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Abstract
The focus of this article is on the parallel scalability of a distributed multigrid framework, known as the DTU Compute
GPUlab Library, for execution on graphics processing unit (GPU)-accelerated supercomputers. We demonstrate near-
ideal weak scalability for a high-order fully nonlinear potential flow (FNPF) time domain model on the Oak Ridge Titan
supercomputer, which is equipped with a large number of many-core CPU-GPU nodes. The high-order finite difference
scheme for the solver is implemented to expose data locality and scalability, and the linear Laplace solver is based on an
iterative multilevel preconditioned defect correction method designed for high-throughput processing and massive
parallelism. In this work, the FNPF discretization is based on a multi-block discretization that allows for large-scale
simulations. In this setup, each grid block is based on a logically structured mesh with support for curvilinear
representation of horizontal block boundaries to allow for an accurate representation of geometric features such as
surface-piercing bottom-mounted structures—for example, mono-pile foundations as demonstrated. Unprecedented
performance and scalability results are presented for a system of equations that is historically known as being too
expensive to solve in practical applications. A novel feature of the potential flow model is demonstrated, being that a
modest number of multigrid restrictions is sufficient for fast convergence, improving overall parallel scalability as the
coarse grid problem diminishes. In the numerical benchmarks presented, we demonstrate using 8192 modern Nvidia
GPUs enabling large-scale and high-resolution nonlinear marine hydrodynamics applications.
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1. Introduction

The objective of this work is to detail and benchmark a

newly developed distributed multigrid framework, which

we refer to as the DTU Compute GPUlab Library (Glim-

berg, 2013). The framework offers scalable execution on

supercomputers and compute cluster with heterogeneous

architectures equipped with many-core coprocessors such

as graphics processing units (GPUs). The GPUlab library

builds upon thrust (Bell and Hoberock, 2011) and the mes-

sage passing interface (MPI) (Gropp et al., 1999) and is

designed for extensibility and portability, allowing for fast

prototyping of advanced numerical solvers. In addition,

using a layer of abstraction, the library delivers an acces-

sible interface, allowing developers to realize high-

performance through auto-tuning. The generic design

principles used for implementing the library components

are described in Glimberg et al. (2013).

To target marine hydrodynamic simulations, we have

developed a GPUlab module based on fully nonlinear

potential flow (FNPF) theory for free surface flows. This

module is referred to as OceanWave3-D-GPU and is devel-

oped to achieve OðnÞ-scaling with n degrees of freedom in
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the discretization. To achieve scalability, we utilize a mas-

sively parallel multilevel preconditioned defect correction

scheme proposed in Engsig-Karup et al., 2011). In this

article, we detail several extensions including the use of a

multi-block procedure to enable multi-GPU computing and

the development of boundary-fitted curvilinear domains to

support real hydrodynamics application. Together, the

OceanWave3-D-GPU solver is capable of targeting large

marine areas due to the high parallel performance and low

memory footprint in the simulation.

The OceanWave3-D-GPU simulator is an important

step in expanding the concept of numerical wave tanks

(NWTs) (Nimmala et al., 2013) toward more complex

marine hydrodynamic applications using FNPF models.

Fast hydrodynamics codes have shown potential in real-

time naval hydrodynamics simulations and visualization

(Engsig-Karup et al., 2011; Glimberg, 2013; Lindberg

et al., 2013); efficient uncertainty quantification (Bigoni

et al., 2016); tsunami propagation (Grilli et al., 2002); and

the development, design, and analysis of marine structures

such as naval vessels, wave-energy conversion devices

(Verbrugghe et al., 2016), and coastal infrastructures. The

multitude of applications motivates the use of both non-

linear wave–wave and wave–structure interactions.

1.1. Applications for large-scale water wave
simulations

Accurate description of the nonlinear evolution and transfor-

mation of ocean waves over possibly changing sea floors is

important in the context of ocean modeling and engineering.

Recent advances in scalable numerical algorithms allow us to

consider fully nonlinear and dispersive wave equations based

on full potential theory in the context of large-scale simula-

tions, for which computational fluid dynamics (CFD)-based

models are too computationally expensive (Hino et al., 2014).

The immediate advantage is a more complete description in

the model and a wider applicability for hydrodynamics

calculations, though still subject to the assumptions of

non-breaking and irrotational waves. However, model

extensions to account for breaking waves are possible

(Kazolea and Ricchiuto, 2016). Simulations based on the

fully nonlinear and dispersive equations are attractive for

engineering applications where water waves transform non-

linearly over varying bathymetry and when accurate kine-

matics are required—for example, the estimation of

structural loads. With a large-scale model, wave–wave inter-

actions can be modeled even in the presence of multiple

structures covering large areas, such as offshore wind farms.

A comprehensive introduction to hydrodynamics is

given in Svendsen and Jonsson (1976), while details on

numerical modeling are found in Lin (2008) or in the

shorter survey by Dias and Bridges (2006). A variety of

numerical techniques for solving such hydrodynamic

model problems have been presented throughout the liter-

ature—for example, see Cai et al. (2005), Engsig-Karup

(2006), Li and Fleming (1997), and Yeung (1982). Finally,

a concise derivation of the fully nonlinear water wave

model based on potential flow theory is revisited in

Engsig-Karup et al. (2013).

1.2. Coprocessors

High-performance computing has been transformed over

the last decade with the emergence of programmable

many-core coprocessors, such as GPUs. This is driving the

need for developing software and algorithms that exploit

the parallelism offered by their compute units.

