
Node-Aware Improvements to Allreduce
Amanda Bienz

Department of Computer Science
University of Illinois

at Urbana-Champaign
Urbana, Illinois

bienz2@illinois.edu

Luke N. Olson
Department of Computer Science

University of Illinois
at Urbana-Champaign

Urbana, Illinois
lukeo@illinois.edu

William D. Gropp
Department of Computer Science

University of Illinois
at Urbana-Champaign

Urbana, Illinois
wgropp@illinois.edu

Abstract—The MPI_Allreduce collective operation is a core
kernel of many parallel codebases, particularly for reductions
over a single value per process. The commonly used allreduce
recursive-doubling algorithm obtains the lower bound message
count, yielding optimality for small reduction sizes based on node-
agnostic performance models. However, this algorithm yields
duplicate messages between sets of nodes. Node-aware optimiza-
tions in MPICH remove duplicate messages through use of a
single master process per node, yielding a large number of
inactive processes at each inter-node step. In this paper, we
present an algorithm that uses the multiple processes available
per node to reduce the maximum number of inter-node messages
communicated by a single process, improving the performance
of allreduce operations, particularly for small message sizes.

Index Terms—Parallel, Parallel algorithms, Interprocessor
communications

I. INTRODUCTION

The advance of parallel computers towards exascale moti-
vates the need for increasingly scalable algorithms. Emerging
architectures provide increased process counts, yielding the
potential to run increasingly large and complex applications,
such as those relying on linear system solvers or neural
networks. As applications are scaled to a larger number of
processes, MPI communication becomes a dominant factor of
the overall cost.

The MPI_Allreduce [1] is a fundamental component of
a wide range of parallel applications, such as norm calculations
in iterative methods, inner products in Krylov subspace meth-
ods, and gradient mean calculation in deep neural networks.
The allreduce operation consists of performing a reduction
operation over values from all processes, such as a summing
values or determining the maximum. Therefore, the cost of
the allreduce increases with process count, as displayed in
Figure 1, motivating the need for improved performance and
scalability on emerging architectures.

In this paper, we present an allreduce algorithm based on
node-awareness, which exchanges inter-node communication

This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications. This material is based in part upon
work supported by the Department of Energy, National Nuclear Security
Administration, under Award Number de-na0002374.

128 512 1024 2048 4096 8192 16384 32768
Number of Processes

0.00002

0.00004

0.00006

0.00008

A
llR

ed
u

ce
T

im
e

(S
ec

on
d

s)
Fig. 1. Time required for MPI_Allreduce to reduce a single double-
precision floating-point value across a variety of process counts on Blue
Waters [2], [3]. The shaded area shows the variation between five separate
runs.

for less costly intra-node messages as well as increased com-
putational requirements. This algorithm reduces the number of
inter-node messages from log2(n) to logppn(n), where n is the
number of nodes involved and ppn is the number of processes
per node, yielding significant speedups over standard allreduce
methods for small message sizes.

The remainder of this paper is organized as follows. Sec-
tion 2 describes common allreduce algorithms along with
optimizations, including the node-aware allreduce algorithm
that is implemented in MPICH [4]. In Section 3, we present
a node-aware allreduce algorithm that reduces the number
and size of inter-node messages. Performance models for the
various allreduce algorithms are analyzed in Section 4, and
performance results are displayed in Section 5. Finally, Section
6 contains concluding remarks.

II. BACKGROUND

The MPI_Allreduce operates upon s sets of p values
into s resulting values through operations such as summations
or calculating the maximum value. These values are initially
distributed evenly across p processes and results are returned
to all processes. A reduction requires (p − 1) · s floating-
point operations if the full reduction is performed on a single
process. Therefore, splitting across p processes yields a lower
bound of (p−1)·s

p floating-point operations. Furthermore, as
data is distributed across all processes, a minimum of log2(p)
messages must be communicated. Finally, the minimal data

ar
X

iv
:1

91
0.

09
65

0v
1 

 [
cs

.D
C

] 
 2

1 
O

ct
 2

01
9

http://arxiv.org/abs/de-na/0002374


P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Fig. 2. Data movement for a tree allreduce over 16 processes, with data first reduced to a process P0 before being broadcast to other processes.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Step 1:

Step 2:

Step 3:

Step 4:

Fig. 3. Communication pattern for a recursive-doubling allreduce with 4 nodes, each containing 4 processes. Data is exchanged at each step and all processes
are active in the reduction.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Fig. 4. Data movement for the MPICH SMP allreduce algorithm over 16 processes partitioned across 4 nodes. The data is reduced to a master process per
node in steps 1 and 2, before being reduced among master processes through recursive doubling in steps 3 and 4. Finally, the data is broadcast from the
master process to all idle processes per node.

transfer size is 2·(p−1)·s
p as (p−1)·s

p values must be both sent
and received [5], [6].

