
FaultSight: A Fault Analysis Tool for HPC Researchers
Einar Horn

Department of Linguistics
University of Washington
Seattle, Washington, USA

einarh@uw.edu

Dakota Fulp
Jon C. Calhoun

Holcombe Department of Electrical
and Computer Engineering

Clemson University
Clemson, South Carolina, USA
{dakotaf,jonccal}@clemson.edu

Luke N. Olson
Department of Computer Science

University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
lukeo@illinois.edu

ABSTRACT
System reliability is expected to be a significant challenge for future
extreme-scale systems. Poor reliability results in a higher frequency
of interruptions in high-performance computer (HPC) applications
due to system/application crashes or data corruption due to soft
errors. In response, application level error detection and recovery
schemes are devised to mitigate the impact of these interruptions.
Evaluating these schemes and the reliability of an application re-
quires the analysis of thousands of fault injection trials, resulting
in tedious and time-consuming process. Furthermore, there is no
one data analysis tool that can work with all of the fault injection
frameworks currently in use. In this paper, we present FaultSight,
a fault injection analysis tool capable of efficiently assisting in the
analysis of HPC application reliability as well as the effectiveness
of resiliency schemes. FaultSight is designed to be flexible and work
with data coming from a variety of fault injection frameworks. The
effectiveness of FaultSight is demonstrated by exploring the reliabil-
ity of different versions of the Matrix-Matrix Multiplication kernel
using two different fault injection tools. In addition, the detection
and recovery schemes are highlighted for the HPCCG mini-app.

KEYWORDS
soft error analysis, fault analysis tool, fault tolerance, resiliency,
fault injection, fault analysis

ACM Reference Format:
Einar Horn, Dakota Fulp, Jon C. Calhoun, and Luke N. Olson. 2019. Fault-
Sight: A Fault Analysis Tool for HPCResearchers. In Proceedings of FTXS’19:Fault
Tolerance for HPC at eXtreme Scale (FTXS) Workshop (FTXS’19). ACM, New
York, NY, USA, 10 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
High-performance computing (HPC) systems are crucial to scien-
tific simulation and analysis. As HPC resources continue to play
a role in scientific discoveries, simulations are increasing in size
and complexity. Equally, in order to meet these workload demands,
HPC systems continue to grow in size and computational power. As

HPC systems become larger and more powerful, design concerns
such as power usage and reliability may inhibit the ability of next
generation HPC systems [7, 35, 38].

Reliability is a significant challenge for HPC systems and appli-
cations. To overcome fail-stop failures, checkpoint restart routines
are integrated into most applications. Checkpoint restart allows
applications to save a portion of the computational state and use it
to recover from this saved state when a failure occurs [5]. However,
as processor feature size continues to shrink and power constraints
force hardware to operate at near-threshold voltages, the occur-
rence of soft errors increases [2, 9, 27]. Soft errors occur from
charged particles or hardware degradation thus causing bit-flips
in data, computation, and control logic. If left undetected, soft er-
rors can corrupt application state, leading to silent data corruption
(SDC) that may alter the results of an application. Additionally, the
time-to-solution may also increase even in situations where data is
left uncorrupted.

Full protection of HPC systems from soft errors at the hardware
level is prohibitively expensive. Therefore, protection is mainly
confined to the memory system in the form of parity bits and er-
ror correcting codes (ECC) on data paths and storage. General
protection from soft errors at the application level relies on replica-
tion [8, 20, 28], data analysis [3, 4], or leveraging algorithm modifi-
cations [12, 16, 25]. Recovery schemes rely on checkpoint restart [4,
12], replication [20], or forward recovery techniques [8, 26].

Measuring an application’s reliability to soft errors requires con-
ducting large numbers of fault injection trials. Efficient evaluation
of these trials is difficult, due to the lack of analysis tools for fault
injection campaigns. This makes it difficult to determine the vul-
nerable code regions. Soft error detection and recovery schemes
also require thousands of fault injection trials, and likewise do not
have any common tools to aid in their analysis.

This paper presents FaultSight, a fault analysis tool designed
to aid the development and analysis of application-level soft error
detection and recovery schemes. FaultSight provides an API that
allows data from a campaign of fault injection trials to be inserted
into an extendable database. The database is queried by an accompa-
nying web-app that couples dynamic queries and visualizations to
obtain a fine-grained view of the fault injection campaign. Qualita-
tive and statistical analysis are then used to determine the baseline
reliability of an application and the effectiveness of integrated de-
tection and recovery schemes.

This paper makes the following contributions:

21

2019 IEEE/ACM Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS)

978-1-7281-6013-9/19/$31.00 ©2019 IEEE
DOI 10.1109/FTXS49593.2019.00008

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

• an overview of the FaultSight package, a user extendable
fault analysis tool that allows for efficient analysis of fault
injection data for HPC applications.
• examples of fault injection analysis using FaultSight, includ-
ing bit-flips in computation and how to use FaultSight with
bit-flips in memory.
• an analysis of the resiliency of three Matrix-Matrix Multipli-
cation algorithms through use and comparison of FlipIt [11]
and FSEFI [23]. As well as an analysis of detection and re-
covery scheme for the mini-app HPCCG.

2 BACKGROUND AND MOTIVATION
Determining the reliability of an application and evaluating the
improvement in reliability due to a detection or recovery scheme
requires thousands of fault injection experiments. Complex HPC
applications result in millions of possible fault locations. To obtain
statistically significant results, thousands of fault injection trials
are conducted [29]. This process can be seen in the left-hand side
of Figure 1. Even through parallel execution, the thousands of fault
injection trials use significant computational resources and storage.

Upon completion of these trials, aggregation and analysis of
each trial can be achieved. Some metrics of interest include: the
return code of the application, the acceptability of the application’s
results, the impact on application runtime, the detection of injected
faults, and the recovery from detected faults. These metrics are
analyzed generically for the whole application. However, this has
a limited view of when and where a fault is injected and how that
impacts these metrics. Deeper analysis of when and where a fault is
injected is complicated by the lack of fault analysis tools. This paper
addresses the lack of such tools by presenting FaultSight, a tool
designed to conduct detailed analysis of fault injection campaigns.

FaultSight is capable of exploring the importance of when and
where faults occur inside of a fault injection campaign and the asso-
ciated impact on key application metrics. FaultSight’s contributions
to the fault injection and analysis workflow are shown in Figure 1.
FaultSight is structured as a general tool capable of incorporating
data from many different fault injection frameworks and provides
a web application to efficiently analyze the whole campaign or a
specific subset of the trials. Using FaultSight to analyze a fault in-
jection campaign allows application developers/users to determine
the vulnerable regions of their application and quantify the efficacy
of an integrated soft error detection and recovery scheme.

