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Abstract—To understand and predict the performance of
scientific applications, several analytical and machine learning
approaches have been proposed, each having its advantages
and disadvantages. In this paper, we propose and validate a
hybrid approach for performance modeling and prediction,
which combines analytical and machine learning models. The
proposed hybrid model aims to minimize prediction cost
while providing reasonable prediction accuracy. Our validation
results show that the hybrid model is able to learn and correct
the analytical models to better match the actual performance.
Furthermore, the proposed hybrid model improves the pre-
diction accuracy in comparison to pure machine learning
techniques while using small training datasets, thus making
it suitable for hardware and workload changes.

Keywords-performance prediction; analytical modeling; ma-
chine learning; hybrid modeling;

I. INTRODUCTION

Performance modeling has been extensively used to un-
derstand and predict the performance of scientific applica-
tions. However, the increasing complexity of modern com-
puting architectures along with the exponentially growing
configuration space and complex interactions among config-
uration options often make it difficult to develop accurate
performance models.

Classical approaches for performance modeling rely on
two techniques, analytical modeling (AM) and machine
learning (ML). The basic idea behind analytical models
is to represent application program by means of a set of
analytical equations. The analytical models typically rely on
simplifying assumptions about the behavior of the underly-
ing architecture and application. Thus, the analytical model
accuracy can be challenged when these assumptions are not
matched. Machine learning, on the other hand, relies on
observing the actual performance in order to infer statistical
models. The accuracy of machine learning performance
models depends on the representativeness of the training
dataset. Unfortunately, the space of all possible configura-
tions grows exponentially with the number of variables (the
curse of dimensionality).

In this paper, we propose a hybrid approach for perfor-
mance modeling and prediction, which couples analytical
and machine learning models. Our aim is to combine the
evaluation speed of analytical models with the architecture
awareness of machine learning models in order to achieve a
model that carries out predictions with reasonable accuracy

without too many time consuming and costly experiments
for data collection.

The proposed hybrid model is conceptually simple and
easy to implement. It consists of analytical models of the
corresponding application code, two ensemble methods, a
training algorithm, and a prediction algorithm. In particu-
lar, our proposed hybrid model uses stacking and bagging
ensemble methods, stacking improves predictions while bag-
ging reduces variance and helps to prevent overfitting [1],
[2]. We illustrate and validate our approach using two
applications, a 7-point 3-D stencil code from the PATUS
DSL source-to-source stencil compiler [3], which generates
C code with multi-threading and SIMD instructions, and a
fast multipole method code, ExaFMM [4], which support
hybrid MPI/OpenMP parallelism.

This paper is organized as follows. Section II briefly
describes stencil computation and fast multipole method.
Section III presents the experimental setup. Analytical mod-
els for stencil computation and FMM are discussed in
Section IV. The machine learning methodology is described
in Section V. Section VI presents our hybrid model. Sec-
tion VII evaluates the hybrid model and discusses the
experimental results. Section VIII elaborates on related work
on modeling. Finally, Section IX contains conclusions.

II. APPLICATIONS

A. Stencil Computation

Partial differential equations (PDEs) arise in a vast number
of applications in scientific computing in diverse areas such
as heat diffusion, electromagnetics, and fluid dynamics. A
common method for solving PDEs on regular grids is to dis-
cretize them by finite-difference techniques and then solve
the resulting large, sparse linear systems. Finite-difference
iterative algorithms apply the same update operation to
all grid points at each time step. This operation requires
access to a fixed neighborhood of the grid point and is thus
denoted as stencil operation. In a stencil computation, each
point of the computational domain is updated with weighted
contributions from a subset of its neighbors in both time and
space. Depending on the number of neighbors contributing,
including the point itself, an x-point stencil is formed. A
7-point or a 27-point stencil is often used for 3-D domains.
Figure 1 shows an illustration of the 7-point stencil where
the central point is updated by the weighted average of six
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Figure 1: Schematic diagram of the 7-point 3-D stencil.