There are a large number of existing allreduce algorithms
with various levels of optimality dependent on message size
s and process count p. A straightforward algorithm, displayed
in Figure 2, first reduces the data onto a master process before
broadcasting to all other processes.

Assuming tree broadcasts and reductions, this algorithm
requires 2 · log2(p) messages and 2 · log2(p) · s values to be
transported. Furthermore, the tree algorithm requires log2(p)·s
floating-point operations. This algorithm is sub-optimal, with
communication requirements significantly larger than ideal [7].
Furthermore, the tree algorithm yields large load imbalances

with large numbers of inactive processes.
Recursive-doubling or the butterfly allreduce, exemplified

in Figure 3, improves upon the tree algorithm by utilizing all
processes, with sets of processes exchanging data at each step.
This algorithm reduces the number and size of messages to
log2(p) and log2(p) · s, respectively, while retaining computa-
tion requirements equivalent to the tree algorithm. Recursive-
doubling achieves the lower bound for message count, yielding
a near-optimal algorithm, based on the postal model, for
small messages and power of 2 process counts [7], [8]. This
algorithm can be altered to work efficiently for non-power of
two process counts [5], [9].

Alternative algorithms optimize bandwidth and local com-



putation requirements for larger message sizes. Assuming p is
relatively small, data can be split into p portions and commu-
nicated to all other processes in a pipeline [10]. Portioning and
pipelining the data achieves the lower bound cost associated
with data transport. However, each process sends 2 · (p − 1)
messages, yielding reduced scalability for large process counts.
Rabenseifner’s algorithm [5], [8] improves upon pipelining
by implementing a reduce-scatter, or a reduction with results
scattered among the processes, followed by an allgather of
these results. While remaining optimal in data transport, this
algorithm requires only 2 log2(p) messages.

A. Node-Awareness

Emerging architectures often consist of a large number
of symmetric multiprocessing (SMP) nodes, each containing
many processes. Intra-node processes share memory, allowing
for data to be quickly transported between processes on a
node. Inter-node data transport requires data to be split into
packets, injected into the network, and transported across
network links to the node of destination. Therefore, inter-node
communication is significantly more expensive than intra-
node. Node-agnostic performance models, such as the postal
model, fail to accurately capture the costs associated with
inter-node communication. This model can be improved by
splitting communication into intra- and inter-node as well as
adding injection bandwidth limits [11], [12].

Standard allreduce methods, such as recursive-doubling and
Rabenseifner’s algorithm, reduce among processes in a node-
agnostic fashion. Therefore, multiple messages and duplicate
data are often exchanged between a set of nodes. This is
exemplified in steps 3 and 4 of Figure 3, during which every
process of one node is exchanging data with every process of
another node, even though all processes per node hold identical
values.

Duplicate inter-node communication can be removed
through a node-aware SMP allreduce, displayed in Figure 4,
which reduces all intra-node data to a master process, performs
a standard allreduce among master processes, and then broad-
casts results locally [13]. While the SMP approach requires
the same number and size of inter-node messages as recursive-
doubling, only a single process communicates from each node,
eliminating injection bandwidth limits. However, this approach
yields a large number of inactive processes and load imbalance
among processes on each node.

B. Related Work

Node-aware optimizations have been added to other col-
lective algorithms [13], [14], with intra-node shared memory
optimizations [15], [16]. Similarly, node-awareness yields im-
provement to unstructured MPI communication, such as that
which occurs during sparse matrix-vector multiplication [17].
Furthermore, the order on which processes are mapped to each
node can have a large effect on collective performance [18],
[19].

Collective communication can be further improved through
topology-awareness, reducing network contention and limiting

message distance [20]–[24]. Collectives over large amounts
of data can be further optimized for specific topologies [25],
[26]. Furthermore, as optimal algorithms depend on both
message sizes as well as architectural topology, autotuners can
determine the best algorithm for various scenarios [27], [28].
Finally, collective algorithms can be optimized for accelerated
topologies, such as those containing Xeon Phi’s [29] and
GPU’s [30]–[33].

