes local to node n, reducing

bandwidth and increasing message cost.

3.2. Two-step node-aware communication

Alternatively, this article introduces a method to allow all

processes to remain active in internode communication. This

two-step approach to node-aware parallel (NAP-2), dis-

played in Figure 13, consists of gathering all data on process

to be sent to a node m, and sending this directly to the

corresponding process. This is followed by redistribution

of values on the receiving node. This alternate node-aware

method reduces the number and size of data by eliminating

the duplication displayed in Figure 11, but the multiple mes-

sages communicated between nodes in Figure 10 remain.

Therefore, NAP-2 communication can greatly reduce both

the number of messages and bytes communicated over stan-

dard communication, while process loads remain equally

balanced to standard communication. However, as up to ppn

messages remain between each set of nodes, NAP-2 does not

reduce the message count to the extent of NAP-3, and as a

result is less beneficial when there is communication

between a large number of nodes.

3.3. Performance models for communication
strategies

The optimal communication strategy varies with problem

type, problem scale, level in AMG hierarchy, and opera-

tion. Figure 14 displays the cost of performing various

dominate matrix operations on each level of the Ruge–Stü-

ben AMG hierarchy for the Laplace system from example

2.1. While node-aware communication often yields large

speedups on coarse levels, additional work and load imbal-

ance can significantly slowdown fine-level communica-

tion. Therefore, a performance model should be used to

determine the ideal communication strategy for the various

operations throughout AMG.

The max-rate model (Gropp et al., 2016) describes the

cost of sending messages from a symmetric multiproces-

sing node as:

T ¼ anþ ppn � s
minðRN ;ppn � RbÞ

; ð1Þ

where a is the latency, Rb is rate at which a process can

transport data, and RN is the rate at which a network inter-

face device (NID) can inject data into the network. Further-

more, n is the maximum number of messages sent and s is

the maximum number of bytes. This model assumes that all

processes on a node communicate equal amounts of data.

However, as NAP-3 can result in imbalanced communica-

tion loads, the max-rate model is altered to be:

T ¼ anþ max
snode

RN

;
sproc

Rb

� �
; ð2Þ

where sproc is the maximum number of bytes communi-

cated by any process and snode is the maximum number

of bytes injected by any NID. In the case of perfect load

balance, snode is equal to ppn � sproc, and equation (2)

reduces to the original max-rate model. Furthermore, when

modeling the cost of intra-node communication, the max-

rate model reduces to the standard postal model:

T ¼ a‘nþ
s

Rb‘

; ð3Þ

as data are not injected into the network. In this model, a‘ is

the latency required to send a message to another process

n m

p

q

Figure 12. Three-step node-aware communication: (1) gather
data on a process p local to the node on which data originate, (2)
send a single message between process p on node n and process q
on node m, and (3) redistribute across processes on node m.

n m

Figure 13. An alternative, two-step node-aware communication:
(1) gather all data to be sent to node m on process and (2) send
directly to the corresponding process on node m.
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on-node, and Rb‘ is the rate at which data are transported

between two on-node processes. In all models, the latency

and bandwidth terms are measured and applied separately

to short, eager, and rendezvous protocols.

The cost of each communication strategy can be

approximated as the sum of the cost of internode messages,

modeled by equation (2), and intra-node message cost as

determined by equation (3). Furthermore, as fully intra-

node communication is performed equivalently in all stra-

tegies, only internode communication and the node-aware

approaches’ additional intra-node communication require-

ments are modeled.

Standard communication is modeled as:

T ¼ anproc þ max
snode

RN

;
sproc

Rb

� �
; ð4Þ

where nproc is the maximum number of processes with

which any process communicates.

Similarly, NAP-2 communication is modeled by:

T ¼ anproc2node þ max
snode

RN

;
sproc

Rb

0
@

1
A

þa‘ðppn� 1Þ þ sproc

Rb‘

;

ð5Þ

where nproc2node is the maximum number of nodes with

which any process communicates. Additional intra-node

communication is modeled with an upper bound of

ppn� 1 messages, transferring a total of sproc bytes. In this

worst case, a process sends all received bytes to the

ppn� 1 other processes on the node.

Finally, NAP-3 communication is modeled as:

T ¼ a nnode2node

ppn
þ max

snode

RN

;
snode2node

Rb

0
@

1
A

þ 2 � a‘ðppn� 1Þ þ snode2node

Rb‘

0
@

1
A;

ð6Þ

where nnode2node and snode2node are the number and size of

messages, respectively, communicated between any two

nodes.

These models do not take into account reductions in the

size of node-aware messages that result from removing

duplicate data. Furthermore, the additional intra-node com-

munication in the NAP-2 and NAP-3 models is a rough

estimate of an upper bound. However, the models are accu-

rate enough to distinguish between the various strategies.

Figure 15 shows the cost of communication in the

SpGEMM A � P and the SpMV A � x on each level of the

AMG hierarchy from example 2.1 for each of the commu-

nication strategies. Each operation is tested multiple times,

and all timings are plotted. The timings corresponding to

the communication strategy with minimal modeled mea-

surement are displayed as larger dots. While the measure-

ments vary among the runs, the model accurately chooses a

communication strategy that performs at least as well as

standard communication.

