
Research Paper

Exploring the feasibility of lossy
compression for PDE simulations

Jon Calhoun1, Franck Cappello2, Luke N Olson3,
Marc Snir3 and William D Gropp3

Abstract
Checkpoint restart plays an important role in high-performance computing (HPC) applications, allowing simulation
runtime to extend beyond a single job allocation and facilitating recovery from hardware failure. Yet, as machines grow in
size and in complexity, traditional approaches to checkpoint restart are becoming prohibitive. Current methods store a
subset of the application’s state and exploit the memory hierarchy in the machine. However, as the energy cost of data
movement continues to dominate, further reductions in checkpoint size are needed. Lossy compression, which can
significantly reduce checkpoint sizes, offers a potential to reduce computational cost in checkpoint restart. This article
investigates the use of numerical properties of partial differential equation (PDE) simulations, such as bounds on the
truncation error, to evaluate the feasibility of using lossy compression in checkpointing PDE simulations. Restart from a
checkpoint with lossy compression is considered for a fail-stop error in two time-dependent HPC application codes:
PlasComCM and Nek5000. Results show that error in application variables due to a restart from a lossy compressed
checkpoint can be masked by the numerical error in the discretization, leading to increased efficiency in checkpoint restart
without influencing overall accuracy in the simulation.
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compression

1. Introduction

High-performance computing (HPC) applications rely on

checkpoint restart to extend execution time beyond the

requested allocation time and to tolerate failures in soft-

ware and in hardware during the simulation run. While the

performance and memory of HPC systems continue to

increase in size, one potential bottleneck in continued use

of checkpoint restart is that file system bandwidth has

exhibited only slow growth in current machines. For exam-

ple, the current 10 petaflop machines Blue Waters at the

University of Illinois and Titan at Oak Ridge National

Laboratory and the upcoming 100 petaflop machine Sierra1

at Lawrence Livermore National Laboratory, all incorpo-

rate 1 TB/s file systems. The new machine Summit2 at Oak

Ridge National Laboratory increases the file system band-

width to 2.5 TB/s. However, since the memory capacity in

the 100 petaflop systems is approximately 5–9 times larger

than in current 10 petaflop systems, scalable applications

are expected to see an increase in checkpoint restart times

with a similar factor. However, as HPC systems continue to

increase in size and complexity, new design constraints

(Bergman et al., 2008; Shalf et al., 2010) such as the high

cost of data movement and comparatively free cost of com-

putation allow for new optimizations.

Exascale systems are expected to put further pressure on

the checkpoint system as the mean time between failure

(MTBF) is expected to decrease, thus demanding more

frequent checkpointing (Cappello et al., 2009). This aspect

has motivated so-called multi-level checkpoint restart

(Bautista-Gomez et al., 2011; Moody et al., 2010) schemes,

where the memory hierarchy is leveraged to reduce the

time to checkpoint and to recover when a failure occurs.

The addition of burst buffers (Liu et al., 2012) to HPC
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systems offers another approach to reduce time to check-

point. Yet, multi-level checkpointing and burst buffers do

not target a reduction in checkpoint size, which is another

major avenue for checkpoint time reduction. Compression

of the state variables can be used to reduce the checkpoint

size. The relative cost of compression decreases as compu-

tation becomes cheaper relative to the cost of data move-

ment. For example, for processors on HPC systems, a

single IEEE-754 fused multiply–add consumes three orders

of magnitude less energy than a dynamic random-access

memory (DRAM) memory operation (Sardashti, 2015). In

addition, the cost of data movement increases as the mem-

ory hierarchy is traversed from registers to file systems.

Standard compression techniques are often ill-suited for

floating-point data (Son et al., 2014) which has prompted

the development of floating-point-specific compressors.

These are often lossless algorithms (Burtscher and Ratana-

worabhan, 2007; Lindstrom and Isenburg, 2006) and, in

most cases, achieve around a 50% reduction in checkpoint

size. By switching to lossy compression schemes (Di and

Cappello, 2016; Lakshminarasimhan et al., 2011; Lind-

strom, 2014), higher compression ratios are achieved.

Previous works (Laney et al., 2013; Ni et al., 2014;

Sasaki et al., 2015) have shown success in restarting from

a lossy checkpoint but have not focused on the relationship

between the compression error and the truncation error of

the numerical approximations used in the simulation.

Establishing this relation is fundamental to guaranteeing

correctness for users of numerical simulations.

Various break-even points for system and application

level checkpointing have been analyzed for lossless com-

pressors on HPC machines (Ibtesham et al., 2012). For

lossy compression, the performance benefits are realized

if the overall checkpoint time is reduced. Thus, the time to

compress plays a key role in analysis. Lossy compression

often exhibits improved compression and decompression

times in comparison to lossless schemes (Di and Cappello,

2016; Lakshminarasimhan et al., 2011).

This article investigates the feasibility of using lossy com-

pression for checkpointing PDE simulations, by interpreting

the error introduced through lossy compression as numerical

error and by relating it to spatial discretization error and

approximation properties in the numerical methods used in

simulation. The article highlights two important PDE model

problems (advection and diffusion) and two production-level

HPC applications (PlasComCM3 and Nek50004) and shows

that the error introduced by lossy compression at restart does

not increase beyond the discretization error, even in the sce-

nario of multiple restarts in the same execution. This under-

scores the idea that the compression error exhibits little

influence on the quality of the final result of the simulation.