III. NODE-AWARE PARALLEL ALLREDUCE
(NAPALLREDUCE)

The MPI_Allreduce is commonly used for reductions
on a small number of values per process, such as calculating
an inner product of two vectors or a norm. When reducing
over a small set of values, the cost of the associated allre-
duce is dominated by the maximum number of messages
communicated by any process. Furthermore, the cost of each
message is dependent on the relative locations of the sending
and receiving processes. Figure 5 displays the modeled cost
of sending a single message containing of various sizes on
Blue Waters, a Cray supercomputer at the National Center
for Supercomputing Applications [2], [3]. The costs were
calculated with the max-rate model using parameters measured
through ping-pong tests [11], [12]. Intra-socket messages,

100 101 102 103 104 105

Message Size

10−6

10−5

10−4

M
od

el
ed

T
im

e
(S

ec
on

d
s)

Socket

Node

Network PPN < 4

Newtork PPN > 4

Fig. 5. Modeled cost of communicating a single message between two
processes on Blue Waters. The costs are split into intra-socket (”Socket”),
intra-node (”Node”) and inter-node (”Network”). Inter-node communication
costs are further split by ppn due to injection bandwidth limits. These costs
are calculated with the max-rate model.

transported through cache, are significantly cheaper than inter-
socket messages, which are transferred through shared mem-
ory. Furthermore, inter-node communication is notably more
expensive than intra-node.

Recursive-doubling requires each process on a node to
communicate duplicate data at every inter-node step, yielding
log2(n) inter-node messages per process, where n is the
number of nodes. The existing node-aware SMP algorithm
improves the cost of relatively large reductions by remov-
ing duplicate messages between nodes, improving bandwidth
costs. However, the majority of processes remain idle as
a single process per node performs all inter-node allreduce
operations, requiring each master process to communication
log2(n) inter-node messages. As a result, the maximum num-
ber of inter-node messages sent by a single process remains



Algorithm 1: NAP: allreduce_NAP
Input: data {Data to be reduced}

count {Size of data}

datatype {MPI Datatype}

MPI Op {Reduction operation}

comm, rank, num procs {MPI Communicator for Allreduce}

local comm, local rank, ppn {Intra-node communicator}

Output: reduced data {Reduction of data over all processes in comm}

MPI_Allreduce(data, reduced_data, count, datatype, MPI_Op, local_comm)

prev pos = 0
subgroup size = ppn
group size = subgroup size · ppn
for i = 0 to logppn(num procs

ppn ) do
group start = b rank

group sizec · group size
subgroup = rank·group start

subgroup size
proc = group start + prev pos + local rank · subgroup size + subgroup
if rank < proc

MPI Send(data, count, datatype, dest, tag, comm)
MPI Recv(reduced data, count, datatype, dest, tag, comm, recv status)

else
MPI Recv(reduced data, count, datatype, dest, tag, comm, recv status)
MPI Send(data, count, datatype, dest, tag, comm)

MPI_Op(reduced_data)
prev pos = prev pos + subgroup · subgroup size
subgroup size = group size
group size = group size · ppn

MPI_Allreduce(data, reduced_data, count, datatype, MPI_Op, local_comm)

equivalent to recursive-doubling. The remainder of this section
introduces a node-aware allreduce algorithm, optimized for
small reduction sizes, minimizing the maximum number of
inter-node messages communicated by any process.

The SMP algorithm can be altered to use all ppn processes
per node, splitting the required inter-node messages across all
processes per node. The node-aware parallel (NAP) method,
exemplified in Figure 6, consists of performing an intra-node
allreduce so that all ppn processes hold a node’s current
reduction. Each process local to a node exchanges data with
a specific node, before reducing results locally, as displayed
in Step 3 of Figure 6. Therefore, the data from ppn nodes
is reduced after a single step of inter-node communication,
reducing the maximum number of inter-node messages to
logppn(n). For example, a reduction over 16 nodes with 16
processes per node requires only a single inter-node step. Sim-
ilarly, a NAP allreduce among 4096 nodes, with 16 processes
each, requires only three inter-node steps.

The NAP allreduce algorithm is described in detail in
Algorithm 1. At each inter-node step of this method, the
number of nodes holding duplicate partial results increases
by a power of ppn. Initially, only processes on a single node
hold equivalent reduction results. However, at the beginning of
the second inter-node step, all processes in a subgroup of ppn

nodes hold equivalent data. In general, at the start of the ith

step, processes in each subgroup of ppni−1 nodes hold the
same partial results. Furthermore, a reduction is performed
among groups of size ppni at step i. These groups and
subgroups are exemplified in Figure 7, in which the second
inter-node step of a NAP allreduce with 4 processes per node
is displayed. In the first step, each subgroup contains a single
node and data is reduced over a row of nodes. During the
second step, each row of nodes forms a subgroup, with these
subgroups outlined in color, and data is reduced among all 4
subgroups.