3 FAULTSIGHT DESIGN
FaultSight is a tool that enables the analysis of HPC resiliency in
applications by quantifying an applications reliability, identifying
where to add protectionmechanisms, and assisting in the evaluation
of application-based detection and recovery schemes. FaultSight
aims to integrate seamlessly with most HPC fault injectors while
providing a comprehensive set of functionality to assist with the
analysis of high-level and fine-grained fault injection campaign
results. An interactive web application presents the analysis and
allows quick observations about the reliability of the tested ap-
plication and the effectiveness of integrated detection/recovery
schemes.

FaultSight operates first by parsing fault injection campaign data
into an extendable database through its built-in API calls. The large
range of API endpoints allows FaultSight to support data coming
from most fault injectors. Upon construction, FaultSight queries the
database to make high-level statistical analysis and visualizations.

Overall, the structure of FaultSight involves three main compo-
nents: the database, the API for database communication, and the
web interface used for analytics.

3.1 Database
The database is designed in a general manner and supports a variety
of fault injector types — e.g. instruction-based, memory-based, and
fail-stop injectors. Section 4 explores FaultSight’s ability to analyze
results from two different instruction-based fault injectors. The
database consists of five extendable tables: Site, Trials, Injections,
Signals, and Detections. Each table is discussed below, including
their utility for different types of fault injectors while an example
of database creation can be seen in Algorithm 1.

3.1.1 Sites. The Sites table allows FaultSight to support a wide
variety of fault injector types. The inclusion of threadId and rank
fields allows FaultSight to support multi-threaded and parallel ap-
plications. For instruction-based fault injectors, the type field allows
information about the site’s instruction classification — e.g. floating-
point, fixed-point, address calculation — to be stored. In memory-
based fault injectors, the type field is instead used to denote the
data type for the memory allocation or the memory address where
the fault occurred. In both instruction and memory based injectors,
information on a site’s location in the source code can be stored
via the file, func, and line fields for for subsequent visualization
and analysis. Details on the functionality of the site are stored via
the opcode field. For instruction-based injectors this can be used to
denote the injection instruction. Not all fields will be used with all
fault injectors and are prepopulated with NULL values. An example
of an insertion into this table can be seen in Algorithm 1.

3.1.2 Trials. The Trials table stores information on each of the
fault injection trials. In addition to assigning a unique identifier
to each trial, this table holds properties of each trial, including
the number of injections per trial, as well as a boolean value to
represent the return code of the application. Extending this table
allows users to store specific information about the trials such as
wall-clock time, power/energy, and resource utilization statistics
which results in a more detailed view of each trial.

3.1.3 Injections. The Injections table stores information on each
injection that occurs during the fault injection campaign and asso-
ciates it with a unique trial ID. Information such as an injection’s
site, process rank, and thread identifier assists in mapping back to
the fault injection location. Additionally, instruction and memory
based injectors can store information on any corrupted bits, injec-
tion probability, and the static instruction of the application during
the injection. Through the use of this table, FaultSight can perform
fine-grained analysis on this data. An insertion into this table can
be seen in Algorithm 1.

3.1.4 Signals. The Signals table stores information on known
signals that are raised during trials. In addition to the Unix signal

22

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

Application
+

Fault Injector

Fault Injection Trials Fault Injection
Results

Database FaultSight Front-end

Visualization

Statistical Testing

Data Aggregation

API Analysis

FaultSight

Figure 1: Overview fault injection and the FaultSight tool.

number, information on which process and thread raised the signal
can be stored. This table is useful in distinguishing how a program
terminates unexpectedly such as through segmentation fault vio-
lations or failed assertions. Also knowing if the signals are raised
on the same process/thread where an injection occurred can help
analyze error propagation.

3.1.5 Detections. The Detections table enables the ability to
store information on the performance of implemented algorithm-
based fault detectors when testing their effectiveness. By combin-
ing the process/thread that detected the error/failure with the pro-
cess/thread where the injection occurred, a spatial map of the events
occurring inside the trial after each injection highlights how the
error propagates. If temporal information is known, the latency —
e.g., number of instructions since injection, number of iterations
since injection, elapsed time since injection — provides another
dimension to explore when addressing a detector’s effectiveness.
The spatial and temporal properties of detection combined with
application knowledge allows for estimating the extent at which
error due to the fault propagates. Knowledge of error propagation
is useful in the design of custom local recovery schemes.

3.2 API
FaultSight’s API supports data coming from various injection styles
and frameworks. The API is a collection of Python functions that
wrap low-level SQL commands. Through the API, the user experi-
ence is abstracted and simplified. Thus, allowing users to generate
the database more intuitively.

Algorithm 1 Creation of a FaultSight database.
Input sites_data : a list of site information
Input inject ions_data : a list of injection information

Create a database object and get a reference to it
db ← create_and_connect_database(“./database .db”)

Extend injections table to hold number of incorrect elements
extend_inject ions_table(db, “incorrect_count ”, “I NT EGER”)

Insert site information into the database
for site_inf ormation in sites_data do

inser t_site(db, site_inf ormation)

Insert injection information into the database
for inject ion_inf ormation in inject ions_data do

star t_tr ial (db)
inser t_inject ion(db, inject ion_inf ormation)
end_tr ial (db)

The API facilitates the generation of the database online during
the fault injection process as well as offline once the campaign has
been completed. For the experiments in Section 4, both FlipIt [11],
an LLVM instruction-based fault injection tool, and FSEFI [23], a
sequential fault injection tool, are used. However, other HPC fault
injection frameworks [31, 36] can be used.

During fault injection, FlipIt and FSEFI each record a variety
of data on each fault injection trial, such as the instruction and
bit-location in which the fault is injected. A Python script is de-
veloped to map each of their output to the appropriate API calls
upon completion of each fault injection campaign. Other fault injec-
tors [31, 36] provide similar information, such as memory addresses
of the injection for memory-based injectors, which can also be
stored in the database through the API. An example of generating
a database using the API is shown in Algorithm 1.

To analyze the fault injection trials in more detail, the API allows
users to make database schema changes such as extending tables
with additional fields to better support their situation. Section 4
exploits this capability to generate databases for the Matrix-Matrix
Multiplication and HPCCG applications.

3.3 Web Application
FaultSight interacts with the database through a web application
that runs locally and uses Flask1, a flexible Python web frame-
work. The back-end uses SQLAlchemy2, a SQL toolkit and object-
relational mapper, to query the database. To simplify the selection
of data for visualization and analysis, FaultSight uses a dedicated
web application over other data analytics tools. There are three
main features of the web application: Statistical Analysis, Charts,
and Code Analysis.

3.3.1 Statistical Analysis. FaultSight provides the end-user with
two forms of statistical analysis: independent analysis and compar-
ative analysis.

Independent analysis allows users to determine if there have
been enough injections on a given type or location to justify mean-
ingful results. For example, to accurately evaluate the reliability
of function foo a sufficient number of injections into foo’s fault
injection space are required. A key question for instruction-based
fault injectors is whether the dynamic/static instruction percent-
ages match the percentage of instruction types that suffer faults.
Similarly for memory-based injectors, the injection locations are

1http://flask.pocoo.org/
2https://www.sqlalchemy.org/

23

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

Table 1: Subset of chart types in FaultSight.