Specifically, the contributions are

� expression of lossy compression error as numerical

error;

� the relationship between error due to lossy compres-

sion with physical properties in the problem;

� a discussion of boundary conditions and the attenua-

tion of compression error;

� the feasibility of lossy compression for checkpoint–

restart on kernels and real applications; and

� a performance model that distinguishes the trade-

off between efficiency and accuracy in lossy

compression.

The rest of this article is outlined as follows. Section 2

discusses related work in the area of compression and HPC

checkpoint restart. Section 3 outlines the relationship

between error introduced through lossy compression and

the approximation properties of the discretization. Section

4 uses approximation bounds to investigate propagation

and reduction of error through two model PDE problems.

Section 5 gives an overview of two production-level appli-

cations, PlasComCM and Nek5000, and presents results

from using a compression tolerance that is consistent with

the numerical properties of the simulation. Section 6 uses a

performance model to explore efficiency of lossy compres-

sion. Section 7 presents a discussion of new research direc-

tions based on this work. Finally, we conclude in Section 8.

2. Related work

The applicability of lossy compression for data transfer to

and from main memory has been studied for several appli-

cations, including LULESH, pF3D, and Miranda (Laney

et al., 2013), where simulation correctness is measured by

post-simulation analysis of the physics. In this article, we

utilize the application’s spatial discretization properties to

construct a bound for the amount of error allowed in the

simulation. The benefit is that the accuracy of the associ-

ated numerical method is known a priori and compression

error can be dominated by the discretization truncation

error. Another approach uses a two-stage scheme to com-

press: first lossy, then lossless (Ni et al., 2014). The

checkpoint size is observed to be around 15% of the orig-

inal size and restarts are shown to be successful. Another

observation is that errors introduced through a particular

variable may result in a large propagation of error, leading

to the use of lossy compression on only a subset of the

checkpointed variables. Wavelet-based lossy compression

has been used in the Non-hydrostatic Icosahedral Atmo-

spheric Model (NICAM) climate application (Sasaki

et al., 2015), where it is shown that the relative error

remains less than 1.5% 1500 time-steps after restart from

a lossy compressed checkpoint. One disadvantage is that

the error continues to grow linearly with time. An evalua-

tion of lossy compression on the community earth system

model data sets (Baker et al., 2014) uses metrics such as

max-norm, normalized root-mean-square error, and Pear-

son’s correlation coefficient to characterize how the data

set chances due to compression error. However, this work

does not consider restarting a simulation from a lossy

compressed checkpoint. This article complements (Baker

et al., 2014) by providing and evaluating a methodology

of selecting lossy compression error bounds that allow
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simulations to be successfully restarted from lossy com-

pressed checkpoints.

A critical characteristic of lossy compression is the

level of lossy compression—that is, compression factor

(factor by which the data set size is reduced). Compres-

sion factors are dependent on the magnitude of error that

the compressor introduces. Higher compression factors

lead to larger errors, but the magnitude of acceptable

compression error is problem dependent. A natural

approach to determine the acceptability of a compression

error is to compare the lossy state with that of an uncom-

pressed checkpoint and verify it passes simulation valida-

tion metrics. This trial and error method can be effective;

however, a more direct route is to compare the compres-

sion error to the approximation properties in the applica-

tion. This article explores the applicability of lossy

compressed checkpointing from the numerical perspec-

tive and provides guidance on the setting of the lossy

compressed checkpointing compression error tolerance.

Control of compression error is an important trait of a

compressor. Indeed, only a strict control of the compression

error allows for the association between lossy compression

and the properties of the numerical methods. Lossy com-

pressors for floating-point data sets, such as ISABELA

(Lakshminarasimhan et al., 2011), NUMARCK (Chen

et al., 2014), ZFP (Lindstrom, 2014), FPZIP (Lindstrom

and Isenburg, 2006), and SZ (Di and Cappello, 2016; Tao

et al., 2017), allow for varying degrees of control. In this

work, SZ is used since the compressor adheres to pre-

scribed relative and absolute bounds on the tolerance on

a per element basis and provides the highest compression

factors. In particular, SZ-1.3 is used, although other com-

pressors fit within the scope of this work.

3. Linking compression error
to numerical error

3.1. Lossy compressor SZ

To use SZ, the user sets the error bound by selecting the

tolerance, E. It is chosen so that the difference between the

original values and decompressed values is bounded rela-

tively and/or absolutely by E.
SZ compresses data by predicting value iþ 1 from val-

ues at i, i� 1, and i� 2 using curve fitting (constant, linear,

or quadratic). If the value predicted is within the prescribed

tolerance, then the curve fitting function predicting iþ 1 is

encoded as a codeword indicating the curve fitting method

used. If the value at iþ 1 is inaccurate using a curve fitting,

then an escaped codeword is encoded. The value of iþ 1 is

then added to a list of other hard-to-compress data values.

This list is compressed by inspecting the binary representa-

tions of the data for commonality. For multi-dimensional

data, SZ explores prediction in all spatial dimensions when

curve fitting. SZ has compression routines for single and

double precision arrays. This article uses the double preci-

sion compression routines during all experiments because

all model problems and test applications use double preci-

sion for their main computation.