Assuming SMP-style rank ordering, a process q on node
m has local rank r, such that q = n · ppn+ r. For example,
process P9 in Figure 6 is located on node 2 and has local rank
1. During each step of inter-node communication, process q
with local rank r in subgroup m communicates with process u
with local rank m in subgroup r. Therefore, process P9 from
Figure 6 exchanges data with P6, which is located on node
1 and has a local rank of 2. Note that any process with local
rank equal to subgroup sits idly.

During later steps of communication, there are multiple
processes with local rank r in subgroup m. Therefore, the node
position, or the index of a rank’s node within the subgroup,
must remain constant. In the second step of communication,



P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Fig. 6. Communication pattern for the NAP allreduce method. An intra-node allreduce is displayed in steps 1 and 2, while the single inter-node step is
displayed in step 3. Steps 4 and 5 consist of the final intra-node allreduce. Note, one process per node sits idle during inter-node communication.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31

P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47

P48 P49 P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P60 P61 P62 P63

Fig. 7. The second inter-node step of a NAP allreduce over 16 nodes with 4 processes per node. Each row of nodes forms a subgroup, with all processes in
a row containing equivalent data at the start of the step.

displayed in Figure 7, process P9 with local rank 1 in
subgroup 0 has node position 2 as it lies on the third node
in subgroup 0. Therefore, P9 exchanges data with P24 as
this process has local rank 0 in subgroup 1 and also has node
position 2.

A. Non-Power of ppn Processes

The NAP allreduce algorithm reduces values among p pro-
cesses with only logppn(n) steps of inter-node communication.
However, this algorithm requires that the number of processes
is a power of ppn, limiting process counts for which this
algorithm is viable. Assuming the number of nodes evenly
divides ppn, the final step of inter-node communication can
be reduced to involve only the necessary number of processes
per node. Figure 8 displays the final step of a NAP allreduce
with 12 nodes and 4 processes per node. All processes with
local rank 3 sit idly during the final step of inter-node
communication as there are no available nodes with which to
communicate. However, the idle ranks recover the final result
during the following intra-node allreduce.

The NAP allreduce can also be extended to node counts
that are not divisible by ppn. In this case, subgroup sizes
will not be equivalent during the final step of inter-node
communication, as displayed in Figure 9. Subgroups with extra
nodes will have no corresponding process with which to reduce
data, meaning some nodes will not achieve the full reduction.
However, as one process per node is idle during each step of

inter-node communication, specifically the process with local
rank equivalent to subgroup, each node has the potential to
communicate with an extra node at each step. Therefore, the
processes on extra nodes that have no corresponding process
with which to exchange will instead send data to the idle
process. Note this process does not need to receive data from
the corresponding subgroup. As an example, process P14
receives data from P34 during the final step of inter-node
communication, as a corresponding node in subgroup 2 does
not exist.

IV. NODE-AWARE PERFORMANCE MODELING

Standard allreduce algorithms, such as recursive-doubling,
minimize communication costs based on the standard postal
model

T = αt+ βs+ γc, (1)

where α is the per-message start-up cost, β is the per-byte
transport cost, γ is the flop rate, and t, s, and c are the number
of messages, bytes, and floating-point operations, respectively.
However, the cost of communication varies greatly with intra-
node communication requiring significantly less cost than
inter-node. Therefore, the performance model can better cap-
ture cost by splitting up intra- and inter-node costs [11],
yielding

T = α`t` + β`s` + αt+ βs+ γc (2)



P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31

P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47

Fig. 8. Communication pattern for a NAP allreduce with a non power of ppn process count. As the number of nodes is divisible by ppn, the first step
proceeds as normal, while the second step reduces over 3 subgroups. An extra process per node remains inactive for only the second step.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31

P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43

P44 P45 P46 P47 P48 P49 P50 P51 P52 P53 P54 P55

Fig. 9. The communication pattern for a NAP allreduce with a number of nodes that does not divide ppn. The initial step reduces over groups of nearly
equal size. The second inter-node step reduces as normal if the corresponding process exists, and otherwise receives data from the corresponding idle process.

where α`, β`, t`, and s` all represent intra-node communica-
tion while the remaining variables model inter-node communi-
cation and local computation. Finally, inter-node bandwidth is
greatly dependent on the number of processes communicating
per node as injection bandwidth limits slow transport of
large messages. Therefore, this model is further improved by
incorporating the max-rate model [12]

T = α`t` + β`s` + αt+
ppn · s

min (RN ,ppn ·Rb)
+ γc (3)

where Rb in inter-process bandwidth, or the inverse of β, and
RN is injection bandwidth. Note, this reduces to Equation 2
when inter-process bandwidth is achieved.