Injections Features

Injected types Detected trials
Injection type per function Detected injection bit locations
Injected bit locations Detection latency
Injected functions/components Trials unexpectedly terminated
Injected line numbers

analyzed in comparison to the memory locations used by foo. Fault-
Sight supports this analysis by incorporating profiling information
from traces or by using static analysis on the code or static memory
allocation based on size.

Comparative analysis allows the user to filter the trial space and
divide the resulting set of trials into two sets based on given criteria.
This partitioning allows the user to conduct A/B style testing for
resilience. To partition the sets, the user requests aggregated in-
formation about these two trial sets such as injection information,
detection occurrences, and signals. For each of these fields, the
user requests a statistical comparison between the two trial sets,
to determine the p-value in the statistical difference or equality of
these sets with full control over the confidence interval to use in
these calculations. This functionality is most useful when compar-
ing resiliency algorithms, effectivness of software-based detection
and/or recovery schemes, or most other quantitative comparisons
between two groups of fault injection trials. Section 4.1 uses this
feature to compare the number of elements that are incorrect in
the results of three different Matrix-Matrix Multiplication routines.

3.3.2 Charts. FaultSight has the ability to generate charts of
quantitative data at various levels of granularity. Charts utilize data
from various combinations of the data stored within the tables of
the database. For example, FaultSight is able to visualize where the
fault injection campaign injects faults — e.g., what functions, what
components, what bit-locations, what process/thread. Additionally,
FaultSight can generate charts of statistics over all the fault injection
trials such as percentage of trials terminated with a segfault and
percentage of trials with detection of the injected fault.

Through the use of user defined constraints on the data, applied
through a series of drop down menus, FaultSight is able to generate
custom fine grain views into the campaign. For example, a user
could filter and visualize the flip locations on process rank 4 where
injections occurred in function foo and generated a segfault. The
use of custom constraints when visualizing data through FaultSight
provides users with a powerful tool to gain detailed knowledge
about each fault and how they impact detection and correctness.
Section 4 explores this in more detail, as FaulSight generates all
plots and figures referenced. A subset of default charts generated
by FaultSight is shown in Table 1. These plots provide a strong
foundation before custom constraints are applied, leading to finer-
grained views into the campaign results. FaultSight also supports
exportation to common image formats and the raw data to JSON
files for use in other software and frameworks.

3.3.3 Code Analysis. Code analysis displays syntax highlighted
regions of code where fault injections occur. If possible, the source
code lines are expanded to display a line’s assembly breakdown

Figure 2: FaultSight code analysis for injections into func-
tion HPC_sparsemv from HPCCG (Section 4.2). Note: Not all
injected source lines displayed.

information. This allows for more accurate information and infer-
ences on injection location and fault vulnerability, such as regions
where faults are likely or where faults cause the most harm. Fig-
ure 2 shows the location and percentage of injections into the
function HPC_sparsemv, the most commonly injected function in
the HPCCG experiments (Section 4.2), for the function itself and
the whole application. Most injections (63.52% for the function and
57.22% for the application) into this function occur in the inner-most
loop (line 74) wheremost of the time is spent. Prior work, has shown
this routine is a critical function to protect for linear solvers [13, 14].
FaultSights code analysis assists users in understandingwhere injec-
tions are likely and where they are most serious for programmatic
symptoms — e.g., unexpected termination, output corruption. With
this knowledge, users are able to discover key data structures in
need of protection and where to place detectors to minimize de-
tection overhead and error propagation. This type of information
can be provided to instruction/data replication techniques to help
provide high levels of resiliency with low overheads [28].

4 EXPERIMENTAL RESULTS
In this section, FaultSight is used to analyze fault injection campaign
results on a Matrix-Matrix Multiplication (MMM) kernel from the
perspective of two different fault injectors and on the High Perfor-
mance Computing Conjugate Gradients (HPCCG) mini-app from
the Mantevo Suite3.

In our experiments, two different fault injectors are used. The
first fault injector is the LLVM based fault injector, FlipIt [11]. Trials
with FlipIt were run on Phase 6 of the Palmetto Cluster at Clemson
University. The second fault injector is the sequential fault injec-
tor, FSEFI [23]. Trials with FSEFI were run on the Gamma Cluster
at the New Mexico Consortium located at Los Alamos National
Laboratory.

When testing the MMM kernel, FlipIt injects a single bit-flip
into a random bit position in the result register of a random LLVM
intermediate representation (IR) instruction during the main com-
putation phase. Conversely, FSEFI injects a single bit-flip into a
random bit position during the computation of specified floating

3https://mantevo.org/packages.php

24

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

A1,1

A2,1

A1,2

A2,2

B1,1 B1,2

B2,1 B2,2

C1,1

C2,1

C1,2

C2,2

Matrix A (n x n)

C1,1 = M1 + M4 - M5 + M7

C2,2 = M1 - M2 + M3 + M6

M1 =

(a) Calculating A x B = C with Strassen MMM
M1 = (A1,1 + A2,1) (B1,1 + B2,2)

M7 = ...

M1 =

M1 =

0 errors

1 error

n/2 errors

(b) Injection during M1 calculation

C1,1 =
(c) Propagation of M1 error to resulting C matrix

+ =+
A1,1

X =

C =

C2,2 =

n errors

A2,1 B2,1 B2,2

M1 M4 M5

+-
M7 C1,1

M1 M2 M3 M6 C2,2

- + + =

Matrix B (n x n) Matrix C (n x n)

+

Figure 3: Propagation of error in the Strassen algorithm.

point x86 instructions — e.g. fmul, fadd, fsub— during the main com-
putation phase. When testing the HPCCG mini-app, FlipIt utilizes
the same configuration used when testing the MMM kernel.

Both injectors classify each injection based on how that instruc-
tion is used in code: floating-point arithmetic (Arith-FP), fixed-
point integer arithmetic (Arith-Fix), pointer and address calculation
(Pointer), branching and comparisons (Ctrl-Branch), and control
flow/looping (Ctrl-Loop). The injection classification, fault injection
location in source code, and result of each trial is recorded and
inserted off-line into a FaultSight database using a Python script
and the API (see Section 3).

FaultSight directly generates all the plots and statistical analysis
in this section without the need for external processing and verifies
that fault injection campaign’s size allows meaningful statistical
analysis (see Section 3.3.1).

4.1 Matrix-Matrix Multiplication (MMM)
In this experiment, FaultSight’s ability to perform A/B testing as
well as the ability to compare two different fault injection frame-
works is explored.