Models based on full potential theory have previously

used a variety of discretization methods. Due to the mem-

ory layout and access efficiency on a GPU, the finite dif-

ference method has been used to efficiently solve the

governing potential flow equations. Memory bandwidth is

the performance bottleneck for most scientific computing

applications, and efficient memory access is therefore key

for overall efficiency; this is also supported by recent trends

in hardware development (Asanovic et al., 2006; Hole-

winski et al, 2012; Micikevicius, 2009).

In recent work, we have addressed aspects of robust, accu-

rate, and fast three-dimensional (3-D) simulation of water

waves over uneven sea floors (Engsig-Karup et al., 2008,

2011; Glimberg et al., 2011) based on full potential theory.

The objective of this work is to enable new hydrodynamic

applications by extending the scalability on distributed sys-

tems for use with a large number of time steps and billions of

spatial degrees of freedom. To this end, we present and bench-

mark an extension of the parallel model (Engsig-Karup et al.,

2011) that supports large GPU-accelerated systems using a

hybrid MPI-CUDA implementation.

This work is related to the methods originally proposed

in Li and Fleming (1997, 2001), which is based on multi-

grid using low-order discretization. This was extended to a

high-order finite difference technique in two-dimensional

(2-D) (Bingham and Zhang, 2007) and to 3-D (Engsig-

Karup et al., 2008) approaches, and the approach enables

efficient, scalable, and low-storage solution of the Laplace

problem using an efficient multigrid strategy proposed and

analyzed in Engsig-Karup et al. (2011) and Engsig-Karup

(2014).

A novel feature of our approach is that communication

requirements are minimized due to a low number of multi-

grid restrictions, leading to low overhead on massively

parallel machines and high scalability. Our benchmark

examples verify that the combination of a strong vertical

smoother and a favorable coarsening strategy based on

aspect ratios provides good convergence at even few multi-

grid levels. Reducing the number of multigrid levels leads

to a lower communication overhead.

1.3. On GPU-accelerated multigrid solvers for
scientific applications

The use of coprocessors, such as GPUs, for elliptic prob-

lems was first reported in Fan et al. (2004). In the setting of

856 The International Journal of High Performance Computing Applications 33(5)



finite elements, weak scalability is explored in Goddeke

et al. (2007) and later on clusters in Goddeke (2011). Addi-

tional research on both geometric and algebraic multigrid

methods have been demonstrated on a number of GPU-

accelerated applications in various engineering disciplines

(Bell et al., 2012; Esler et al., 2014; Naumov et al., 2015;

Strzodka et al., 2013). The increasing ratio between com-

pute performance and memory bandwidth favors higher

order discretizations that increase the flop counts to mem-

ory transfers and make it possible to tune trade-offs

between accuracy and numerical efficiency.

1.4. Paper contributions

We present a novel and scalable algorithmic implementa-

tion for the FNPF model enabling large-scale marine

hydrodynamics simulation in realistic engineering applica-

tions. The implementation extends the proof-of-concept for

a single-GPU system demonstrated in Engsig-Karup et al.

(2011). This is facilitated by a multigrid framework

described in Glimberg (2013) that is based on an MPI-

CUDA implementation. The framework handles curvi-

linear and logically structured meshes to introduce

geometric flexibility—for example, the simulation of

mono-pile foundations in marine areas. Through a careful

semi-coarsening strategy, we demonstrate that the rapid

convergence of the iterative solver requires only a few

multigrid levels, avoiding an expensive coarse grid prob-

lem that typically limits scalability. We provide a bench-

mark and demonstrate weak scalability on several compute

clusters, including the Oak Ridge Titan supercomputer,

utilizing up to 8192 GPUs and enabling high-resolution and

large-scale marine hydrodynamic simulation.

2. The mathematical model

In recent works, we have focused on the robustness of the

numerical scheme (Engsig-Karup, 2014; Engsig-Karup

et al., 2008; Li and Fleming, 1997) along with efficiency

on emerging many-core architectures (Engsig-Karup et al.,

2011; Glimberg et al., 2011). A mathematical model for

potential free surface flow in three spatial dimensions can

be expressed in terms of the unsteady kinematic and

dynamic boundary equations in Zakharov form

@th ¼ �rh � r~�þ ~wð1þrh � rhÞ ð1Þ

@t
~� ¼ �gh� 1

2
r~� � r~�� ~w2

2
ð1þrh � rhÞ ð2Þ

where r � ½@x@y�T is the horizontal gradient operator, g is

the gravitational acceleration, and hðx; tÞ is the free surface

elevation measured from the still water level at z ¼ 0. In

addition, ~�ðx; tÞ is the scalar velocity potential, and ~wðx; tÞ
is the vertical velocity; both are evaluated at the free sur-

face z ¼ h. Assuming that the flow is inviscid, irrotational,

and non-breaking, the continuity equation can be expressed

in terms of a scalar velocity potential function in the

form of

½r2 þ @zz�� ¼ 0 ð3Þ

which requires a closure for the free surface equations. By

imposing the free surface boundary conditions (2) together

with a kinematic bottom boundary condition

@z�þrh � r� ¼ 0; z ¼ �h ð4Þ

and assuming impermeable vertical walls at domain bound-

aries, the resulting Laplace problem is well-posed. From

the solution, the velocity field in the fluid volume is

ðu;wÞ � ðr�; @z�Þ.

2.1. Vertical coordinate transformation

To improve efficiency, a fixed time-invariant compu-

tational domain is introduced using a classical

s-transformation

sðx; z; tÞ ¼ zþ hðx; tÞ
hðxÞ þ hðx; tÞ ð5Þ

which maps z]s and where �h � z � h and 0 � s � 1.