3.2. Method

Selecting the correct level of lossy compression is often

based on trial and error. The quality of a decompressed

checkpoint is ultimately application dependent and asses-

sing the quality requires deep knowledge of the underlying

physics. To this end, a priori bounds on the numerical dis-

cretization scheme are useful in quantifying error in spe-

cific variables of the simulation. In addition, numerical

stability of the numerical method plays an important role.

This article exploits the fact that many HPC applications

approximate the solution to PDEs or ordinary differential

equations (ODEs). The level of accuracy given by the trun-

cation error gives us an upper bound on compression error

tolerances. A compression tolerance less than the trunca-

tion error produces results that are within a factor of the

discretization error, but not bit-reproducible to the uncom-

pressed solution. A compression tolerance greater than

truncation error will add more error into the state variables,

potentially impacting simulation results.

To understand truncation error, consider an approxima-

tion of uðxþ hÞ by Taylor series expansion, a method used

in deriving and analyzing numerical methods to solve

PDEs and ODEs:

uðxþ hÞ ¼ uðxÞ þ u0ðxÞhþ u0 0ðxÞh2

2
þOðh3Þ ð1Þ

This Taylor series truncates uðxþ hÞ to second-order

accuracy. Therefore, any error that is less than Oðh2Þ
results in a numerically equivalent approximation to

uðxþ hÞ according to the accuracy specified when truncat-

ing the Taylor series.

The approach used in this article is to select a level of

lossy compression that results in an error that is less than

the spatial discretization error of the problem. A similar

approach to ours is presented in Fischer et al. (2017) and

uses estimates on simulation accuracy to reduce the com-

munication volume in parallel ODE solvers by compres-

sing floating-point values via truncation. In addition,

Fischer et al. (2017) prove the stability and convergence

of their numerical scheme with the introduced, controlled

perturbations during communication. In this article, we

computationally verify our methodology for selecting lossy

compression error tolerances. Future work will evaluate our

methodology theoretically. Given a spatial mesh size, hx in

1-D, the order of accuracy of the method is specified as

Oðhp
xÞ, where p is the order of discretization accuracy. A

simulation that uses a second-order discretization with

hx ¼ 0:1 suggests an error of approximately e � ch2
x ¼

c � 0:01, for some constant c.5 This implies that a numerical

approximation, uh, and a perturbed numerical approxima-

tion ~uh ¼ uh þ E are close if E < Oðh2
xÞ. This motivates the

approach taken in this article, where the compression tol-

erance E is selected such that it is less than the simulation’s

Calhoun et al. 399



truncation error eh.6 Adding compression error less than eh

creates a perturbed numerical approximation ~uh equivalent

to uh based on the level of approximation in uh. For prob-

lems that use adaptive mesh refinement, the compression

tolerance is selected dynamically just before the applica-

tion is checkpointed based on the current finest grid reso-

lution and is the study of future work.

Figure 1 details the selection of lossy compression error

tolerances. The numerical accuracy and spatial discretization

size are used to calculate a bound on the error and to produce a

compatible compression error tolerance. Optionally, the error

tolerance can be further refined by leveraging application-

specific knowledge about the problem such as convergence

properties, physical domain, and boundary conditions. After

restart from a lossy compressed checkpoint, results are not

bit-reproducible to those from the standard approach but are

within the simulation’s numerical accuracy.

Our method can also be used to guide the selection of

tolerances to allow more error in return for higher compres-

sion factors. For example, if E is the compression tolerance

for a fourth-order accurate method, it is straightforward to

identify a compression tolerance, g for a second-order

method. This new tolerance g allows for higher compres-

sion factors at the expense of larger errors in the data. Data

compressed with the new tolerance g can be interpreted as a

low-order approximation to the original data. In fact, sim-

ilar approaches are used in HPC applications such as

Nek5000 to reduce checkpoint size. On restart, Nek5000

bootstraps itself with a low-order method which may only

require information from the previous time-step. Once the

program has iterated enough through time with the low-

order method that a high-order method is valid, the appli-

cation switches to the high-order method for the remainder

of the simulation.

Algorithm 1 outlines a generic time-stepping code that

utilizes lossy compression during checkpoint restart. The

user computes an a priori bound on the simulation’s trunca-

tion error eh by using the smallest spatial mesh size and the

numerical method’s order of accuracy as outlined above.

Next, the user selects a compression error tolerance, E, less

than the truncation error, eh. The simulation starts and runs

as normal until a checkpoint is taken. The state variables u,

p, and r represent the physical properties velocity, pres-

sure, and density, respectively. These physical properties

are fundamental to computational fluid dynamics codes

such as PlasComCM and Nek5000. As the simulation pro-

gresses, the state variables u, p, and r are lossy compressed

Offline
Simulation

Configuration Numerical
Method(s)

Spatial
Discretization(s)

hx, hy , hz
Compression
Tolerance (ε)

Guidance

(ε, Discretization Accuracy)

e.g. (1e−2, RK2),
(1e−4, RK4)

Online

Run
Simulation
ε = 1e− 4

Compute

Update
State Variables

with RK4
uh , ph , ρh

Take checkpoint

Lossy Checkpoint
ε = 1e− 4
uh , ph , ρh

Update
State Variables

with RK4
ũh , p̃h , ρ̃h

Restart

Figure 1. Overview of method to select the lossy compression error tolerance using a Runge–Kutta numerical method.