MMM computes C = A × B, where A and B are dense n × n
matrices of order n = 512. Three different MMM algorithms are
investigated to determine which is the most resilient. The first
algorithm is the canonical three loop algorithm Matmul, the second
is a cache-block tiled version of the standard algorithm Tiled, and
the third is the Strassen algorithm Strassen [39]. Figure 3(a) shows
how the Strassen algorithm recursively reduces each matrix into
four equally sized blocks and recombines them to calculate each
entry, Ci j . This reduces the algorithmic complexity by eliminating
some operations. The reliability of each algorithm is assessed by
analyzing the number of corrupted elements in the final output.
Machine epsilon is the error threshold to determine if any two
floating-point values differ. Through the use of the extend API call,
an attribute that represents the number of corrupted elements in
the final ouput of each trial was added.

The FlipIt fault injection campaign consists of running 6,000
injection trials. The trials were split into three groups and had
the following breakdown: 2,000 Matmul, 2,000 Tiled, and 2,000
Strassen.

When FlipIt considers a function for injection, it considers the
base function and all functions it invokes. Conversely, FSEFI re-
quires a specific instruction to be given that it will target. With this

in mind, a set of floating point x86 instructions were given to FSEFI
to better mirror the results of FlipIt and therefore lead to a better
comparison of the two tools.

For FSEFI, the fault injection campaign consists of running 8,000
injection trials. The trials are split into five groups with the fol-
lowing breakdown: 2,000 Matmul while targeting the main fmul,
2,000 Tiled while targeting the main fmul, 2,000 Strassen while
targeting the main fmul, and 2,000 Strassen with 1,000 targeting
the main fadd and 1,000 targeting the main fsub.

Throughout the FlipIt campaign, many different functions were
hit with faults. During the Matmul trials all 2,000 injections hit
within the matmul function. During the Tiled trials 1,999 injec-
tions hit within the matmul_tiled function while 1 hit within the
min function. During the Strassen trials 182 injections hit within
the matmul_strassen function, 1,764 injections hit within the mat-
mul function, and 54 injections hit within the matadd function.
The matmul_strassen function utilizes both matmul and matadd to
combine blocks of matrices. These results help derive the set of x86
instructions that FSEFI implemented in its experiments.

The number of corrupted elements for all FlipIt and FSEFI trials
are recorded. Fault injections in the Matmul trials result in a total of
1,259 corrupted items in FlipIt and 1,700 corrupted items in FSEFI.
On average, a single injection in FlipIt corrupted 0.63 elements
and 0.85 elements in FSEFI. Injections in the Tiled trials result in
a total of 1,216 corrupted elements in FlipIt and 1,707 corrupted
items in FSEFI. On average, a single injection in FlipIt corrupted
0.61 elements and 0.853 elements in FSEFI. Lastly, Fault injections
in the Strassen trials result in 1,156,562 corrupted items in FlipIt
and 364,029 corrupted items in FSEFI. On average, a single injection
in FlipIt corrupted 578.3 elements and 182 elements in FSEFI.

The difference between FlipIt and FSEFI’s results from the Matmul
and Tiled trials are due to variations in how significant the fault
was on the injected value. For instance, if the fault occurred in
the lower bits then the fault could fall off during floating point
computation or due to rounding of by the system.

The high number of elements corrupted in the Strassen results,
seen from both fault injectors, come from corruption of the sub-
matrices that are used to computeC . Corrupting these sub-matrices
propagates the errors to even more elements of C . Figure 3(b)–(c)
illustrates this propagation pattern when a fault is injected into a
matadd operation during the calculation of M1. The fault results

25

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

30

25

20

15

10

5

0

Bit Location

Classification of Injections By Bit

0 5 10 15 20 25 30 35 40 45 50 55 60 63

Fr
eq

ue
nc

y

(a) FlipIt Distribution

140

120

100

80

60

40

20

0

Classification of Injections By Bit

Bit Location
0 5 10 15 20 25 30 35 40 45 50 55 60 63

Fr
eq

ue
nc

y

(b) FSEFI Distribution

Figure 4: Bit Flip Distribution of Arith-FP instruction types for each injector

in a single element (i,k) of the matadd being in error. The mul-
tiplication operation propagates this error at (i,k) to all entries
in row i due to data reuse in the matmul function leading to n/2
errors. The algorithm uses M1 in the calculation of C1,1 and C2,2
which propagates the results to the final output. Depending on how
much progress the algorithm has made before the fault occurs, this
can result in corruption of up to n elements in the matrix C . Fault
injection results show a corruption of 578.3 elements from FlipIt
and 182 elements from FSEFI on average. From these results, it can
be observed that FSEFI chose a uniform distribution of locations to
hit with some bias towards later instructions in the execution. If
hit locations were completely unbiased then the average number
of corrupted elements when only hitting the Arith-FP instructions,
as in the case of FSEFI, would be n/2 or 256 in our case. Therefore,
FSEFI’s 182 denotes a uniform distribution with some bias towards
later instructions. FlipIt’s results went above n due to different
propagation signatures that lead to increase corruption in C — e.g.
terminating a loop early and not computing a portion of the matrix.

Fault injectors need to be unbiased in their choice of which bits
should be flipped from the range they are given. Through Fault-
Sight’s visualizations, we can visualize the distribution of injection
locations from each fault injector and compare them. As seen in
Figure 4, we can are able to compare the distributions for both
fault injectors Arith-FP operations and tell that both have uniform
distributions when choosing which bit to flip.

4.1.1 Algorithm A/B Testing. Using the custom partitioning fea-
ture of FaultSight, we instruct FaultSight to partition the fault in-
jection trials into the 3 groups for the two different fault injectors,
one for each MMM. Performing a Student’s T-Test to compare fre-
quency of corrupted elements in the matrix C pairwise between
two different MMM functions, it is found that the difference in
error rates between the Matmul and Tiled approaches is not signif-
icant, with a p-value of 0.16 with FlipIt and a p-value of 0.76 with
FSEFI. However, the difference between the Matmul or Tiled to the
Strassen approach is significant, where both comparisons result
in a p-value of 0.0097 with FlipIt and a p-value of 1.78 × 10−211.

Based upon this analysis, if you are running in an environment
where the probability of suffering a bit-flip error during MMM
operation is likely and employ no additional resiliency techniques,
it is beneficial to use a slower performing algorithm — i.e., Matmul
or Tiled — as opposed to Strassen. This is due to the fact that

the high volume of data reuse in the Strassen algorithm leads to a
high degree of corruption in the resulting matrix C .

4.1.2 Protecting Matrix-Matrix Multiplication. Prior work [25,
41] explores protecting linear algebra operations with row and col-
umn checksums in a technique known as algorithm-based fault
tolerance (ABFT). Using checksums, ABFT is able to pinpoint the
matrix entry that is incorrect and correct it. Based on FlipIt’s MMM
injection campaign, on average 0.63 and 0.61 elements are corrupted
for Matmul and Tiled, respectively; therefore, ABFT is an effec-
tive scheme that detects and corrects all single entry errors. Even
though, in FlipIt’s trials, Strassen resulted in 578.3 elements on
average being corrupted, ABFT is an effective scheme for protecting
this algorithm. Since Strassen subdivides A and B, appending row
and column checksums to these sub-matrices allows for detection
of corrupt entries in the intermediate matadd and matmul before
the error propagates via matmul operations. Applying checksums
to each of the sub-matrices results in a larger memory overhead
due to requiring more checksums by a factor of 2 for each level
of the recursion. Although ABFT is on average an attractive solu-
tion to protect MMM, the faults that result in multiple erroneous
entries such as early loop termination may be unrecoverable with
ABFT. However, augmenting ABFT protected MMM with code that
ensures correct control flow [28, 33] alleviates this shortcoming.