of its neighbors. In general, stencils represent computational
patterns that repeat across the computational domain. These
patterns are then used to build solvers that range from simple
Jacobi iterations to complex multigrid and block structured
adaptive methods [5]. Below is a pseudocode for the 7-point
3-D classical stencil algorithm

for t← 0 to timesteps do
for k ← 1 to KK − 1 do

for j ← 1 to JJ − 1 do
for i← 1 to II − 1 do
χt
i,j,k = C0×χt−1

i,j,k+C1×(χt−1
i−1,j,k+χ

t−1
i+1,j,k+

χt−1
i,j−1,k + χt−1

i,j+1,k + χt−1
i,j,k−1 + χt−1

i,j,k+1)
end for

end for
end for

end for
where II , JJ , and KK are the grid dimensions including
ghost points and C0 and C1 are the spatial discretization
coefficients.

Stencil operations typically perform a very limited number
of operations per grid point, and data from main memory can
not be transferred fast enough to avoid stalling computations.
Hence, stencil computations performance is bounded by
the available memory bandwidth and only achieves a small
fraction of the theoretical peak performance. It is therefore
crucial to optimize stencil computations in order to improve
applications performance and reduce execution time. Various
optimization techniques have traditionally been applied to
stencil computations such as diamond tiling [6], multi-
dimensional tiling [7], time skewing [8], SIMD instruc-
tions [9], and multi-threading [10]. However, as computer
architectures are becoming increasingly complex, writing
efficient scientific codes that make best use of the avail-
able resources is becoming more difficult. The complex
interaction between application-level optimizations and the
underlying architecture makes it difficult to find an optimal
set of optimizations. Additionally, the performance achieved
by specific set of optimizations is usually not portable

between different architectures or different stencil codes. In
this paper, we demonstrate that hybrid models obtained by
coupling analytical models with machine learning techniques
are able to accurately predict performance in the regimes
of interest while decreasing the cost of modeling across
environments.

B. Fast Multipole Method

N -body problems are used to simulate physical systems
of particles interaction under physical or electromagnetic
field [11]. The N -body problem can be represented by the
sum

f(yj) =

N∑
i=1

wiK(yj , xi), (1)

where f(yj) represents a field value evaluated at a point yj
which is generated by the influence of sources located at
{xi} with weights wi. K(yj , xi) is the kernel that governs
the interactions between evaluation and source particles.

The direct approach to simulate the N -body problem eval-
uates all pair-wise interactions among the particles which
results in a computational complexity of O(N2). This com-
plexity is prohibitively expensive even for modestly large
datasets. For simulations with large datasets, many faster
algorithms have been invented, such as the fast multipole
methods (FMM) [11]. FMM divides the computational do-
main into near-domain and far-domain and computes inter-
actions between clusters by means of local and multipole
expansions, providing O(N) complexity. FMM is more than
an N -body solver, however. Recent efforts to view the FMM
as an elliptic PDE solver have opened the possibility to
use it as a preconditioner for even a broader range of
applications [12].

The first step of the FMM algorithm is the decomposition
of the computational domain. This spatial decomposition
is accomplished by a hierarchical subdivision of the space
associated with a tree structure. The 3-D spatial domain
of FMM is represented by oct-trees, where the space is
recursively subdivided into eight cells until the finest level
of refinement or “leaf level”.

The FMM calculation begins by transforming the
mass/charge of the source particles into multipole expan-
sions by means of a Particle-to-Multipole kernel (P2M).
Then, the multipole expansions are translated to the center
of larger cells using a Multipole-to-Multipole kernel (M2M).
FMM calculates the influence of the multipoles on the target
particles in three steps: (1) translation of the multipole
expansions to local expansions between well-separated cells
using a Multipole-to-Local kernel (M2L); (2) translation
of local expansions to smaller cells using a Local-to-Local
kernel (L2L); and (3) translation of the effect of local expan-
sions in the far field onto target particles using a Local-to-
Particle kernel (L2P). All-pairs interaction is used to calcu-
late the near field influence on the target particles by means
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Figure 2: Illustration of the FMM kernels: P2M (Particle-
to-Multipole), M2M (Multipole-to-Multipole), M2L
(Multipole-to-Local), L2L (Local-to-Local), L2P (Local-to-
Particle), and P2P (Particle-to-Particle).