Algorithm 1. Outline of generic time-stepping code that uses
lossy compressed checkpoints.
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before the checkpoint is written. After the checkpoint is

established, computation proceeds as normal until the final

time-step. If the simulation requires a restart before reach-

ing the final time-step, then the lossy checkpoint is read and

computation proceeds using the decompressed versions of

the state variables.

4. Understanding compression error
behavior on 1-D model problems

To motivate the approach outlined in Section 3, two model

PDEs are presented: 1-D heat and 1-D advection equations.

These two model PDEs are selected to highlight the impact

of physical properties on the selection of lossy compression

error tolerances. The behavior of these model problems is

reflected in more complex HPC applications, as observed

in Section 5.

4.1. 1-D heat

The 1-D heat equation finds the temperature solution uðx; tÞ
for all positions x and time t along a rod with fixed length L

is given by

ut ¼ uxx þ qðxÞ; 0 < x < 1; ð2Þ

uð0; tÞ ¼ 20; uðL; tÞ ¼ 50; t > 0 ð3Þ

uðx; 0Þ ¼ f ðxÞ; 0 < x < L; ð4Þ

where qðxÞ is a time-independent external heat source for-

cing term along the length of the rod. For this example,

Backward Euler with second-order finite differences is

used to discretize equation (2) yielding

unþ1
j � un

j

ht

�
unþ1

jþ1 � 2unþ1
j þ unþ1

j�1

h2
x

¼ qðxÞ: ð5Þ

This results in a tri-diagonal linear system that is solved

using a direct method at each time-step to simulate the

PDE. The numerical accuracy of equation (5) is

Oðht; h2
xÞ, first-order accurate in time and second-order

accurate in space. Thus, errors in the solution that are much

smaller than Oðht; h2
xÞ will not impact the overall accuracy

of the numerical approximation. Since restarting from a

lossy compressed checkpoint adds an error into the simula-

tion, this lossy compression error tolerance is selected so

that the error is below the truncation error of the numerical

scheme. For this problem, hx ¼ 0:02 implies an accuracy of

eh¼ 0:022 ¼ 4e - 4 and a compression tolerance of

E ¼ 1e - 4. Figure 2 shows error in the solution of equation

(5) with and external heat source:

qðxÞ ¼ 100 : x ¼ L=2

0 : x 6¼ L=2

�

Figure 2 shows the error e ¼ uh � ~uh in restarting the

simulation at time t ¼ 0:6 and t ¼ 1:1 from lossy com-

pressed checkpoints at the preceding time steps of t ¼ 0:5

and t ¼ 1:0, respectively. Each tick on the y-axis section

represents a single time-step in the simulation. The state of

the second restart is affected by two lossy compressed

checkpoints. A blank (white) region in the figure denotes

no error in the compressed numerical solution, ~uh, com-

pared to an uncompressed numerical solution uh. After

restart, Figure 2 shows that error is distributed throughout

the entire domain and is attenuated after a few time-steps.

This is expected as this PDE models heat conduction,

resulting in smooth solutions and propagation of error

through the domain as time advances. In addition, with the

selection of a constant temperature boundary condition, the

solution converges to a steady-state solution. This property

further accelerates the aforementioned removal of error in

the heat equation.

Figure 3 underscores the limited impact of lossy com-

pression at a tolerance of E ¼ 1e - 4, which does not con-

tribute to error above the truncation error of eh ¼ 4e - 4.

Thus, the numerical solution that depends on two restarts

from lossy compressed checkpoints, ~uh, is equivalent to the

original numerical solution, uh. Although the solution is

Figure 2. Error at each grid-point in a 1-D heat equation
between numerical solution, uh, and a numerical solution
restarted from lossy checkpoints, ~uh, at time t ¼ 0:6; 1:1.

0.0 0.5 1.0 1.5 2.0

Truncation error

Error due to lossy checkpoint

Figure 3. Maximum absolute error in the compressed numerical
solution, ~uh due to restarting from a lossy compressed checkpoint
for 1-D heat equation (2).
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compressed to a tolerance E ¼ 1e - 4, the resulting error in

~uh is small due to the smoothness of the solution between

any two consecutive points in the domain being easily pre-

dicted by the lossy compressor.

4.2. 1-D advection

A notable aspect of the heat equation (2) is the attenuation of

error as time evolves. The advection equation (6) does not

have such a property. Instead, solutions (and error) propa-

gate following a characteristic in the direction of flow. Any

corruption in the solution remains in the wave until it reaches

the boundary of the domain. In contrast, application of per-

iodic boundaries does not allow error to escape the domain.

As a result, error accumulates with each restart from a lossy

compressed checkpoint. To illustrate this point, consider a 1-

D advection equation with periodic boundaries:

ut ¼ �ux; 0 < x < 2p

uð0; tÞ ¼ uðL; tÞ; t > 0

uðx; 0Þ ¼ f ðxÞ; 0 < x < L ð6Þ

The equations in (6) are solved using Lax–Wendroff,

which has a spatial truncation error of Oðh2
xÞ, and with an

initial condition of uðx; 0Þ ¼ f ðxÞ ¼ sinð3xÞ. In this

example, the lossy compression error tolerance is set at

E ¼ 1e - 5 since the spatial discretization of hx ¼ 0:006 sug-

gests accuracy up to 0:0062 ¼ 3:6e - 5 ¼ eh. The restarts

occur at times t ¼ 1:25, 2:5, and 3:75. In Figure 4, the error

history shows that with each successive restart, the error

persists (error lines do not reduce in magnitude between

checkpoints), increases (error lines become darker with the

number of checkpoints), and is propagated though the

domain in the direction of advection (error at each point

shifts to the right as time increases). If periodic boundary

conditions are not used, then error still exists between the

two solutions due to the restart, but only until the compo-

nent of the error leaves the domain.