4.2 HPCCG
In this example, FaultSight is used to show that a software-based
soft error detection/recovery scheme successfully limits the number
of extra iterations until the problem converges compared to runs of
an unmodified HPCCG. Here, FaultSight conducts statistical tests
of significance in several contexts — comparing the efficacy of a
detection/recovery scheme and comparing the impact of injections
into different locations/bits/datatypes.

HPCCG4 is a conjugate gradient (CG) benchmark from the Man-
tevo Suite that simulates a 3D chimney domain using a 27-point
finite difference matrix. In these experiments, HPCCG is run with
16 parallel MPI processes, a local block size of nz = ny = nz = 48,
and a solver tolerance of 1e−10. For each trial, a single bit-flip is
injected using FlipIt during the solve phase of HPCCG on a ran-
domly selected MPI process and instruction. Because a bit-flip can

4https://mantevo.org/packages.php

26

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

90.1%: HPC_sparsemv
2.9%: ddot
7%: waxpby
0%: exchange_externals

Figure 5: Fault injections mapped to functions for HPCCG.

lead to extra iterations, the number of iterations is capped at 500.
Any trial reaching 500 iterations is marked as not converged.

The campaign uses 3,000 trials, where the first 1,500 trials have
detection but no recovery scheme, and the remaining 1,500 trials
have both a detection and recovery scheme implemented. The de-
tection scheme verifies the plausibility of the residual at the end of
each iteration by ensuring that the residual does not increase by an
order-of-magnitude [12]. At the end of every iteration, the solution
vector x , the residual vector r , and the search direction vector p are
checkpointed to local memory. When the residual check is violated,
the in-memory checkpoint is read and the variables reinitialized to
the checkpointed values [40].

4.2.1 Impact on Convergence. FaultSight maps the injections
back to the current executing function, Figure 5, and reveals that
greater than 90% of injections occur in the function HPC_sparsemv
that computes sparsematrix-vector multiplication (SpMV), themost
time consuming portion of the code. This is consistent with prior
studies on other iterative linear solvers [12, 14]. Other functions
with injections include the ddot (inner-product), waxpby (scaled
vector addition), and exchange_internals (communication of vec-
tor values for parallel sparse matrix-vector multiplication)5. Ex-
ploring the code view for each injected function highlights the
vulnerable regions. Typically this is the most frequently executed
code segments such as the innermost loop (see Figure 2).

During the database generation phase of the workflow, we use
FaultSight’s API (extend_trial_table) to extend the existing data-
base by adding an attribute to represent the number of iterations for
the problem to converge. Combining this with FaultSight’s ability
to test hypotheses, we determine if the detection/recovery scheme
is effective at limiting the number of iterations to converge in a
faulty environment.

In the fault-free case, HPCCG requires 90 iterations to converge
to our set tolerance. In our fault injection trials, 1.8% of trials re-
quire extra iterations. Of those trials requiring extra iterations, 5
trials did not converge. Figure 6 refines Figure 5 to explore only
those trials that cause extra iterations. Because the SpMV has a
higher degree of data reuse than vector only operations [13], error
propagation patterns in the SpMV are similar to matmul in the
Strassen algorithm.

Figure 7 shows the bit location of the injections broken down
by the type of instruction for all trials that require extra iterations
to converge. In Figure 7, there are 3 clusters based on bit location

5Note there are 2 injections into exchange_internals.

and instruction type. The first group (bits 0–2) consists of injec-
tions into Pointer type instructions, resulting in reads and writes of
unaligned data. Reading/writing unaligned data produces garbage
values that have a high error between the correct value. The second
group consists of Ctrl-Loop and Arith-Fix operations. Corrupting
these operations leads to early termination of loops which result in
arrays not being fully updated or correctly initialized. This leads
to computing on unknown values, resulting in large deviations
from the correct values. The third group consists of injections into
Arith-FP instructions. These injections take place in the upper bits
of the mantissa (bits 48–51), all the exponent bits (bits 52–62), and
the sign bit (bit 63). Bit-flips in the most significant bits of the man-
tissa cause noticeable deviations in the magnitude of floating-point
values. Bit-flips in the sign bit results in the negation of a floating-
point value, and the deviation from the true value is proportional
to its magnitude. However, bit-flips in the exponent cause much
larger deviations; some orders of magnitude more than bit-flips in
the mantissa or sign-bit. Large deviations result in added error that
propagates to the vectors x , p, and r . Corruption in these vectors
cause HPCCG to require more iterations to achieve the fixed solver
tolerance. In addition, injections into Arith-FP instructions is statis-
tically significant to lead to extra iterations (beyond fault-free) with
a p-value of 6.8e−278. Other instruction types show non-significant
results due to the high rates of unexpected application termination.

Figures 8 and 9 highlight detection. The detection scheme for
HPCCG verifies that the new residual is within an order of magni-
tude of the previous one. Therefore, this detector only triggers when
large deviations occur — i.e., bit-flips in the exponent and reading
of garbage values. If the detection scheme places tighter guarantees
on how much the residual increases, Figure 9 approaches Figure 7
as all injections that lead to extra iterations are detected. Similarly,
Figure 8 closely matches Figure 6 signifying that the detection
scheme is preventing trials that require extra iterations. Because
a tight bound is not used, only trials that require 3+ iterations to
converge are detected. Provided that other information such as
program wall-clock time or energy is logged, FaultSight can also be
used to help analyze and tune the tolerance bound on the residual
detector to minimize wall-clock time and/or energy consumption.

Out of the 90 trials that took more iterations to converge than the
fault-free case (and successfully converged), 62 trials (70%) have a
detection. The 62 trials are split into two trial sets based on whether
the trial implements a recovery scheme or not. The average number
of iterations to converge of the set of trials with a recovery scheme
is 96.44, while the average number of iterations to converge for
trials with no recovery scheme is 108.6. Using the Student’s T-test
for statistical independence, shows that the difference is significant
with a p-value of 8.9e−8. Thus, the detection and recovery scheme
is effective at reducing the extra iterations needed to converge
when transient soft errors corrupt portions of the CG linear solver.

4.2.2 Unexpected Termination. Over the course of the fault injec-
tion campaign, 33.8% of fault injection trials experience unexpected
application termination. In these experiments, two symptoms cause
the unexpected termination events: generation of a segmentation
fault and generation of a bus error.