The resulting transformed Laplace problem with

�ðx; zÞ � �ðx;sÞ is written as

s ¼ 1:

� ¼ ~� ð6Þ

0 � s < 1:

r2�þ ðr2sÞð@s�Þ þ 2rs � rð@s�Þ
þ ðrs � rs þ ð@zsÞ2Þ@ss� ¼ 0

ð7Þ

s ¼ 0:

ð@zs þrh � rsÞð@s�Þ þ rh � r� ¼ 0: ð8Þ

These equations, together with the kinematic and

dynamic free surface boundary conditions, describe the

FNPF model in Cartesian coordinates, applicable to appli-

cations where the physical domain can be represented

within an NWT with regular boundaries.

2.2. Horizontal mapping to generalized coordinates

Irregular horizontal domains can be introduced by rewriting

the Cartesian coordinates and by expressing the physical

derivatives in terms of the computational domain. This is

accomplished by introducing the affine coordinate mapping

�ðx; yÞ ¼ fðx; yÞ] ðx; gÞg. Then, applying the chain rule,

the first-order derivatives with respect to the original phys-

ical coordinates ðx; yÞ of a function u are described within

the regular computational domain ðx; gÞ with the following

relations (subscripts are used to denote derivatives)

ux ¼ xxux þ gxug ð9Þ

uy ¼ xyux þ gyug ð10Þ

Glimberg et al. 857



under which the following relations hold

xx ¼
1

J
yg; xy ¼ �

1

J
xg ð11Þ

gx ¼ �
1

J
yx; gy ¼

1

J
xx ð12Þ

where J is the Jacobian of the mapping

J ¼ detðJÞ ¼ xxyg � xgyx ð13Þ

Given the above equations, the first-order derivatives of

u can be described exclusively within the computational

reference domain as

ux ¼
ygux � yxug

J
ð14Þ

uy ¼
xxug � xgux

J
ð15Þ

In a similar way, the second-order and mixed derivatives

can be derived. Under the assumption of time-invariant

domains, the Jacobian and its derivatives are constant and

may be precomputed to improve computational efficiency.

Having assumed impermeable wall boundaries, the net-

flux through these boundaries is zero and is stated in terms

of a homogeneous Neumann boundary condition

n � ru ¼ 0; ðx; yÞ 2 @O ð16Þ

where n ¼ ðnx; nyÞT is the outward pointing horizontal

normal vector defined at the vertical boundary @O sur-

rounding the domain O. The normal vector in the physical

and generalized coordinates is connected through the fol-

lowing relation

nx

ny

� �
¼

xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þ g2
x

q gxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þ g2
x

q
xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

y þ g2
y

q gyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

y þ g2
y

q

0
BBBBB@

1
CCCCCA

nx
ng

� �
ð17Þ

Note that the normals in the computational domain are

trivial, as they are always perpendicular to the rectangular

domain boundaries.

Supporting curvilinear coordinates enables complex

modeling of offshore structures, harbors, shorelines, and

so on, which have significant engineering value over tra-

ditional regular wave tank domains (Fang et al., 2012; Li

and Zhan, 2001; Shi and Sun, 1995; Shi et al., 2001;

Zhang et al., 2005). Flexible representation of the discrete

domain can also be utilized to spatially adapt the grid to

the wavelengths, resulting in higher resolution where

shorter waves are present and thereby minimizing over-

or under-resolved waves.

3. The numerical model

All spatial derivatives in equations (1), (2), and (6) to (8)

are discretized using standard centered finite differences of

flexible-order accuracy, meaning that the size of the stencil

operators can be pre-adjusted to allow different orders of

accuracy using the method of undetermined coefficients.

The stencil implementation is matrix-free to avoid the use

of sparse matrix formats, which would require additional

index lookups from memory. The stencil operations also

allow efficient access to GPU memory as data can be

cached (Micikevicius, 2009). The temporal surface condi-

tions in equations (1) and (2) are solved with a fourth-order

explicit Runge–Kutta method. The time domain ½0;Tend� is
partitioned uniformly into discrete steps ti ¼ iDt;
i ¼ 1; 2 . . . , such that Dt satisfies the courant–friedrichs–

lewy (CFL) stability condition. At each stage of the

Runge–Kutta method, the vertical velocity at the surface,

~w, is approximated as the vertical derivative of the velocity

potential �, where � is described by the linear system of

equations due to the discretization of equation (5)

A� ¼ b; A 2 RN�N ; b 2 RN�1 ð18Þ

where N is the total degree of freedom. The sparse, non-

symmetric system (18) is a key computational bottleneck in

the simulation and is the focus of our attention. To extend

the original work by Li and Fleming (1997), a multigrid

preconditioned defect correction method can be employed,

which has been expanded for improved accuracy, effi-

ciency, and robustness (Bingham and Zhang, 2007;

Engsig-Karup et al., 2008, 2011). The iterative defect cor-

rection method is attractive because it has a short and

highly parallel outer loop, requiring only one collective

all-to-one communication step when computing the resi-

dual norm for evaluating the convergence criteria. The pre-

conditioned defect correction method generates a sequence

of iterates j, starting from an initial guess �½0�

�½j� ¼ �½j�1� þM�1r½j�1�; j ¼ 1; 2; . . . ð19Þ

where r½j�1� ¼ b�A�½j�1� denotes the residual at iteration

j� 1 and M is a left preconditioner based on nested grids

to form a geometric multigrid preconditioner (Trottenberg

et al., 2000). The iterations continue until the convergence

criteria are satisfied

jjr½j�jj � rtoljjbjj þ atol ð20Þ

where rtol and atol are the relative and absolute toler-

ances, respectively. Previous work has demonstrated that

M�1 is effective when based on linearized second-order

(low-order) finite differences to allow efficient computa-

tion of the preconditioned system, while still obtaining

fast algorithmic convergence to the original system of

high-order accuracy. In addition, such low-order approx-

imation significantly reduces the computational work of

computing the residuals and relaxations during the pre-

conditioning phase.