4. Results

Node-aware communication can be used throughout the

dominant methods of the setup and solve phases. This sec-

tion presents performance and scaling results of AMG with

node-aware communication. Optimal strategies for vector

and matrix communication are determined during the for-

mation of each matrix in the AMG hierarchy. After a

matrix is created, the performance models in equations

(4) to (6) are calculated and the strategy with minimum

modeled cost is chosen. Separate models are calculated for

vector and matrix communication, allowing for different

strategies for each type of communication.

Throughout this section, both Ruge–Stüben and

Smoothed Aggregation solvers are analyzed for the prob-

lems that follow.

� MFEM Laplace: The system from example 2.1.

� MFEM Grad-Div: The finite element discretization

of �rðar � ðFÞÞ þ bF ¼ f , created with MFEM,
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Figure 14. Cost of standard, two-step node-aware, and three-step node-aware communication for SpGEMM and SpMV operations
throughout smoothed aggregation hierarchies from example 2.1: (a) A � x, (b) PT � AP. SpMV: sparse matrix-vector; SpGEMM: sparse
matrix-matrix.
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on the three-dimensional fichera-q3 mesh. The sys-

tem has 2801664 degrees of freedom and 117107712

nonzeros, unless otherwise specified.

� MFEM discontinuous Petrov–Galerkin (DPG)

Laplace: The DPG discretization of the Laplace sys-

tem �Du ¼ 1, created with MFEM, on the three-

dimensional star-q3 mesh. This system contains

131720 rows and 104529920 nonzeros, unless other-

wise specified.

The Ruge–Stüben hierarchies for these systems are

aggressively coarsened with HMIS and extended þ i inter-

polation with an interpolation truncation threshold of 0:3.

The smoothed aggregation hierarchies are created with

aggregates based on an MIS-2 of the graph. All systems are

solved to a relative residual of 10�7. All tests are performed

with RAPtor (Bienz and Olson, 2017) and compared against

an identical Ruge–Stüben hierarchy that is created and

solved with a state-of-the-field solver, Hypre’s Boomer

AMG (Henson and Yang, 2002; LLNL, 2008). Performance

tests are run on both Blue Waters, a Cray supercomputer at

the National Center for Supercomputing Applications (Bode

et al., 2013; NCSA, 2012), and Quartz, an Intel Xeon E5

machine at Lawrence Livermore National Laboratory. All

Blue Waters tests are performed with 16 PPN, while Quartz

timings are acquired with 32 PPN.

Figure 16 displays the costs of both setting up and sol-

ving Ruge–Stüben and smoothed aggregation hierarchies

for the MFEM Grad-Div system on various core counts of

Blue Waters. Timings are plotted both with and without

node-aware communication. Each test was performed five

times with various partitions, and the plots show minimal

variation between runs. While minimal improvements are

obtained at small core counts, node-aware communication

0 1 2 3 4 5 6
Level in AMG Hierarchy

1e-05

0.0001

0.001

0.01
M

ea
su

re
d

T
im

es
(S

ec
on

ds
)

Standard NAP2 NAP3

0 1 2 3 4 5 6
Level in AMG Hierarchy

0.0001

0.001

0.01

0.1

M
ea

su
re

d
T

im
es

(S
ec

on
ds

)

Standard NAP2 NAP3(a) (b)

Figure 15. The cost of various AMG operations throughout the Ruge–Stüben hierarchy for example 2.1. Each plot contains the
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times but were included to show speedup is significantly greater than run-to-run variation: (a) setup cost, (b) solve cost.
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yields increased improvements as the problem is strongly

scaled across processes, particularly in the solve phase of

AMG. The cost of both determining the appropriate com-

munication strategy through models and forming node-

aware communicators is included in the setup phase costs.

The total cost of solving the MFEM Grad-Div system

with AMG on Blue Waters is displayed in Figure 17 along-

side speedups achieved with node-aware communication.

The system was solved five times on various partitions of

Blue Waters, with the plots displaying minimal variation

between runs. Large improvements are obtained over AMG

with standard communication as the core count is

increased, with a nearly 4� speedup near the strong scaling

limits of each solver.

The total AMG costs and node-aware speedups associ-

ated with solving the MFEM DPG Laplace system on Blue

Waters are displayed in Figure 18. While performance

improvements are less drastic than seen in the MFEM

Grad-Div system, strong scalability is extended to at least

16,384 processes for both solvers. Furthermore, the speed-

ups increase with process count.

Similarly, Figure 19 displays the costs and speedups

associated with node-aware Ruge–Stüben AMG when sol-

ving the MFEM Laplace system on Blue Waters.

The node-aware communication strategies can be natu-

rally extended to other architectures with different numbers

of cores per node, such as Quartz. The total AMG costs and

node-aware speedups associated with solving the MFEM

Grad-Div system on Quartz are displayed in Figure 20. As

with the Blue Waters results, the total cost of AMG is

improved most drastically as the problem is strongly scaled

across the processors.