Figure 10 reports the bit locations that lead to a segmentation
fault grouped by the injected instruction type. In Figure 10, there

27

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

75.6%: HPC_sparsemv
14.4%: ddot
10%: waxpby

Figure 6: Injections mapped to functions for HPCCG, where
the number of iteration are greater than the fault-free case.

0 5 10 15 20 25 30 35 40 45 50 55 60 63
0

2

4

6

8

10

12

14

Fr
e
q
u
e
n
cy

Bit Location

Arith-FP
Pointer
Arith-Fix
Ctrl-Loop
Ctrl-Branch

Figure 7: Classification of injections by bit, from trialswhere
the number of iterations to converge is greater than the
fault-free case.

are no segmentation faults due to injections into Arith-FP instruc-
tions. Segmentation faults from injections into Pointer instructions
occur in bits that lead to unaligned data access (0–1) yielding in-
correct loads/stores or occur in bits that creates a pointer outside
the memory allocation (21–63). Fixed-point arithmetic operations,
Arith-Fix, are performed on 32-bit integers and do not have in-
jections in bits 32–63. Injections into Arith-Fix instructions that
cause segmentation faults produce results that lead into incorrect
address calculation. During compilation, clang promotes the 32-bit
integers used in loop iteration variables to 64-bit, allowing seg-
faults generated to be concentrated in bits outside of the size of
allocated memory for calculation on loop iteration variables, Ctrl-
Loop. Finally, injections into branches, Crtl-Branch results in an
extra iteration, and during the extra iteration the program accesses
out-of-bound memory — e.g., accessing off the end of an array.

The second cause of unexpected termination is due to bus errors.
An x86 processor raises a bus error when the program accesses
an undefined portion of a memory object. Figure 11 shows the bit
position and instruction types that lead to a bus error in our fault
injection campaign. These are confined to Pointer instructions and
in particular, the most significant bits of the pointer. Bit-flips in
these positions cause a large deviation in the pointer that leads to
accessing undefined portions of memory.

Statistical analysis of the bit locations shows that injections
in bits 32–63 are statistically more likely to lead to unexpected
termination than bits 0–31 with a p-value of 1.08e−39. From this
analysis, FaultSight shows that injections into the most significant
bits are the most impactful. Adding protection to these bits either
in hardware or software can lower an application’s likelihood of

88.9%: HPC_sparsemv
6.3%: ddot
4.8%: waxpby

Figure 8: Injections mapped to functions, for trials with de-
tection.

0 5 10 15 20 25 30 35 40 45 50 55 60 63
0

2

4

6

8

10

12

14

Fr
e
q

u
e
n
cy

Bit Location

Arith-FP
Pointer
Arith-Fix
Ctrl-Loop
Ctrl-Branch

Figure 9: Classification of injections by bit, for trials with
detection.

unexpectedly terminating when soft error corrupts logic and in-
struction results. For example, [14] uses triple modular redundancy
to protect key pointers and avoid segfaults. Additionally instruction
replication techniques [28] could add protection for pointers and
pointer operations. Using code analysis to pinpoint the code regions
that suffer unexpected termination allows for reduced overheads
in these resiliency schemes.

5 RELATEDWORK
Several types of fault injectors have been used to evaluate the
reliability of HPC applications. FSEFI [23] injects faults into an
application running on a virtual machine, and has a very high
level of control on where it inject faults. At a slightly higher level,
FlipIt [11], LLFI [31], KULFI [36], and SAFIRE-[21] uses an LLVM
compiler pass to instrument code for fault injection. However, other
studies corrupt MPI communication [20, 30]. Yet others, corrupt
application level variables [4, 6]. Each fault injector has a unique
way of recording data about the location and time of the injection.
The tool FaultTelescope built for KULFI identifies vulnerable regions
of code [15], but does not support data from other fault injectors
nor statistical testing. FaultSight’s API allows for data from many
different fault injectors to be recorded into the database for analysis.

Tools to analyze system reliability have been developed to ana-
lyze reliability, availability, and serviceability of (RAS) logfiles as
well as other logfiles generated by HPC systems [17–19, 22, 24, 32,
34]. These tools address similar problems working with large data
volumes, but are not designed to analyze and visualize data coming
from fault injection campaigns and comparing the effectiveness of
integrated application level detection and recovery schemes. Fault-
Sight’s web app interface provides more efficient analysis of fault
injection data.

28

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40 45 50 55 60 63
0

10

20

30

40

50

Fr
e
q

u
e
n
cy

Bit Location

Arith-FP
Pointer
Arith-Fix
Ctrl-Loop
Ctrl-Branch

Figure 10: Classification of injections by bit, for trials with
a Segmentation Fault.

0 5 10 15 20 25 30 35 40 45 50 55 60 63
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
e
q

u
e
n
cy

Bit Location

Arith-FP
Pointer
Arith-Fix
Ctrl-Loop
Ctrl-Branch

Figure 11: Classification of injections by bit, for trials with
a Bus Error.

Debugging tools — e.g., Allinea DDT6, TotalView7, GDB8 —allow
deep introspection into a running application in order to identify
software bugs and promote correctness. While they can be used for
fault injection, their view is limited to a single application’s execu-
tion and do not easily allow analysis of thousands of application
runs at once.

In order to improve performance or efficiency of HPC applica-
tions software profilers are commonly used to visualize how time
and resources are spent during an application run [1, 10, 37]. Soft-
ware profilers allow a detailed view of events such as function
invocations, message ordering, load imbalance, and their associated
runtimes. However, current HPC profilers do not visualize the extra
information coming from/about a simulation due to fault injection.

6 CONCLUSION AND FUTUREWORK
To obtain meaningful statistics when assessing an application’s
resiliency to faults or to test the effectiveness of a software-based
fault detection/recovery scheme requires thousands of fault injec-
tion trails. Analyzing the large volume of data is laborious as there
is no common tool for various fault injectors used in practice. This
paper presents FaultSight: a general fault injection analysis tool ca-
pable of visualizing and analyzing the results of thousands of fault
injection trials from various fault injectors thought its extendable
interface.

We use FaultSight to analyze the reliability of three Matrix-
Matrix Multiplication algorithms from multiple perspectives and
find there is not much difference between the canonical three
loop version and the tiled version. However, we find that Strassen

6https://www.arm.com/products/development-tools/hpc-tools/cross-
platform/forge/ddt
7https://www.roguewave.com/products-services/totalview
8https://www.gnu.org/software/gdb/

algorithm generates hundreds more corrupt entries in both per-
spectives than the other algorithms due to its higher reuse of sub-
computations. We also analyze the effectiveness of a detection and
recovery scheme for the mini-app HPCCG. Through FaultSight’s
statistical analysis feature, we show that the resiliency scheme is
effective at limiting the number of extra iterations when transient
faults occur.

Future work on FaultSight seeks to improve its interoperability
with other common data analysis frameworks such as Spark and
provide support for machine learning to detect trends in the fault
injection data.