4. Spatial domain and data distribution

It is often advantageous to decompose a boundary

value problem into smaller subdomains. For one, the

858 The International Journal of High Performance Computing Applications 33(5)



computational work can be distributed and solved in par-

allel to achieve better overall performance. In addition,

memory distribution lowers the memory requirements per

compute node and allows for larger global problems. How-

ever, communication between compute nodes requires fre-

quent message passing, leading to degraded performance,

especially for smaller problem sizes.

For the free surface water wave model, a data decom-

position technique with small domain overlaps is proposed.

The computational domain is first decomposed into rectan-

gular nonoverlapping subdomains, and then the so-called

ghost layers are added to account for grid points that are

distributed across adjacent subdomains (Acklam and

Langtangen, 1998). The size of the ghost layers depends

on the size of the finite difference stencil. An example of

the decomposition of a simple 17� 5 domain into two

subdomains is illustrated in Figure 1. Ghost points are

updated block-wise, indicated by the arrows, when infor-

mation from adjacent domains are queried. Thus, subdo-

mains concurrently solve the global boundary value

problem by communicating with neighboring subdomains.

This approach differs from domain decomposition methods

where overlapping local boundary value problems are

solved individually (Smith et al., 1996). Our proposed

approach requires all ghost layers to be updated prior to

any global operation, but most importantly it maintains the

attractive convergence rate of the multigrid preconditioned

defect correction method.

The vertical resolution for any free surface model is

significantly lower than the horizontal resolution. Ten ver-

tical grid points, for example, are often sufficient for hydro-

dynamics, while the number of horizontal grid points is

dictated by the size of the physical domain and the wave-

lengths. The global domain is, therefore, decomposed using

a 2-D horizontal topology. For practical applications, the

necessary spatial resolution is typically less than 10 nodes

in the vertical direction leading to sufficient accuracy in the

dispersion relation for wave propagation. Thus, for appli-

cations, a large number of nodes can be used to repre-

sent the horizontal dimensions covering large marine

areas, for example, to simulate long wave propagation

in coastal and harbor areas with varying bathymetry.

Such large domains will have a favorable ratio between

internal grid points and ghost points compared to

smaller domains, causing less communication overhead

relative to the computation volume.

4.1. Multi-GPU data distribution

A multigrid preconditioner, M, can be formed as a series

of (sparse) matrix–vector operations. Any such matrix–

vector operation, S, acting on a subdomain Oi, may be

formulated as

Si
xi

gi

� �
¼ bi; Si 2 Rn�n; bi 2 Rn�1 ð21Þ

where n is number of degrees of freedom in the subdomain,

requiring n � N . The vectors xi and gi contain the internal

points and the ghost points of subdomain i, respectively.

Computing the matrix–vector product using Si is a local

operation, which can be performed by the process (GPU)

associated with subdomain Oi. To facilitate this, all ghost

layers are updated prior to applying Si by transferring

boundary layer data between GPUs using MPI. The com-

munication overhead due to the exchange of ghost values is

related to the size of the ghost layers gi and is investigated

in the following sections. When updating the internal

boundaries between neighboring GPUs, memory is first

copied from the GPU to the CPU before transferred via

MPI. To reduce transfer overhead, this is performed first

for the east/west boundaries, to allow asynchronous MPI

communication, while the north/south boundaries are cop-

ied to the CPU. Figure 2 depicts some typical scenarios.

The single workstation offers low memory transfer over-

head as no network communication is required. Yet the

number of GPUs on a single workstation is limited due to

the number of PCIe sockets (often one or two). In contrast,

on a cluster or supercomputer, a distributed memory

model is provided, allowing a flexible number of nodes

for simultaneous computations, at the expense of lower

network bandwidth.

5. Multi-GPU performance study

The numerical method has been verified and compared to

both analytic and experimental data in previous works

(Engsig-Karup et al., 2011, 2013). One advantage of the

multi-GPU decomposition method presented here is that it

preserves the attractive algorithmic efficiency of a single-

block multigrid method, which can be confirmed by verify-

ing that the residual norms for both the single- and

multi-GPU implementations agree within machine preci-

sion. In the following, Oi represents the ith subdomain,

with i ¼ 1; . . . ;P, where P is the number of subdomains.

The number of subdomains is not restricted to match the

number of GPUs; however, no performance gains are

expected to compare a one GPU per subdomain. In the

following sections, the number of subdomains and GPUs

are, therefore, always equal.

Figure 1. A decomposition of a grid of global size 17� 5 into two
subdomains with two layers of ghost points. � and & represent
internal grid points and ghost points, respectively. 	 indicates
internal points that may be shared between grids to ensure an
uneven dimension required by the geometric multigrid solver.

Glimberg et al. 859



The following discussion focuses on the numerical effi-

ciency and convergence of the multi-GPU implementation

for solving the Laplace problem (18) for varying problem

sizes and increasing number of GPUs. A detailed perfor-

mance analysis of an optimized single-GPU version can be

found in Engsig-Karup et al. (2011). A desktop computer

and three compute clusters have been used to study the

multi-GPU performance. Machine details are summarized

in Table 1.