of a Particle-to-Particle kernel (P2P). Figure 2 illustrates the
FMM main kernels: Particle-to-Multipole (P2M), Multipole-
to-Multipole (M2M), Multipole-to-Local (M2L), Local-to-
Local (L2L), Local-to-Particle (L2P), and Particle-to-Particle
(P2P). The dominant kernels of the FMM calculation are
P2P and M2L.

III. EXPERIMENTAL SETUP

A. Machine Description

We ran our experiments on the Blue Waters supercom-
puter which is a Cray XE6/XK7 system managed by the
National Center for Supercomputing Applications for the
National Science Foundation. Though Blue Waters contains
XE6 and XK7 nodes, our experiments were confined to the
XE nodes. The XE6 dual-socket nodes are populated with
2 AMD Interlagos model 6276 CPU processors (one per
socket) with a nominal clock speed of at least 2.3 GHz
and 64 GB of physical memory. Each Interlagos processor
is composed of eight Bulldozer cores where each core has
16KB/64KB data/instruction write-through L1 cache, 2 MB
write-back L2 cache, and an 8 MB shared write-back L3
cache.

B. Benchmarks and Scientific Applications

Different frameworks include different code optimizations
for stencil applications. In this paper, we use PATUS [3]
to validate our stencil models. PATUS is a code genera-
tion framework for stencil computations targeted at modern
multi- and many-core processors using domain specific
language (DSL). PATUS exposes loop blocking, loop un-
rolling, and multi-threading. Loop blocking is applied to all
loop levels requiring three blocking sizes (bi, bj , and bk)

to tune. Afterwards, loop unrolling (u) is applied to the
innermost loop. The unrolling factor may vary between 0
(no unrolling) and 8. Therefore, our PATUS modeling vector
X = (I, J,K, bi, bj , bk, u, t) where I , J , and K are the grid
dimensions and t is the number of threads.

ExaFMM [4] is an open source library for fast multipole
methods aimed towards Exascale systems. It provides error
aware local optimizations, a multipole acceptance criterion,
and employs dual tree traversal which is an efficient strategy
for finding the list of cell-cell interactions. ExaFMM is
highly scalable to millions of cores with support for MPI,
thread-level, and SIMD parallelism. In this paper, we use the
Laplace kernel in three dimensions with random distribution
of particles in a cube. Our ExaFMM modeling vector
X = (t,N, q, k) where t is the number of threads, N is
the total number of particles, q is the number of particles
per leaf cell, and k is the order of expansion.

IV. ANALYTICAL MODELING

To model computational cost, we must consider the costs
of both floating-point operations (Tflops) as well as memory
operations (Tmem). These two costs combined reflect the
single-node performance which is a critical building-block
in scalable parallel codes. Assuming arithmetic and memory
operations can be overlapped, the time T required to solve
a problem of size N can be approximated by

T = max
(
Tflops, Tmem

)
, (2)

where Tflops is defined as the total number of floating-
point operations, multiplied by the time per floating-point
operation (tc) in seconds and Tmem is modeled as the total
data fetched into fast memory, multiplied by the memory
bandwidth inverse (βmem) in units of seconds per element.

A. Stencil Computation

To analytically model the 3-D stencil computations, we
start with the models introcudced in [13]. As stencil com-
putations are memory-bound, the cost of computing the
floating-point operations is assumed negligible due to the
overlap with memory transfers.