Finally, prior research is replicated and supported through ana-
lyzing fault injection campaigns on MMM and HPCCG.

FaultSight is publicly available under the MIT license on github:
https://github.com/einarhorn/FaultSight.

ACKNOWLEDGMENT
This work was sponsored by the Air Force Office of Scientific Re-
search under grant FA9550–12–1–0478. This research is part of
the Blue Waters sustained-petascale computing project, which is
supported by the National Science Foundation (NSF) (awards OCI–
0725070 and ACI–1238993) and the state of Illinois. Blue Waters is a
joint effort of the University of Illinois at Urbana-Champaign and its
National Center for Supercomputing Applications. This material is
also based in part on work supported by the Department of Energy,
National Nuclear Security Administration, under Award Number
DE-NA0002374. This material is based upon work supported by the
NSF under Grant No. SHF-1617488.

Wewould also like to thank TerryGrové andNathanDebardeleben
at Los Alamos National Laboratory for their assistance and allowing
us to utilize the Gamma Cluster.

REFERENCES
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. 2010. HPCTOOLKIT: Tools for Performance Analysis of Optimized
Parallel Programs Http://Hpctoolkit.Org. Concurr. Comput. : Pract. Exper. 22, 6
(April 2010), 685–701. https://doi.org/10.1002/cpe.v22:6

[2] R. C. Baumann. 2005. Radiation-induced soft errors in advanced semiconductor
technologies. Device and Materials Reliability, IEEE Transactions on 5, 3 (Sept.
2005), 305–316. https://doi.org/10.1109/TDMR.2005.853449

[3] Leonardo Bautista-Gomez and Franck Cappello. 2015. Detecting Silent Data Cor-
ruption for Extreme-Scale MPI Applications. In Proceedings of the 22Nd European
MPI Users’ Group Meeting (EuroMPI ’15). ACM, New York, NY, USA, Article 12,
10 pages. https://doi.org/10.1145/2802658.2802665

[4] Leonardo Bautista-Gomez and Franck Cappello. 2015. Exploiting Spatial Smooth-
ness in HPC Applications to Detect Silent Data Corruption. In Proceedings of
the 2015 IEEE 17th International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security, and 2015 IEEE 12th International Conf on Embedded Software and
Systems (HPCC-CSS-ICESS ’15). IEEE Computer Society, Washington, DC, USA,
128–133. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.9

[5] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. 2011. FTI: high performance fault toler-
ance interface for hybrid systems. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’11). ACM,
NewYork, NY, USA, Article 32, 32 pages. https://doi.org/10.1145/2063384.2063427

[6] Austin R Benson, Sven Schmit, and Robert Schreiber. 2015. Silent error detection
in numerical time-stepping schemes. The International Journal of High Perfor-
mance Computing Applications 29, 4 (2015), 403–421. https://doi.org/10.1177/
1094342014532297 arXiv:http://dx.doi.org/10.1177/1094342014532297

[7] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. 2008.
Exascale computing study: Technology challenges in achieving exascale systems.
Technical Report. Defense Advanced Research Projects Agency Information
Processing Techniques Office (DARPA IPTO).

29

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

[8] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. 2017. Toward
General Software Level Silent Data CorruptionDetection for Parallel Applications.
IEEE Transactions on Parallel and Distributed Systems 28, 12 (Dec 2017), 3642–3655.
https://doi.org/10.1109/TPDS.2017.2735971

[9] Shekhar Borkar. 2005. Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation. IEEE Micro 25, 6 (Nov.
2005), 10–16. https://doi.org/10.1109/MM.2005.110

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. 2000. A Portable Pro-
gramming Interface for Performance Evaluation on Modern Processors. Int. J.
High Perform. Comput. Appl. 14, 3 (Aug. 2000), 189–204. https://doi.org/10.1177/
109434200001400303

[11] Jon Calhoun, Luke Olson, and Marc Snir. 2014. FlipIt: An LLVM Based Fault
Injector for HPC. In Proceedings of the 20th International Euro-Par Conference on
Parallel Processing (Euro-Par ’14).

[12] Jon Calhoun, Luke Olson, Marc Snir, and William D. Gropp. 2015. Towards a
More Fault Resilient Multigrid Solver. In Proceedings of the Symposium on High
Performance Computing (HPC ’15). Society for Computer Simulation International,
San Diego, CA, USA, 1–8. http://dl.acm.org/citation.cfm?id=2872599.2872600

[13] Jon Calhoun, Luke N. Olson, Marc Snir, and William D. Gropp. 2017. Towards a
More Complete Understanding of SDC Propagation. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’17). ACM, New York, NY, USA.

[14] Marc Casas, Bronis R. de Supinski, Greg Bronevetsky, and Martin Schulz. 2012.
Fault resilience of the algebraic multi-grid solver. In Proceedings of the 26th ACM
international conference on Supercomputing (ICS ’12). ACM, New York, NY, USA,
91–100. https://doi.org/10.1145/2304576.2304590

[15] Sui Chen, Greg Bronevetsky, Bin Li, Marc Casas Guix, and Lu Peng. 2015. A
framework for evaluating comprehensive fault resilience mechanisms in numer-
ical programs. The Journal of Supercomputing 71, 8 (01 Aug 2015), 2963–2984.
https://doi.org/10.1007/s11227-015-1422-z

[16] Zizhong Chen. 2013. Online-ABFT: An Online Algorithm Based Fault Tolerance
Scheme for Soft Error Detection in Iterative Methods. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’13). ACM, New York, NY, USA, 167–176. https://doi.org/10.1145/2442516.
2442533

[17] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello. 2017. LOGAIDER: A Tool
for Mining Potential Correlations of HPC Log Events. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 442–
451. https://doi.org/10.1109/CCGRID.2017.18

[18] E.Chuah et al. 2019. Towards comprehensive dependability-driven resource use
and message log-analysis for HPC systems diagnosis. J. Parallel and Distrib.
Comput. (May 2019), 95–112. https://doi.org/10.1016/j.jpdc.2019.05.013

[19] M. Hickman et al. 2018. Enhancing HPC System Log Analysis by Identifying
Message Origin in Source Code. 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (Aug. 2018), 100–105. https://doi.org/10.1109/
ISSREW.2018.00-23

[20] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and
Ron Brightwell. 2012. Detection and Correction of Silent Data Corruption for
Large-scale High-performance Computing. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (SC
’12). IEEE Computer Society Press, Los Alamitos, CA, USA, Article 78, 12 pages.
http://dl.acm.org/citation.cfm?id=2388996.2389102

[21] G Georgakoudis, I Laguna, H Vandierendonck, D S Nikolopoulos, and M Schulz.
2019. SAFIRE: Scalable and Accurate Fault Injection ForParallel Multithreaded
Applications. IEEE International Parallel Distributed ProcessingSymposium (Jan.
2019). https://www.osti.gov/servlets/purl/1518562