5.1. Data distribution performance

The computational bottleneck is solving the Laplace prob-

lem. Introducing multiple subdomains and thereby multiple

GPUs influences the performance of each individual sub-

routine of the multigrid preconditioned defect correction

algorithm. As a measure of performance, the average tim-

ings based on 100 defect correction iterations are recorded

for an increasing number of unknowns. One multigrid

V-cycle with Red-Black Z-line relaxation is used for pre-

conditioning together with sixth-order accurate finite dif-

ferences for the spatial discretization. The number of

coarsening levels in a V-cycle is denoted by K. The timings

in Table 2 use K ¼ Kmax for each run, meaning that each

V-cycle continues until a 5� 5� 3 grid size per subdo-

main. A semi-coarsening strategy that best preserves the

grid isotropy is chosen, implying that the grid is restricted

only in the horizontal dimensions until the grid spacing is

of similar size as the vertical grid spacing. Hereafter, all

dimensions are restricted. At each multigrid level, two pre-

and post-relaxations are used along with four relaxations at

the coarsest level. The relative and absolute timings for

each subroutine and for an increasing number of subdo-

mains, P, are reported in Table 2. Residual (high) in the

first column refers to the sixth-order residual evaluation in

the defect correction loop, while residual (low) refers to the

second-order linear residual evaluation in the precondition-

ing phase.

Note from the numbers in Table 2 that increasing the

number of subdomains, and thereby the number of GPUs

improves the overall computational time only for problems

larger than 513� 513� 9. We believe this is acceptable, as

it is often difficult for multiple GPUs to efficiently solve

problem sizes that fit within the memory of a single GPU.

Since each GPU is massively parallel, using multiple GPUs

for a small problem introduces costly overhead, which the

current implementation has not been able to overcome.

Strong scaling (in terms of number of GPUs) for problems

of moderate sizes should, therefore, not be expected to be

good in general.

Based on the relative timings in Figure 3 we see that

relaxation becomes increasingly dominant as the number of

subdomains (thus GPUs) increases. Communication

between GPUs occurs at every relaxation step, which hap-

pens multiple times at every multigrid level. For the coarse

grid levels, the surface to volume ratio is larger and hence

communication overhead becomes a dominating perfor-

mance bottleneck. It is, therefore, particularly desirable to

decrease the number of multigrid levels to also reduce the

number of relaxation and consequently lower communica-

tion requirements. However, multigrid achieves its unique

algorithmic scalability and grid-independent convergence

properties from the fact that it reduces error frequencies by

relaxing on all grid levels. This is in general important for

elliptic problems where all grid points are coupled.

In Section 5.3., a test example illustrates the effect of

gird levels and horizontal to vertical aspect ratio on algo-

rithmic and numerical efficiency.

5.2. Numerical performance of multigrid restrictions

As a consequence of the previous observations, an exam-

ination of how the number of multigrid restrictions affects

the numerical performance for both the single and the

multi-block solver is performed. The absolute time per

outer defect correction iteration is used here as a measure

for performance. Thus, timings are independent of any

physical properties of the free surface problem since alge-

braic convergence is not considered. Timings are measured

and reported in Table 3 for a variation of levels K and

number of subdomains P. The remainder of the solver

properties is the same as in the previous example.

Two different speedup measures are reported in Table 3:

dK is the speedup for K levels in comparison with Kmax,

with a fixed number of subdomains P. Likewise, dP is the

Figure 2. Two common compute systems: A single workstation
consisting of a single CPU and two GPUs, and a compute cluster
consisting of multiple nodes connected in a high-speed network
with a CPU and a GPU on each compute node. (a) Workstation.
(b) Supercomputer. GPU: graphics processing unit.
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speedup for P subdomains in comparison with one domain,

with a fixed number of restrictions K. We see that

dK¼1 
 dK¼3 
 dK¼5 
 dmax 
 1, as expected. dP is a mea-

sure of strong scaling with respect to the number of GPUs

(subdomains). As mentioned earlier, multiple GPUs are

feasible only for problems of reasonable sizes. Based on

the reported numbers, we conclude that there is good poten-

tial for improving the overall numerical performance, given

that few restrictions (low K) are sufficient for rapid con-

vergence. In the following, a test is set up to demonstrate

how this can be achieved.

5.3. Algorithmic performance of multigrid restrictions

To unify the findings from the previous examples, we now

introduce and solve a specific nonlinear free surface prob-

lem. The purpose of this numerical experiment is to verify

whether imposing fewer restrictions and thus fewer relaxa-

tions to minimize communication, based on the findings in

Table 2, can in fact lead to performance improvements as

reported in Table 3. The final link that needs to be demon-

strated is whether the algebraic convergence can be main-

tained using fewer multigrid restrictions.

A 2-D Gaussian distribution is used as initial condition

to the free surface elevation within an NWT with no flux

boundaries

hðx; y; tÞ ¼ ke
x2þy2

2r2 ; t ¼ 0 ð22Þ

where r ¼ 0:15 and k ¼ 0:05. The wavelength is approx-

imately l ¼ 1 m and the wave number k ¼ 2p. The dis-

tance from the seabed to still water level is h ¼ 1 and,

therefore, kh ¼ 2p, which is intermediate depths. The phys-

ical size of the domain is extended to fit the initial aspect

Table 1. Hardware configurations for the desktop computer and three large compute clusters used in the tests.a

Machine Desktop Oscar Stampede Titan

Nodes (used) 1 16 32 8,192
CPU Intel Xeon E5620 Intel Xeon 5540 Intel Xeon E5 AMD Opteron 6274
CPU frequency 2.40 GHz 2.53 GHz 2.4 GHz 2.2 GHz
CPU memory 12 GB 24 GB 32 GB 32 GB
GPU 4 � GeForce GTX 590 2 � Tesla M2050 Tesla K20m Tesla K20X
CUDA cores 512 448 2496 2688
GPU Memory 1.5 GB 3 GB 5 GB 6 GB

GPU: graphics processing unit.
aCUDA cores and memory are per GPU.