Given a grid of size N = I × J ×K elements of order l,
where I , J , and K correspond to the x, y, and z dimensions,
respectively, the total memory requirement to compute a Y-
X plane (one k iteration) is given by

Stotal = Pread × Sread + Pwrite × Swrite, (3)

where Pread = 2 × l + 1, Pwrite = 1, Sread = II × JJ ,
and Swrite = I × J where P and S denote the number of
planes and plane size, respectively, and II , JJ , and KK
represent the dimensions of the problem including ghost
points. This model assumes a write-allocate cache. For a
no-write-allocate cache, (3) can be rewritten as

Stotal = Pread × Sread. (4)



On an architecture with a memory hierarchy of n cache
levels, the total time to compute a stencil is

T = TL1 + TLi + · · ·+ TLn + Tmem, (5)

where TLi and Tmem are the time to access data in Li cache
level and main memory, respectively.

In general, the time spent moving data for Li cache level
is given by

TLi = T data
Li ×HitsLi, (6)

where T data
Li = data∗βmemLi

is the time required to transfer
data (element or cacheline) from level i and HitsLi =
MissesLi−1 − MissesLi is the number of transfers per-
formed. The amount of misses issued at each cache level is
estimated by

MissesLi = dII/W e × JJ ×KK × nplanesLi, (7)

where W is the number of elements per cacheline and
nplanesLi is the number of II × JJ planes read from
the next cache level for each k iteration due to possible
compulsory, conflict, or capacity misses. The computation
of nplanesLi is yield by the following conditional equations

nplanesLi =



1, if R1

(1, Pread − 1], if ¬R1 ∧R2

(Pread − 1, Pread], if ¬R2 ∧R3

(Pread, 2× Pread − 1], if ¬R3 ∧ ¬R4

2× Pread − 1, if R4

where

R1 : ((sizeLi/W )×Rcol ≥ Stotal),

R2 : ((sizeLi/W ) > Stotal),

R3 : ((sizeLi/W )×Rcol > Sread).

R4 : ((sizeLi/W )×Rcol < Pread × II),

where Rcol = Pread/(2×Pread−1) and sizeLi is the cache
size. We use linear interpolation to smooth discontinuities
that appears when transitioning from one case to another.

B. Fast Multipole Method

In this section, we present analytical models for the
two phases of FMM that consume most of the calculation
time: P2P and M2L. We assume a nearly uniform particles
distribution and therefore a full oct-tree structure.

1) Computation Costs:
P2P: Assuming q particles per leaf cell, the computa-

tional complexity of the P2P phase is 27q2N
q . This leads to

a computation cost of

Tflop,P2P = 27 · qN · tc. (8)

where N is the problem size.

M2L: The asymptotic complexity of the M2L phase
depends on the order of expansion k and the choice of series
expansion. ExaFMM uses Cartesian series expansion which
has operations count of 189k6. Hence

Tflop,M2L = 189 · Nk
6

q
· tc. (9)

2) Memory Access Costs: As shown in [14], the outer
loops of the P2P and M2L computations can be modeled
as sparse matrix-vector multiplies. For a cache with size
Z and cache-line length L in elements, a cache-oblivious
algorithm [15] for multiplying a sparse H ×H matrix with
h non-zeros by a vector establishes an upper bound on cache
misses in the SpMV as

O(h
L

+
H

Z1/3
), (10)

for each transferring line of size L.
P2P: Applying (10) gives an upper bound on the

number of cache misses for the P2P phase as follows

QP2P ≤ 4 · N
L

+ bP2P ·
N/q

L
+ 4 · N

L
+

N/q

( Z
4q )

1/3
, (11)

where bP2P is the average number of source cells in the
neighbor list of a target leaf cell (bP2P = 26 for an interior
cell in a uniform distribution). The first two terms on the
right-hand side of (11) refer to read accesses for the source
cells and the neighbor lists for each target cell, while the
third term refers to the update accesses for the target leaf cell
potentials. In P2P communication, coordinates and values of
every particle belonging to the cell must be sent, resulting
in a multiplication factor of four. We model the dominant
access time as

Tmem,P2P = N · βmem +
NL

(Z(1/3)q(2/3))
· βmem. (12)

M2L: Applying (10) for the M2L phase gives an upper
bound on the number of cache misses as follows

QM2L ≤
(bt + bs)f(k)

L
+
bM2Lbt
L

+
bt(

Z
f(p)

)1/3 , (13)

where bt is the number of target cells, bs is the number of
source cells, bM2L is the average number of source cells in the
well-separated list of a target cell (bM2L = 189 for an interior
cell in a uniform distribution), and f(k) is the asymptotic
complexity.