Periodic boundary conditions allow for the accumula-

tion of error shown in Figure 5. Figure 5 shows that the

maximum error in the compressed numerical solution ~uh

at each time-step is always less than truncation error for

this simulation, even when restarting multiple times. The

compression error tolerance is chosen to guarantee this

by staying below the truncation error of the method.

This is done heuristically in a small training run by

observing the max-norm over the first few time-steps

after restarting and selecting a tolerance, E, that yields

a max-norm roughly an order of magnitude less than the

truncation error, eh, to allow for unforeseen accumula-

tion. This can be repeated in quick succession to gauge

the impact of multiple restarts.

5. Lossy compressing production
applications

This section applies the approach of selecting lossy

compression error tolerances from Section 3 to two

production-level HPC applications: PlasComCM and

Nek5000. Results are collected on Blue Waters, a Cray

machine managed by the National Center for Supercom-

puting Applications. This article uses the XE6 nodes on

the machine, which are equipped with 64 GB of memory

and two AMD Interlagos CPUs per node. The check-

pointing routines of PlasComCM and Nek5000 are mod-

ified to lossy compress all state variables just before

they are written to disk. Each state variable is com-

pressed with SZ-1.3 (Di and Cappello, 2016) using rela-

tive and absolute error bounds. In production runs of

both applications, checkpoints are taken every 1000–

3000 time-steps which equates to around 1–10% of

simulation time for the data sets used during testing.

Simulations with a higher percentage of execution time

devoted to I/O exhibit a larger portion of time spent in

checkpointing.

Figure 4. Error at each grid-point in a 1-D advection equation
between a normal numerical solution, uh, and a numerical solution
restarted from lossy checkpoints, ~uh, at times t ¼ 1:25, 2:5, and
3:75.

0 1 2 3 4 5

Truncation error

Error due to lossy checkpoint

Figure 5. Maximum absolute error in a compressed numerical
solution, ~uh, due to restarting from lossy compressed checkpoints
for 1-D advection equation (6). Restarts from a lossy checkpoint
occur at times t ¼ 1:25, 2:5, and 3:75.
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5.1. PlasComCM

The first example uses PlasComCM,7 a multi-physics

plasma combustion code. The core functionality of the code

targets the incompressible Navier–Stokes equations. Pro-

duction runs checkpoint 1 MB–1 GB per process. Here, the

2-D homogeneous Euler equations are used as a model

problem. Inside the domain, there is a fixed cylindrical

object obstructing the flow (Figure 6). An overset mesh

is placed around the cylinder to help resolve the obstructed

flow. This problem is run with four processes, each check-

pointing about 1 MB of data per process in an HDF5 file

using an application-specific checkpointing routine. The

momentum solution of this problem after evolving for

60,020 time-steps is shown in Figure 6.

The checkpoint file in PlasComCM consists of four state

variables: density, x-momenta, y-momenta, and energy. Fig-

ure 7 shows a large difference in the compression factor

depending on the selected compression error tolerance rang-

ing from 104� for E ¼ 1e - 1 to 2.2� for E ¼ 1e - 10. Com-

pression factors for small error tolerances are consistent with

reported lossless compression factors (Son et al., 2014).

As the compression error tolerances decrease, there is a

corresponding increase in compression time as shown in

Figure 8. Compressing with small error tolerances results

in SZ’s curve fitting methods not being able to accurately

predict the values within the specified error tolerance.

This forces SZ to compress these values using binary

inspection. This second pass increases compression time

and does not yield as significant of a reduction as curve

fitting and encoding.

The 2-D flow problem is solved using fourth-

order Runge–Kutta with hx ¼ 0:065 and hy ¼ 0:065.

Applying the approach from Section 3, accuracy up to

eh ¼ 1:8e - 5 is assumed in both x and y. Thus, a compres-

sion error tolerance of E < 1:8e - 5 is required such that error

added due to compression into this does not impact simula-

tion results. The tolerance E ¼ 1e - 6 is selected to allow for

accumulation of error due to multiple restarts. This tolerance

yields an average compression factor of 7�. If we use a

conservative tolerance—for example E ¼ 1e - 10—to miti-

gate the impact on the application’s results as opposed to the

E ¼ 1e - 6 tolerance selected with the aid of our methodol-

ogy, the resulting checkpoint size is 2:2� smaller than the

original. Our method yields a checkpoint that is 7� smaller

than the original. Our method provides an upper bound to aid

selection of a compatible compression error tolerance. In

general, selecting tolerances closer to the upper bound

allows for larger compression factors.

To study the propagation of error in the simulation,

75,000 time-steps are used to reach a fully developed flow.

To simulate either a fail-stop failure or exceeding a time

allocation at time-step 15,000, 30,000, and 45,000, the simu-

lation restarts from a lossy compressed checkpoint. Figure

10 plots the max-norm between the numerical solution uh

and the compressed numerical solution ~uh. With each check-

point there is an increase in error in the system, but the error

from lossy compression and advancing the simulation from

lossy state is always less than truncation error.