Table 2. Relative and absolute timings for one defect correction iteration, divided into each subroutine, for an increasing number of
unknowns and subdomains.a

129�129�9 257�257�9 513�513�9 1025�1025�9

Subroutine P % Time % Time % Time % Time

Residual (high) 1 15.2 0.0010 25.9 0.0036 34.2 0.0133 39.1 0.0529
Residual (low) 1 20.9 0.0014 23.5 0.0033 23.6 0.0092 23.0 0.0311
Relaxation 1 37.3 0.0025 32.5 0.0045 28.3 0.0110 27.4 0.0371
Restriction 1 11.9 0.0008 10.3 0.0014 7.0 0.0027 4.9 0.0067
Prolongation 1 12.1 0.0008 5.7 0.0008 5.0 0.0019 3.9 0.0053
Other 1 2.6 0.0002 2.1 0.0003 2.0 0.0007 1.7 0.0024
Total 1 100.0 0.0068 100.0 0.0139 100.0 0.0389 100.0 0.1355

Residual (high) 2 6.3 0.0009 10.0 0.0021 17.0 0.0071 27.5 0.0271
Residual (low) 2 18.7 0.0026 19.5 0.0042 22.8 0.0096 22.0 0.0216
Relaxation 2 50.7 0.0070 45.9 0.0099 38.1 0.0160 34.3 0.0337
Restriction 2 15.6 0.0022 14.2 0.0031 14.5 0.0061 9.4 0.0092
Prolongation 2 7.7 0.0011 9.3 0.0020 6.6 0.0028 5.5 0.0054
Other 2 1.1 0.0002 1.0 0.0002 1.1 0.0005 1.4 0.0013
Total 2 100.0 0.0139 100.0 0.0216 100.0 0.0420 100.0 0.0983

Residual (high) 4 3.7 0.0007 5.2 0.0014 9.9 0.0041 17.8 0.0139
Residual (low) 4 12.6 0.0023 14.1 0.0037 18.0 0.0074 18.9 0.0149
Relaxation 4 64.1 0.0119 59.1 0.0155 51.8 0.0212 42.0 0.0330
Restriction 4 10.8 0.0020 11.5 0.0030 13.2 0.0054 10.5 0.0083
Prolongation 4 7.8 0.0015 9.2 0.0024 6.3 0.0026 9.7 0.0076
Other 4 0.9 0.0002 0.8 0.0002 0.8 0.0003 1.0 0.0008
Total 4 100.0 0.0186 100.0 0.0262 100.0 0.0409 100.0 0.0784

a“Other” subroutines include an Axpy and a two-norm evaluation. Time in seconds on Oscar.
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ratios that we wish to examine. The following number of

grid points per wavelength is used N w ¼ 4; 8; 16; 32,

which results in aspect ratios of Ds=Dx ¼ 4; 2; 1; 0:5 at

the finest grid level. Figure 4 illustrates how the nonlinear

wave travels within the first seconds with different wave

resolutions. The initial wave rapidly propagates

throughout the domain and creates multiple waves of var-

ious amplitudes.

At each time stage, the Laplace problem (18) is solved to

a relative and absolute tolerance of 10�4 and 10�5, respec-

tively, then the number of outer defect corrections is

counted. The simulation is continued until the average

number of iterations for each defect correction does not

change within the first three digits. The results are collected

in Table 4 where the aspect ratios and number of restric-

tions are also reported. The results are encouraging as they

indeed confirm that the number of useful restrictions is

related to the discretization of the physical domain. Load

balancing between the GPU threads and multiple GPUs

will, therefore, not be a critical issue, as the discretization

of most practical applications allows favorable aspect ratios

requiring only few restrictions.

Since ghost layers are always updated prior to any oper-

ation, convergence is independent of the number of subdo-

mains. Thus, the number of average iterations reported in

Table 4 applies, regardless of the number of subdomains

(GPUs) used for the same problem.

In addition to the above example, the spectral radius of

the stationary iteration matrix for the two-level multigrid

with Zebra-Line Gauss-Seidel smoothing is evaluated and

plotted in Figure 5. A small spectral radii enable fast con-

vergence, which is seen to be governed by the dimension-

less variables for aspect ratio (vertical to horizontal) and

wavelength (L) relative to ratio between seabed slope (hx)

and depth (h) (Engsig-Karup, 2014; Engsig-Karup et al.,

2008). As the semi-coarsening strategy seeks to keep

Ds=Dx close to 1 where the spectral radius is low, the

figure also confirms that fast convergence can be achieved

for wave propagation applications as intended.

1 2 4 8 16

0

50

100

Number of GPUs

%

Residual (high) Residual (low) Relaxation

Restriction Prolongation Other

Figure 3. Performance breakdown of each subroutine as the
number of GPUs increases. Timings are for one preconditioned
defect correction iteration for a problem size of
1025� 1025� 9, on Oscar, compare, Table 2. GPU: graphics
processing unit.