Considering the higher order terms, the memory access
cost of the M2L phase can be approximated by

Tmem,M2L =
Nk6

q
· βmem +

Nk2L

qZ1/3
· βmem. (14)
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Figure 3: Comparison of Mean Absolute Percentage Error (MAPE) scores of different machine learning models.

V. MACHINE LEARNING

Supervised machine learning methods have found numer-
ous applications in performance modeling and evaluation.
The basic premise of the machine learning approach is
to exploit the dependencies between independent variables
(feature vector) in empirical application data, while model-
ing the relationship between them and a response variable
(execution time in this work).

In this section, we use a suite of models from the scikit-
learn package [16], characterized by various degrees of
complexity. In particular, we use decision trees and a set of
ensemble methods including random forests and extremely
randomized trees (extra trees). We employ uniform random
sampling to construct the training dataset. In addition, we
apply preprocessing transformation to a standard Gaussian
distribution with zero mean and unit variance. Standardiza-
tion of datasets is a common requirement for many machine
learning estimators implemented in scikit-learn.

We test the machine learning models on two independent
applications. The first is a stencil code that exposes different
grid sizes and loop blocking, X = (I, J,K, bi, bj , bk) where
I × J × K = {1 × 16 × 16 · · · 1 × 128 × 128} with a 16
points stride and bi × bj × bk = {1× 1× 1 · · · I × J ×K}.
The second application is a fast multipole method code that
exposes different problem sizes, particles per leaf cell, orders

of expansion, and OpenMP parallelism, X = (t,N, q, k)
where t = {1 · · · 16}, N = {4096, 8192, 16384}, and
k = {2 · · · 12}. We encode information about the applica-
tions input sizes and tuning parameters into feature vectors
and use the execution time as the response variable. The
results of these experiments are shown in Figure 3. We
observe that the prediction accuracy improves and mean
absolute percentage error (MAPE) variance reduces as the
training dataset size increases. However, the performance of
all models at small sample sizes is not satisfactory which
limits their ability to model large design spaces or runtime
hardware changes. Comparing different models, Figure 3
shows that extra trees model is the best performing. Thus,
we use extra trees model in our hybrid approach.

VI. APPROACH: HYBRID MODELING

Our proposed hybrid model consists of an analytical
model, two ensemble methods, a training algorithm, and
a prediction algorithm, as depicted in Figure 4. Ensemble
methods are meta-algorithms that combine several base
models into one predictive model in order to decrease
variance, bias, or improve predictions. Ensemble methods
were originally developed to operate with machine learning
models. We adapt these methods to support the joint usage
of analytical and machine learning models. In particular, our
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Figure 4: Hybrid performance prediction framework.

proposed hybrid model uses stacking and bagging ensemble
methods. Stacking is a way to ensemble multiple models
in order to improve predictions. In stacking, the output
of one model is used as input for the next level model.
Bagging, on the other hand, is a method for generating
multiple versions of a predictor and using these to get an
aggregated prediction [1]. Bagging reduces variance and
helps to prevent overfitting [2].

The first component of the hybrid model is an analytical
model of the corresponding application code. As shown
Section VII, the analytical models are not required to be
very accurate and need to only roughly capture the behavior
of the underlying application. The second component is a
training algorithm which uses a training dataset consisting
of response variables and feature vectors to train a machine
learning model. These feature vectors represent the modeling
parameters. In addition, the machine learning model is
stacked on top of the analytical model in order to improve
the prediction accuracy. In other words, the analytical model
predictions are regarded as additional features for the ma-
chine learning model.