Between the first and second restart (time-steps 15,000–

30,000), there is a reduction in the error of all state

Figure 6. Momentum magnitude after 60,020 time-steps for
PlasComCM. The fixed cylinder object (white circle) obstructs
the flow causing momentum to slow around the object in the
direction of flow (to the right).
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Figure 7. Compression factors for PlasComCM.
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variables. This is due to the selection of nonperiodic bound-

ary conditions, which allow the error to flow out of the

domain. However, between the second and third restart

(time-steps 30,000–45,000), the magnitude of error increases

due to concentration of error in regions of the domain with

low momentum—that is, to the left of the cylindrical object.

After the third restart, the simulation evolves another 30,000

time-steps in order to allow the error to accumulate. Over

these time-steps, the error remains near the compression

tolerance of E ¼ 1e - 6, and there is a slow reduction as error

moves from regions of low momentum to regions of higher

momentum before exiting the domain.

The restart frequency used in this problem corresponds to a

system MTBF of approximately 18 min. This MTBF is much

lower than the MTBF of current systems and expected exas-

cale systems but does highlight the nature of error propaga-

tion/accumulation for this problem. If the frequency of

restarting from lossy checkpoints is high, then error accumu-

lation above the level of truncation error can occur. In this

case, a smaller compression tolerance E should be used mini-

mizing the risk of exceeding the level of truncation error.

Visualizing the error, Figure 9, in the simulation high-

lights two key properties about this problem’s handling of

error. First, the domain has nonperiodic boundary condi-

tions. This allows flow that is slightly perturbed to leave the

simulation as time evolves reducing the amount of error.

Any error that accumulates above or below the cylindrical

object is removed from the domain as its path out of the

domain is unobstructed. Second, in the same momentum

error plots, Figure 9, a large spike in error is observed near

the leftmost part of the fixed cylindrical object. Accumula-

tion of error at this point is due to the near-zero momentum

(cf. Figure 6). With almost no momentum to move this

error though the domain, it becomes concentrated and

slowly increases in magnitude as time evolves. These

domain-specific properties of error propagation suggest

that lossy compression routines can improve by adjusting

compression error tolerances to the physical properties of

the domain that can accumulate or propagate error.

5.2. Nek5000

Nek50008 is a spectral element code developed at Argonne

National Laboratory designed to simulate a variety of prob-

lem types such as heat transfer, unsteady incompressible

Navier–Stokes flow, and incompressible magnetohydrody-

namics. Production runs checkpoint 0.1–2 MB of data per

process using an application-specific checkpointing routine

and binary file format.

Figure 9. Propagation of momentum error in PlasComCM. a) Time-step 15000: Distribution of compression error due to lossy
restart. Overset grid is visible in error. (b) Time-step 23000: Error propagates though domain in direction of flow (to the right).
(c) Time-step 29980: Error accumulates in regions of low momentum, Figure 6.

Figure 11. Magnitude of velocity after 30,000 time-steps for
Nek5000.

0 10000 20000 30000 40000 50000 60000 70000
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Figure 10. Max-norm between numerical solution uh and com-
pressed numerical solution ~uh for PlasComCM.
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The test problem considered in this example is a 3-D

Navier–Stokes simulation of a channel flow with periodic

boundary conditions. Figure 11 shows the solution of velo-

city at 30,000 time-steps. The simulation restarts twice

during execution at time-step 1500 and time-step 11,500

(MTBF of 50 min). This test problem is run with 16 pro-

cesses, each checkpointing about 1 MB of data.

Compression factors for Nek5000, shown in Figure 12,

are as high as 280� for the x-component of velocity with

compression tolerance E ¼ 1e - 1. As the compression error

tolerance decreases, compression factors approach 2� for

all variables. The discrepancy in compression factors

between the x-component of velocity and the other vari-

ables is due to the x-direction of the flow. Without flow

obstacles, the x-component of velocity is generally more

uniform than other spatial components of the velocity. The

more uniform nature allows SZ to more accurately predict

values. SZ adopts curve fitting to predict future values in

the array. If a section of data is easily represented with a

curve fitting predictor, then compression factors are high. If

the data are not easily predicted by curve fitting, SZ utilizes

binary analysis on the hard-to-compress regions. However,

binary analysis is less effective at reducing data size in

comparison to curve fitting. This also suggests that com-

pressors more directly designed for physical properties may

yield improved compression factors.

Compression time of the Nek5000 state variables,

shown in Figure 13, falls within two regimes that mirror

the compression factor results. Variables that are easier to

compress and exhibit large compression factors take less

time than difficult-to-compress variables. Spatially smooth

data are often easier to compress. Furthermore, selection of

the lossy compressor can greatly influence the time to com-

press and compression factor (Di and Cappello, 2016; Tao

et al., 2017). This highlights a need for further study into

the development of specialized compressors that are tai-

lored to certain state variables in PDEs.

The 3-D channel flow problem solves two linear systems

at each time-step: one for pressure and one for velocity. The

linear systems for pressure and velocity are solved using the

generalized minimal residual method (GMRES) to a toler-

ance of eh ¼ 1e - 5. The accuracy to which the linear sys-

tems are solved suggests compression tolerances E < 1e - 5

are required. Due to periodic boundary conditions that do not

permit error to escape the domain, the compression tolerance

is set at E ¼ 1e - 7, allowing for an increase in error due to

multiple restarts. While using a more conservative bound of

E ¼ 1e - 10 results in a compression factor of 2� over the

original, our method of selecting E results in a compression

factor of 2.8� over the original.