Table 3. Absolute timings per defect correction iteration using a
varying number of multigrid restrictions K, in the preconditioning
phase.a

257�257�9 513�513�9 1025�1025�9

P K Time dK dP Time dK dP Time dK dP

1 1 0.0097 1.4 — 0.0322 1.2 — 0.1218 1.1 —
1 3 0.0119 1.2 — 0.0363 1.1 — 0.1315 1.0 —
1 5 0.0132 1.0 — 0.0376 1.0 — 0.1336 1.0 —
1 Kmax 0.0139 — — 0.0389 — — 0.1355 — —
2 1 0.0108 2.0 0.9 0.0237 1.8 1.4 0.0735 1.3 1.7
2 3 0.0164 1.3 0.7 0.0335 1.3 1.1 0.0854 1.2 1.5
2 5 0.0216 1.0 0.6 0.0400 1.1 0.9 0.0929 1.1 1.4
2 Kmax 0.0216 — 0.6 0.0420 — 0.9 0.0983 — 1.4
4 1 0.0114 2.3 0.9 0.0185 2.2 1.7 0.0451 1.7 2.7
4 3 0.0196 1.3 0.6 0.0297 1.4 1.2 0.0590 1.3 2.2
4 5 0.0262 1.0 0.5 0.0377 1.1 1.0 0.0709 1.1 1.9
4 Kmax 0.0262 — 0.5 0.0409 — 1.0 0.0784 — 1.7
8 1 0.0084 2.5 1.1 0.0145 2.1 2.2 0.0288 1.9 4.2
8 3 0.0177 1.2 0.7 0.0230 1.3 1.6 0.0416 1.3 3.2
8 5 0.0211 1.0 0.6 0.0308 1.0 1.2 0.0509 1.1 2.6
8 Kmax 0.0210 — 0.7 0.0308 — 1.3 0.0543 — 2.5

GPU: graphics processing unit.
aNotice that timings are for one iteration only and, therefore, does not
include the total solve time. Speedups dK and dP are relative to Kmax and
to one subdomain/GPU, respectively, for the same problem size. Time in
seconds on Oscar.

Figure 4. Nonlinear waves traveling in a closed basin with no flux
boundaries, illustrated at three distinct time steps. Total hori-
zontal grid dimensions are 129� 129. (a) T ¼ 0 s. (b) T ¼ 2 s. (c)
(a) T ¼ 4 s.
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6. Large-scale performance analysis

Given the findings in previous sections, the solver perfor-

mance is now evaluated on three larger GPU-accelerated

clusters. Time per defect correction iteration is again used

as the measure of performance since is it independent on

the physical properties of the wave model. The waves are

resolved with grid points such that three levels of the multi-

grid preconditioner are sufficient, K ¼ 3, following the

results from the previous section.

First performance test is performed in the Oscar cluster

at Brown University. Oscar is equipped with Intel Xeon

E5630 processors with 2.53 GHz and 32 GB host memory

per compute node. Each node has two Nvidia Tesla M2050

GPUs. Absolute performance timings are summarized in

Figure 6 as a function of increasing problem size. The

single block timings (O1) evolve as expected, overhead

of launching kernels are evident only for the smallest prob-

lem sizes, while for larger problems the time per iteration

scales linearly. For the multi-GPU timings, a notable effect

is observed when communication is dominating and when

it is not. After approximately one million degrees of free-

dom, communication overhead becomes less significant

and the use of multiple compute units starts to become

beneficial. For the larger problem sizes, close to optimal

linear performance is observed.

The second performance scale test is performed on the

Stampede cluster at the University of Texas. Stampede is a

Dell Linux cluster based on compute nodes equipped with

two Intel Xeon E5 (Sandy Bridge) processors, 32 GB of

host memory, and one Nvidia Tesla K20 m GPU. All nodes

are connected with Mellanox FDR InfiniBand controllers.

The Stampede cluster allows up to 32 GPU nodes to be

Table 4. Average number of defect correction iterations for the
test setup using different numbers of multigrid restrictions and
initial aspect ratios.a

257�257�9 513�513�9 1025�1025�9

K Ds=Dx
Avg.
Iter.

Avg.
Solve

Avg.
Iter.

Avg.
Solve

Avg.
Iter.

Avg.
Solve

1 4 19.30 0.187 19.30 0.622 19.30 2.351
3 4 7.26 0.086 7.24 0.263 7.24 0.952
5 4 5.75 0.076 5.75 0.216 5.75 0.768
Kmax 4 5.75 0.080 5.74 0.223 5.74 0.778
1 2 10.95 0.106 10.95 0.353 10.95 1.334
3 2 6.54 0.078 6.54 0.237 6.54 0.860
5 2 6.44 0.090 6.44 0.242 6.44 0.860
Kmax 2 6.44 0.090 6.44 0.251 6.44 0.873
1 1 6.34 0.062 6.34 0.204 6.34 0.772
3 1 4.12 0.049 4.12 0.150 4.12 0.542
5 1 4.08 0.054 4.08 0.153 4.08 0.545
Kmax 1 4.08 0.057 4.08 0.159 4.08 0.553
1 0.5 4.73 0.046 4.73 0.152 4.73 0.576
3 0.5 4.12 0.049 4.12 0.150 4.12 0.542
5 0.5 4.12 0.054 4.12 0.155 4.12 0.550
Kmax 0.5 4.12 0.057 4.12 0.160 4.12 0.558

GPU: graphics processing unit.
aThe Avg. Solve columns indicate the total solve times on Oscar using one
GPU, compare, the timings in Table 3.

Figure 5. Spectral radius distribution of the stationary iteration
matrix of two-level multigrid with Zebra-Line Gauss-Seidel
smoothing.
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Figure 6. Absolute performance timings for one defect correc-
tion iteration on Oscar, Stampede, and Titan. Oscar and Stampede
have been configured for single-precision floating-point arith-
metic, whereas Titan is using double-precision floating-point: (a)
Oscar, (b) Stampede, and (c) Titan.
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occupied at once. Absolute performance timings are illu-

strated in Figure 6. Notice that a setup of 16 GPUs allows

the solution of problems with more than one billion degrees

of freedom in practical times. With an approximate time

per iteration of tit ¼ 0:6 s at N¼ 109, it would be possible

to compute a full time step in 3–6 s, assuming convergence

in 5–10 iterations. With a time step size of Dt ¼ 0:05 s, a

1-min simulation can be computed in 1–2 h. This is well

within a time frame considered practical for engineering

purposes. With 32 GPUs available, compute time would

reduce to almost half.