Once the stacked model is constructed, it can be used
to predict the performance of new data, from outside the
training dataset. To make a prediction, the feature vector is
passed to the stacked model, which will output a predicted
response variable. For each application, the model is con-
structed once offline but used many times. It is not necessary
to gather a training dataset or rebuild the model for every
prediction.

In the last part of the hybrid model, bagging ensemble
model is used to aggregate the response variables predicted
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Figure 5: Comparison of MAPE scores with various win-
dow size of the training set for stencil computation with
different grid sizes.

by both the analytical and the stacked models. Aggregating
predictions is a good technique to decrease the underlying
models variance and thus reducing overfitting. This part of
the hybrid model is supplementary and its benefits depend
on how representative the analytical models are of the
underlying application code.

VII. EVALUATION

A. Effect of the Analytical Model Accuracy

We start by evaluating the effect of the analytical model
accuracy on the hybrid model prediction. To do this, we
compare the performance of the hybrid approach with a pure
machine learning model using a 7-point 3-D stencil code
from PATUS. We use extra trees models in both approaches
and compare the performance using three separate datasets
with different feature vectors that the analytical models
capture with various levels of accuracy.

First, we evaluate the hybrid approach on areas that the
analytical models cover accurately. Figure 5 shows MAPE
scores with various window size of the training set for the
problem with different grid sizes, X = (I, J,K) where I×
J × K = {128 × 128 × 128 · · · 256 × 256 × 256} with a
16 points stride. The hybrid approach reduces the size of
the training set that is required to achieve MAPE / 10.
Here, we use 10%, 15%, and 20% of the overall dataset for
training in the pure machine learning approach and 1%, 2%,
and 4% in the hybrid approach.

Next, we add loop blocking to the analytical models. In
spatial blocking, the problem domain is traversed in TI ×
TJ × TK blocks. Hence, the number of blocks on each
direction is given by

NBI = I/TI, NBJ = J/TJ, NBK = K/TK.

Therefore, the total number of tiling iterations to perform
is NB = NBI ×NBJ ×NBK. Spatial blocking is con-
sidered into the analytical models introduced in Section IV
by reassigning I , J , and K and their extended dimensions
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Figure 6: Comparison of MAPE scores with various win-
dow size of the training set for stencil computation with
different grid sizes and loop blocking.
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Figure 7: Comparison of MAPE scores with various win-
dow size of the training set for stencil computation with
different grid sizes and multithreaded parallelism.

as follows

I =

⌈
TI

W

⌉
×W, II =

⌈
TI + 2× l

W

⌉
×W,

J = TJ, JJ = TJ + 2× l,
K = TK, KK = TK + 2× l.

The new II , JJ , and KK parameters are then used to
estimate nplanesLi. Finally, (7) is rewritten as

MissesLi = dII/W e×JJ×KK×nplanesLi×NB. (15)

The cache access time of the blocked code is imple-
mentation dependent. Therefore, analytical models tuning
is needed to achieve sufficient accuracy. However, we do
not tune the analytical models as our goal here is to study
the effect of using inaccurate analytical models on the
hybrid approach (Here, analytical model MAPE = 42%).
Figure 6 shows MAPE scores of the pure machine learning
model and the hybrid approach using a dataset with feature
vectors representing different grid sizes and loop blocking
information, X = (I, J,K, bi, bj , bk) where I × J × K =
{1× 16× 16 · · · 1× 128× 128} with a 16 points stride and
bi×bj×bk = {1×1×1 · · · I×J×K}. As shown in Figure 6,
incorporating the analytical models cuts the percentage error
nearly in half.