Figure 14 shows the maximum error in the pressure along

with the directional components of velocity between the

numerical solution uh and a compressed numerical solution

~uh. After restarting from a lossy checkpoint, there is an initial

spike in error in the time-steps immediately following the

restart, but it remains below the discretization error. As time

evolves, the error reduces as it migrates through the domain

and approaches a steady state (due to the periodic boundary

conditions). After the second restart, at time-step 11,500,
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Figure 12. Smaller compression tolerances lead to higher com-
pression factors for Nek5000.
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Figure 14. Max-norm between numerical solution uh and com-
pressed numerical solution ~uh for pressure and velocity for
Nek5000. There is no error before time-step 1500 as the simu-
lation is not yet restarted.
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there is another spike in error due to restarting from lossy

state. As time evolves, the error propagates though the

domain but remains less than discretization error.

Figure 15 shows the spatial location of error for the velo-

city solution in Figure 11 at time-step 30,000. Regions of

large error correspond to regions of high velocity. The initial

distribution of error after a lossy restart, Figure 15(a), illus-

trates processor boundaries and data distribution. Even

though ghost regions on other processors are needed to

advance the simulation, SZ’s compression algorithm only

considers local data when compressing. This results in faster

compression times but results in compression artifacts around

processor boundaries. Compression artifacts are magnified

when the per-process distribution of data is not spatially con-

tiguous. Values that appear to be neighbors locally due to how

data are stored may in fact be distant globally leading to

compression artifacts and lower compression rates.

6. Modeling time to checkpoint

The previous sections show that leveraging the truncation

error of HPC applications is an effective method of select-

ing a lossy compression error tolerance when compressing

checkpoint files. Ultimately, however, lossy compression

should be used for checkpointing only if it results in a more

efficient time to checkpoint. To explore trade-offs for lossy

compression, the time to checkpoint is modeled for an

averaged size job run on a machine similar to Blue Waters.

A simple model for time to checkpoint, T , is given by

T ¼ cb � V þ
wb � V

f
; ð7Þ

where cb is the bandwidth of the compressor, V is the

number of bytes being written per process, wb is the file

system bandwidth, and f is the compression factor of the

compressor. For the case without lossy compression,

cb ¼ 0 and f ¼ 1. For lossy compression to be useful, the

time to checkpoint using lossy compression, Tlossy, needs to

be less than the time to checkpoint without compression,

Treg: Tlossy < Treg. This simplifies to

f >
wb

wb � cb

; ð8Þ

which is used to estimate the minimum compression factor

for lossy compression to be viable. This model does not

take into consideration the complex nature of the parallel

I/O system. Despite this limitation, however, the model is

useful to estimate when compression improves perfor-

mance. A more refined I/O model (Isaila et al., 2015) that

considers the parallel data exchanges in collective I/O

reads/writes is parametrized for Blue Waters.

Figure 16 explores when lossy compressing checkpoint

files improves performance for various combinations of

compression bandwidth and file system bandwidth for a

parallel job. The parallel job consists of 2048 processes on

128 nodes (1 process per core) each checkpointing 8 MB of

data.9 Lossy compression is not pipelined with file I/O in the

modeling. Two lossy compressors are modeled in Figure 16.

The first lossy compressor is Truncation which truncates

64-bit floating-point values to 32-bit values, resulting in a

2� reduction in checkpoint size. Since this compressor per-

forms no extra computation beyond truncating each floating-

point value, this compressor’s performance is limited only

by the available memory bandwidth. Therefore, the com-

pression bandwidth is set as a fixed measured constant

5.4 GB/s per core. The second lossy compressor is SZ, which

models SZ-1.3. The compression factor is set at 7� and is

Figure 15. Propagation of velocity error in Nek5000. (a) Time-step 1,500: Distribution of compression error due to lossy restart.
Processor boundaries are visible. (b) Time-step 30,000: Error in velocity magnitude for Nek5000 from Figure 11.
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compatible with observed factors in both PlasComCM and

Nek5000. SZ’s compression is more computationally intense

than Truncation. Therefore, the compression bandwidth is a

function of the checkpoint data. Easier-to-compress data

compresses faster than more difficult-to-compress data. This

results in variability in the observed compression bandwidth.

Figure 16 scales the compression bandwidth for SZ from 1

MB/s to 4 GB/s.

Figure 16 shows lossy compression becomes increas-

ingly attractive as compression bandwidth increases rela-

tive to I/O bandwidth. Practice shows effective I/O

bandwidth is much less than peak (Luu et al., 2015), while

compression can reach memory bandwidth. For example,

PlasComCM runs of this size achieve an average aggregate

file system bandwidth of around 2 GB/s on Blue Waters

when checkpointing. A compression bandwidth of 64 MB/s

is enough to improve the time to checkpoint. The measured

compression bandwidth for PlasComCM10 is 78 MB/s. For

PlasComCM, lossy compression can improve checkpoint-

ing time by 1.8� compared to standard checkpointing.