A final extremely large-scale performance evaluation is

performed on the Titan cluster at the Oak Ridge National

Laboratory. Titan nodes are equipped with AMD Opteron

6274 CPUs and Nvidia Tesla K20X GPUs. They have 32

GB host memory and are connected with Gemini intercon-

nect. A scaling test up to 8192 GPUs is performed and

reported in Figure 6(c). Timings are well aligned with

the previous results, though the curves are less smooth.

The implementation of the scalability test alternately

doubles the number of grid points in the x- and y-direc-

tion. When increasing the problem in the x-direction,

only coalesced memory at the ghost layers are intro-

duced, whereas the y-direction adds uncoalesced ghost

layers. Titan seems to be more sensible to such alter-

nately coalesced/uncoalesced increases.

Weak and strong scaling results for all three compute

clusters are depicted in Figure 7(a) and (b), respectively.

Figure 7(a) shows the efficiency for each of the three com-

pute clusters as the ratio between the number of GPUs and

problem size is constant. There is a performance penalty

when introducing multiple GPUs, indicated by the drop

from one to multiple GPUs. Hereafter, weak scaling

remains almost constant and there is no significant penalty

when using additional GPUs. Weak scaling is stable up to

the 8192 GPUs on Titan. The strong scaling figure shows

the efficiency in terms of inverse cost for a given time

consumption at a constant problem size of N � 3:8 � 107.

Ideally, increasing the number of GPUs would lead to a

corresponding reduction in compute time, leading to con-

stant curves in Figure 7(b). However, this is not the case

for the given problem size, where parallel overhead

becomes critical.

7. Vertical cylinder wave run-up

Predicting water scattering or wave loads on a vertical

cylinder is relevant for offshore pile installations such as

wind turbines. In this demonstration, the wave run-up

around a single vertical cylinder in open water is consid-

ered using a boundary-fitted domain in curvilinear coordi-

nates. Analytic formulations (MacCamy and Fuchs, 1954)

and experimental data are available for linear and nonlinear

incident waves over even seabed. For nonlinear water

waves, experimental results are presented by Kriebel,

1990, 1992), where nonlinear diffraction effects are studied

and determined to be of significant importance compared to

linear theory. To demonstrate the application of a

boundary-fitted domain, a nonlinear experiment from

Kriebel (1992) is reproduced. Long and regular incident
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Figure7. Weak and strong scaling on all three compute clusters.
The figures show efficiency in terms of inverse cost versus num-
ber of GPUs and time per defect correction, respectively. (a)
Weak scaling, with N � 3.8 � 107 per GPU. (b) Strong scaling,
with constant N � 3.8 � 107. GPU: graphics processing unit.

Figure 8. Bottom-mounted vertical cylinder wave run-up.
Computational grid resolution of 1025� 129� 9.
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waves are generated in the inlet zone with a wavelength of

L¼ 2.73 m and wave height H¼ 0.053 m. A wave damping

outlet zone is used to avoid wave reflections (Glimberg,

2013). The still water depth h is constant and rather shal-

low, resulting is dimensionless kh ¼ 1:036 and

kH ¼ 0:122. Diffraction occurs around the centered verti-

cal cylinder of radius a ¼ 0:1625, thus ka ¼ 0:374. The

nonlinear case uses a sixth-order finite difference approx-

imation and a resolution of 1025� 129� 9. The vertical

cylinder setup is presented in Figure 8.

Measuring the maximum fully developed wave run-up

around the cylinder provides the 360	 wave height profile

in Figure 9. 0	 is the opposite side of the pile relative to the

incoming waves. The numerical results are well in agree-

ment with the experiments, and they are consistent with

previously presented numerical results using similar

numerical approaches, for example, Ducrozet et al.

(2010). Although the vertical cylinder case is primarily

an illustrative example, the introduction of an efficient sol-

ver for large-scale simulation, supporting generalized cur-

vilinear coordinates, significantly increases the range of

real engineering applications.

8. Conclusion and future work

For the Laplace problem of a fully nonlinear free surface

model, we have presented a performance analysis for dis-

tributed parallel computations on cluster platforms. The

spatial decomposition technique uses stencil-sized ghost

layers, preserving the algorithmic efficiency and numer-

ical properties of the established existing solvers for the

problem, cf. recent studies of Engsig-Karup et al. (2008,

2011). The numerical model is implemented in the DTU

GPUlab library developed at DTU Compute and uses Nvi-

dia’s CUDA C programming model and is executed on a

recent generation of programmable Nvidia GPUs. In per-

formance tests, we demonstrate good and consistent weak

scalability of up to 8192 GPUs and on three different

compute clusters. We have detailed how the model is

capable of solving systems of equations with more than

100 billion degrees of freedom for the first time with the

current scalability tests restricted by the amount of hard-

ware available at the time of writing. Also, we highlight

that multi-GPU implementations can be a means for fur-

ther acceleration of run-times in comparison with single

GPU computations.

As a first-step, we have demonstrated 2-D curvilinear

transformation in the horizontal plane to allow treatment

of fixed bottom-mounted structures extending vertically

throughout the depth of the fluid. This opens a large

class of coastal geometries to a fully nonlinear analysis.

An example of wave run-up on a mono-pile structure in

open water has been demonstrated with good agreement

to experimental results. This approach provides the basis

for addressing challenges related to problems of engi-

neering interests: (i) real-time computations, (ii) tsunami

propagation over large scales, (iii) marine offshore

hydrodynamics, (iv) renewable energy applications, and

so on. We restricted our focus to deal with multi-GPU

scalability and leave more realistic applications as a part

of future work.
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