[22] Alfredo Giménez, Todd Gamblin, Abhinav Bhatele, Chad Wood, Kathleen Shoga,
Aniruddha Marathe, Peer-Timo Bremer, Bernd Hamann, and Martin Schulz. 2017.
ScrubJay: Deriving Knowledge from the Disarray of HPC Performance Data.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’17). ACM, New York, NY, USA, Article 35,
12 pages. https://doi.org/10.1145/3126908.3126935

[23] Qiang Guan, Nathan BeBardeleben, Panruo Wu, Stephan Eidenbenz, Sean Blan-
chard, Laura Monroe, Elisabeth Baseman, and Li Tan. 2016. Design, Use and
Evaluation of P-FSEFI: A Parallel Soft Error Fault Injection Framework for Emulat-
ing Soft Errors in Parallel Applications. In Proceedings of the 9th EAI International
Conference on Simulation Tools and Techniques (SIMUTOOLS’16). ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), ICST, Brussels, Belgium, Belgium, 9–17. http://dl.acm.org/citation.cfm?id=
3021426.3021429

[24] Hanqi Guo, Sheng Di, Rinku Gupta, Tom Peterka, and Franck Cappello. 2018. La
VALSE: Scalable Log Visualization for Fault Characterization in Supercomputers.
In Eurographics Symposium on Parallel Graphics and Visualization, Hank Childs
and Fernando Cucchietti (Eds.). The Eurographics Association. https://doi.org/
10.2312/pgv.20181099

[25] Kuang-Hua Huang and J. A. Abraham. 1984. Algorithm-Based Fault Tolerance
for Matrix Operations. IEEE Trans. Comput. 33, 6 (June 1984), 518–528. https:
//doi.org/10.1109/TC.1984.1676475

[26] Luc Jaulmes, Marc Casas, Miquel Moretó, Eduard Ayguadé, Jesús Labarta, and
Mateo Valero. 2015. Exploiting Asynchrony from Exact Forward Recovery for
DUE in Iterative Solvers. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’15). ACM, New
York, NY, USA, Article 53, 12 pages. https://doi.org/10.1145/2807591.2807599

[27] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishnamurthy,
and Shekhar Borkar. 2012. Near-threshold Voltage (NTV) Design: Opportunities
and Challenges. In Proceedings of the 49th Annual Design Automation Conference
(DAC ’12). ACM, New York, NY, USA, 1153–1158. https://doi.org/10.1145/2228360.
2228572

[28] Ignacio Laguna, Martin Schulz, David F. Richards, Jon Calhoun, and Luke Olson.
2016. IPAS: Intelligent Protection Against Silent Output Corruption in Scien-
tific Applications. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization (CGO 2016). ACM, New York, NY, USA, 227–238.
https://doi.org/10.1145/2854038.2854059

[29] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. 2009. Statistical Fault
Injection: Quantified Error and Confidence. In Proceedings of the Conference
on Design, Automation and Test in Europe (DATE ’09). European Design and
Automation Association, 3001 Leuven, Belgium, Belgium, 502–506. http://dl.
acm.org/citation.cfm?id=1874620.1874743

[30] Charng-da Lu and Daniel A. Reed. 2004. Assessing Fault Sensitivity in MPI
Applications. In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing
(SC ’04). IEEE Computer Society, Washington, DC, USA, 37–. https://doi.org/10.
1109/SC.2004.12

[31] Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik Pattabira-
man. 2015. LLFI: An Intermediate Code-Level Fault Injection Tool for Hardware
Faults. In Proceedings of the 2015 IEEE International Conference on Software Quality,
Reliability and Security (QRS ’15). IEEE Computer Society, Washington, DC, USA,
11–16. https://doi.org/10.1109/QRS.2015.13

[32] Catello Di Martino, Saurabh Jha, William Kramer, Zbigniew Kalbarczyk, and
Ravishankar K. Iyer. 2015. LogDiver: A Tool for Measuring Resilience of Extreme-
Scale Systems and Applications. In Proceedings of the 5th Workshop on Fault
Tolerance for HPC at eXtreme Scale (FTXS ’15). ACM, New York, NY, USA, 11–18.
https://doi.org/10.1145/2751504.2751511

[33] Xiang Ni and Laxmikant V. Kale. 2016. FlipBack: Automatic Targeted Protection
Against Silent Data Corruption. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’16). IEEE
Press, Piscataway, NJ, USA, Article 29, 12 pages. http://dl.acm.org/citation.cfm?
id=3014904.3014943

[34] Byung Hoon (Hoony) Park, Yawei Hui, Swen Boehm, Rizwan Ashraf, Christian
Engelmann, and Christopher Layton. 2018. A Big Data Analytics Framework for
HPC Log Data: Three Case Studies Using the Titan Supercomputer Log. In Pro-
ceedings of the 19th IEEE International Conference on Cluster Computing (Cluster)
2018: 5th Workshop on Monitoring and Analysis for High Performance Systems
Plus Applications (HPCMASPA) 2018. IEEE Computer Society, Los Alamitos, CA,
USA, Belfast, UK, 571–579. https://doi.org/10.1109/CLUSTER.2018.00073

[35] John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale Computing Tech-
nology Challenges. In Proceedings of the 9th International Conference on High
Performance Computing for Computational Science (VECPAR’10). Springer-Verlag,
Berlin, Heidelberg, 1–25. http://dl.acm.org/citation.cfm?id=1964238.1964240

[36] Vishal Chandra Sharma, Arvind Haran, Zvonimir Rakamarić, and Ganesh
Gopalakrishnan. 2013. Towards Formal Approaches to System Resilience. In
Proceedings of the 19th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC).

[37] Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Performance
System. Int. J. High Perform. Comput. Appl. 20, 2 (May 2006), 287–311. https:
//doi.org/10.1177/1094342006064482

[38] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, An-
drew A Chien, Paul Coteus, Nathan A DeBardeleben, Pedro C Diniz, Christian En-
gelmann, Mattan Erez, Saverio Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sri-
ram Krishnamoorthy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd Munson,
Rob Schreiber, Jon Stearley, and Eric Van Hensbergen. 2014. Addressing Failures
in Exascale Computing. International Journal of High Performance Computing Ap-
plications 28, 2 (May 2014), 127 – 171. https://doi.org/10.1177/1094342014522573

[39] Volker Strassen. 1969. Gaussian Elimination is Not Optimal. Numer. Math. 13, 4
(Aug. 1969), 354–356. https://doi.org/10.1007/BF02165411

[40] Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. 2018. Im-
proving performance of iterative methods by lossy checkponting. In Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 52–65.

[41] Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo Wu, Xin
Liang, Eddy Z Zhang, Darren Kerbyson, and Zizhong Chen. 2016. New-sum:
A novel online abft scheme for general iterative methods. In Proceedings of the
25th ACM International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 43–55.

30

Authorized licensed use limited to: University of Illinois. Downloaded on March 23,2023 at 02:06:12 UTC from IEEE Xplore. Restrictions apply.