If the computation is performed on 32-bit floating-point

values instead of 64-bit floating-point values, the default size

of the checkpoint is reduced from 8 MB/process to 4 MB/

process. Moreover, this a priori reduction in data size

decreases the performance of lossy compression in both

compression factor and compression bandwidth. In our

experiments, compressing 32-bit data sets results in com-

pression factors that are roughly half of the compression

factor for a 64-bit data set. Furthermore, compression band-

widths are two-thirds of the bandwidth of compressing

64-bit data sets. Regardless, the resulting compressed check-

point size for a 32-bit data set is smaller than the compressed

checkpoint size of the 64-bit data set. Figure 17 shows lossy

compressing the 32-bit data set improves time to checkpoint.

For PlasComCM, performance can be improved by 1.12�.

Using Amdahl’s law and the more realistic performance

model from Isaila et al. (2015), we compute the application

speedup for various I/O fractions ranging from 1% to 90% in

Figure 18. As the I/O fraction increases, the application

speedup approaches the speedup obtained from using lossy

compression during I/O. Improving I/O performance impacts

the I/O fraction of the application. Figure 19 shows the new I/

O fraction after using lossy compression. For applications that

spend significant amounts of time in I/O, lossy compression is

effective at reducing the I/O fraction. Moreover, as research

continues to improve the performance of lossy compressors,

we will see further improvement in application runtime and a

reduction in the I/O faction of the application.

7. Discussion

The previous sections explore the feasibility of setting

lossy compressor error tolerances based on the numerical

accuracy of the simulation. Results show that introducing

compression error less than the numerical truncation error

results in minimal impact on the simulation. Yet, there are

several directions of development that would improve lossy

checkpointing and increase its utility in practice.

7.1. Error accumulation

Error propagation after a restart and the frequency of

restarts complicate the process of selecting a compression
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Figure 17. Fastest I/O configuration with various file systems and
compression bandwidths (32-bit floating-point data set).
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tolerance. Further analysis on the propagation of error due

to lossy compression and quantifying the compression error

is needed. In addition, the impact of multiple restarts and

effect on the convergence rate should be explored.

7.2. Physics-based compression

Simulations often rely on the conservation of key quanti-

ties—for example, mass, energy—require symmetries in

the domain, or compute statistics on state variables. Devel-

opment of compressors that are designed specifically for

certain physical properties could ensure key properties are

satisfied.

7.3. Adaptive compression

This article uses one global compression error tolerance for

all checkpoints and variables because we test the validity of

our approach and not an optimal implementation. In a pro-

duction setting, using different tolerances spatially and

temporally for all state variables will allow new optimiza-

tions that further reduce checkpoint size and mitigate the

effect of error accumulation.

7.4. Lower precision computation

This work considers computation on double precision

data. If computation is performed on lower precision, sin-

gle or half precision, lossy compression can still be

employed but requires more from the lossy compressor

in terms of compression factor and/or compression time.

Using single or half precision reduces the data set size by

2� or 4� compared to double precision. Lossy compres-

sing lower-precision data sets results in smaller compres-

sion factors and smaller compression bandwidths.

However, performance improvement is possible (Figure

17). Using lossy compression inside applications that use

mixed-precision floating-point arithmetic is interesting

future work because it allows for further refinement of

the compression error tolerance based on accuracy needs

at certain points in the computation.

8. Conclusion

Checkpoint restart is an integral part of long-running HPC

applications. Yet, data movement is becoming a key bottle-

neck on current and future machines. In response, lossy

compression is a method to effectively reduce the volume

of data required for a checkpoint, but at the expense of

adding error into the simulation. The compression error

tolerance is often difficult to determine a priori. This article

investigates the feasibility of using numerical truncation

error as a basis for selecting the lossy compression error

tolerance. First by demonstrating this use on a 1-D heat and

1-D advection equation, it is shown that error introduced

through compression can have limited impact on the simu-

lation. In addition, results for two production-level HPC

applications PlacComCM and Nek5000 also highlight its

use. Results show that limiting lossy compression error to

that of the discretization error allows simulations to restart

from a lossy compressed checkpoint without significantly

impacting the simulation. Finally, lossy compression is

shown to reduce checkpoint time for compression error

bounds that respect the truncation error of the application.
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Notes

1. https://asc.llnl.gov/coral-info.

2. https://www.olcf.ornl.gov/summit/.

3. http://xpacc.illinois.edu/.

4. https://nek5000.mcs.anl.gov/.

5. The constant c may be large. To account for this, prior

knowledge collected though verification runs and scal-

ing tests can be used to create a bound on c. In this

work, a large value of c is accounted for by selecting

compression error tolerances that are less than the

simulation’s truncation error.

6. This work sets the tolerance based on the accuracy of

the local truncation error and sets pessimistic, conser-

vative bounds to mitigate accumulation of error during

the remaining time-steps.

7. https://bitbucket.org/xpacc-dev/plascomcm.

8. https://github.com/Nek5000/Nek5000.

9. Increasing the per-process data size causes the trade-off

point between SZ and Truncation to shift to the right—

that is, SZ requires a faster compression bandwidth to

become the most effective scheme for a constant com-

pression factor. If the compression factor scales with

data set size, the trade-off point between SZ and Trun-

cation is similar to that presented in Figure 16.

10. Data compressed to E ¼ 1e - 6 with a single threaded

unoptimized SZ-1.3 using relative and absolute error

bounds.
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