Similar performance is obtained when weakly scaling

the system, as shown in Figure 21. Node-aware communi-

cation improves performance at the various weak scales,

with more drastic improvements as the scale increases. In
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Figure 17. (MFEM Grad-Div) Total AMG times for both the Ruge–Stüben and smoothed aggregation hierarchies for MFEM Grad-Div
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general, node-aware communication yields the most dra-

matic improvements when communication dominates, such

as at strong scales and large process counts.

Node-aware communication can be used in combination

with other optimizations, such as repartitioning coarse lev-

els. Figure 22(a) displays the cost of performing a SpMV

on each level of an AMG hierarchy with the natural parti-

tions resulting from the fine-level Galerkin product com-

pared to a hierarchy with coarse levels repartitioned such

that the number of nonzeros per process is constant on all

levels, when possible. The repartitioned coarse-level

matrices are condensed onto the processes with lowest

ranks such that each process with sufficiently low rank

holds an even row-wise partition of the matrix, while extra

processes sit idle. Graph partitioning could further improve

communication requirements of condensed matrices but at

an additional cost, as discussed in Bienz et al. (2019). The

cost of reordering the matrix is not included in this study,

and the trade-off between additional setup cost and

improved SpMV times should be further investigated.

Furthermore, while condensing the matrix onto fewer pro-

cesses yields significant improvements for the coarsest lev-

els, node-aware communication compliments this

technique, yielding improved performance on costly levels

near the middle of the hierarchy.

Similarly, MPI þ X strategies reduce communication

costs by limiting the number of processes active in com-

munication and overlapping with local computation.

Figure 22(b) displays the cost of performing a SpMV on

every level of the hierarchy, comparing the pure MPI stra-

tegies presented in this article with MPI þ X approaches,

using OpenMP for on-node computations with MPI used

for internode communication. The MPI þ X approach

yields improvement over standard communication on

coarse levels as fewer processes are active in communica-

tion, reducing duplicate internode messages. However, the

node-aware approaches further improve communication

costs by distributing these messages across all 16 PPN.

Node-aware communication can be used in combination

with MPI þ X task-based approaches to further reduce
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Figure 19. (MFEM Laplace) Total AMG times for both the Ruge–Stüben hierarchies for MFEM Laplace from example 2.1 on Blue
Waters. This system consists of 1884545 degrees of freedom and 27870337 nonzeros. Smoothed aggregation results are not included
due to poor convergence at strong scales: (a) total cost; (b) node-aware speedup. AMG: algebraic multigrid.
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these costs by overlapping these reduced internode com-

munication costs with local computation.

Finally, further improvements to node-aware AMG are

possible, as many operations yield little to no speedup,

particularly in the setup phase. While the majority of oper-

ations throughout the setup phase are dependent on the

sparsity pattern of A, the transpose multiplication

step PT � AP is dependent on the sparsity pattern of P.

Therefore, node-aware communication will have larger

improvements for transpose multiplication with denser P

matrices. This motivates increasing the density of P to

increase the accuracy of projecting data between methods,

such as using multiple sweeps of Jacobi smoothing during

the smoothed aggregation AMG setup. Figure 23 shows the

speedups obtained with node-aware communication during

PT � AP on each level for both the standard hierarchy and

when using multiple smoothing sweeps. There is signifi-

cant speedup for the denser P resulting from the latter.

5. Conclusions

This article has introduced a method of using node aware-

ness to reduce the amount of internode communication at a

trade-off of less costly intra-node communication and

applied this communication method to the various parts

of AMG. Node-aware communication yields improve-

ments in the performance and scalability of both the setup

and solve phases for a variety of three-dimensional

matrices created with MFEM. Node-aware communication

yields improvements over the state-of-the-field solver,

Hypre. Furthermore, performance and parallel scaling

improvements are obtained on both Blue Waters and
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Figure 21. Node-aware speedups achieved for both the Ruge–Stüben and smoothed aggregation hierarchies for weakly scaled MFEM
systems. All systems have approximately 10000 degrees of freedom per core: (a) MFEM Grad-Div, (b) MFEM DPG Laplace.
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on each level of the Ruge–Stüben hierarchy for the MFEM Grad-Div system with pure MPI, compared to an MPIþ X approach. The MPI
þ X approaches consist of one MPI process per node with 16 OpenMP (OMP) threads per process, labeled MPI þ OMP 1� 16, and
four MPI PPN with four OMP threads per process, labeled MPI þ OMP 4� 4. SpMV: sparse matrix-vector; PPN: processes per node.

558 The International Journal of High Performance Computing Applications 34(5)



Quartz. Future work will be done to further improve the

performance of node-aware communication by improving

the underlying performance models and allowing

for different communication strategies for each node.

Node-aware communication can be combined with other

existing strategies of reducing communication such as

repartitioning coarse levels and MPI þ X approaches to

further reduce costs in AMG. Furthermore, this strategy

can be extended to a variety of other methods as well as

emerging architectures.
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