Lastly, we evaluate the hybrid model on a region that
is not covered by the analytical models. In particular, the
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Figure 8: Comparison of MAPE scores with various win-
dow size of the training set for fast multipole method.

analytical models presented in Section IV are designed
to model the performance on a single core and do not
cover multithreaded parallelism. We couple these analytical
models with extra trees machine learning model and evaluate
the hybrid approach using a dataset obtained by running a
multithreaded stencil code with different grid sizes, X =
(I, J,K, t) where I × J ×K = {128 × 128 × 1 · · · 176 ×
176× 1} with a 16 points stride and the number of threads
t = {1 · · · 8}. Here we do not aggregate the analytical and
stacked models predictions as the analytical models do not
capture the parallelism. Figure 7 shows that using serial
analytical models in the hybrid approach can improve the
prediction accuracy for the parallel dataset in comparison to
the pure machine learning model.

B. Tuning Application Parameters

Here we use the hybrid approach to model the perfor-
mance of the FMM using feature vectors consisting of four
components X = (t,N, q, k) where t = {1 · · · 16} is the
number of threads, N = {4096, 8192, 16384} is the number
of particles, q is the number of particles per leaf cell, and
k = {2 · · · 12} is the order of expansion. Fast multipole
method is a highly complex algorithm with several different
phases, a combination of data structures, fast transforms, and
irregular data access. As shown in Figure 3, pure machine
learning models are not able to accurately predict the FMM
performance even with a very large training dataset.

We couple the FMM analytical models presented in Sec-
tion IV with extra trees machine learning model. Again, we
do not tune the analytical models relative to the underlaying
implementation (analytical model MAPE = 84.5%). We
compare the accuracy of the hybrid approach with the pure
machine learning model. Figure 8 shows that the hybrid
model is able to significantly improve the MAPE scores
of the pure machine learning model. However, because of
the high complexity of the FMM algorithm, the FMM hybrid
model requires larger training dataset to carry out predictions
with reasonable accuracy in comparison to stencil computa-
tion.



VIII. RELATED WORK

Using analytical models for performance modeling and
prediction is a broadly searched topic. Hoefler et al. [17]
describes the importance of analytical performance models
for parallel applications to understand the performance im-
plications of different choices of algorithms and implemen-
tation options. Models that predict performance of stencil
computations are used in [13], [18]. Performance models
for the computations and communication in fast multipole
methods are presented in [14] and [19], [20], respectively.

There is also plenty of research conducted on using
machine learning for performance modeling. Sun et al. [21]
focuses on automatically predicting the execution time of
parallel program by collecting data from executions with
different inputs. Lee et al. [22] builds and measures re-
gression and neural network models for understanding large
application parameter spaces. Marathe et al. [23] utilizes
transfer learning to select the best performing configurations
at a target large-scale scenario using domain knowledge
extracted from a source small-scale scenario. The use of
machine learning to predict the performance of stencil
kernels was considered in [24], [25].

While analytical modeling and machine learning tech-
niques are two traditional methods for performance mod-
eling, combining the two is a new approach that has been
receiving increasing attention in recent years. Didona et
al. [26] explores several ways to combine analytical and ma-
chine learning models and evaluate the proposed techniques
on two middleware systems, a NoSQL distributed key-value
store and a Total Order Broadcast (TOB) service. Ehsan et
al. [27] uses synthetic data generated by analytical models to
train a machine learning model for performance prediction of
Map-Reduce jobs in cloud environment. Didona et al. [28],
[29] use the divide and conquer technique to model the
performance of distributed transactional applications. This
technique consists of building performance models for indi-
vidual parts of the entire system based on either analytical
or machine learning models.

IX. CONCLUSION

In this paper, we propose and validate a hybrid approach
for performance modeling that couples analytical and ma-
chine learning techniques in order to take advantage of both
methods. The hybrid model uses stacking and bagging en-
semble methods to improve predictions, reduce variance, and
avoid overfitting. Our results show that the hybrid approach
is effective in predicting the execution time by reducing the
MAPE score of pure machine learning models. In addition,
the hybrid model requires small training dataset to carry out
predictions with reasonable accuracy, thus making it suitable
for hardware and workload changes.
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