Performance costs of the various allreduce algorithms for
small messages can be analyzed through the improved perfor-
mance model in Equation 3. The performance model cost of
an allreduce of size s over p processes with recursive-doubling
is displayed in Equation 4.

(α` + β`s) · (log2(ppn))

+

(
α+

ppn · s
min(RN ,ppn ·Rb)

)
· (log2(n)) + γs · (log2(p))

(4)

Recursive-doubling requires log2(n) inter-node messages of
size s, with injection bandwidth limiting performance for large
values of s.

The SMP allreduce improves upon this cost model, with
the associated performance model cost of the SMP algorithm
displayed in Equation 5.

(α` + β`s) · (log2(ppn))

+

(
α+

s

Rb

)
· (log2(n)) + γs · (log2(p)) (5)

While the SMP method yields equivalent inter-node commu-
nication requirements to recursive-doubling, inter-node mes-
sages of all sizes achieve inter-process bandwidth as only a
single process per node performs inter-node communication
at any time. The SMP approach does require slightly more
intra-node communication than recursive-doubling due to the
reduction and broadcast local to each node.

Finally, the NAP allreduce algorithm minimize inter-node
communication requirements, exchanging inter-node messages
for additional intra-node communication and local computa-
tion, as displayed in Equation 6.

(α` + β`s) · (log2(p))

+

(
α+

ppn · s
min(RN ,ppn ·Rb)

)
·
(
logppn(n)

)
+ γs ·

(
log2(p) + logppn(n)

)
(6)

The number of inter-node communication steps is reduced
from log2(n) to logppn(n). However, intra-node communica-
tion steps increase greatly from log2(ppn) to log2(p) and and
additional logppn(n) steps of local computation are required.



Furthermore, injection bandwidth will limit the rate at which
bytes are transported for large messages as many processes
per node are active in intra-node communication at each step.
Therefore, the NAP allreduce is ideal for small reduction sizes
across a large number of processes, where extra computation
and bandwidth injection limits are not a factor.

Figure 10 shows the performance model costs for the
recursive-doubling (RD), SMP, and NAP allreduce methods
when reducing a single value across various process counts.
The model parameters were measured for Blue Waters with
ping-pong tests and the STREAM benchmark [34], [35]. The

128 512 2048 8192 32768
Number of Processes

0.000010

0.000015

0.000020

0.000025

0.000030

0.000035

M
od

el
ed

T
im

e
(S

ec
on

d
s)

RD SMP NAP

Fig. 10. The modeled allreduce cost for reducing a single value across various
process counts with the recursive-doubling (RD), SMP, and NAP methods.

performance models indicate that the NAP allreduce outper-
forms the other methods for small message sizes, particularly
as process count increases. Furthermore, Figure 11 displays
the performance model costs for performing an allreduce with
each method using 32, 768 processes, indicating the NAP
allreduce outperforms recursive-doubling and SMP methods
for small message sizes, while the SMP allreduce outperforms
the recursive-doubling and NAP methods for large message
sizes.

V. RESULTS

The recursive-doubling, SMP, and NAP allreduce algo-
rithms were implemented on top of CrayMPI, utilizing the
MPI_Send and MPI_Recv methods for each exchange of
data. Due to the associated overhead, results are presented for
these implementations rather than comparing with recursive-
doubling and SMP implementations that exist in MPICH. All
tests were performed on Blue Waters with 16 processes per
node. Furthermore, each timing was calculated by performing
thousands of allreduce operations to reduce error from timer
precision, and each of these tests was performed 5 times on
different partitions of Blue Waters. Each plot contains lines
displaying the average results over the 5 separate runs and
outlines show the variation in timings over these 5 tests.

Figure 12 displays the cost of the recursive-doubling (RD),
SMP, and NAP methods for reducing a single value on each

8 32 128 512 2048 8192
Reduction Size (Bytes)

10−4

10−3

M
od

el
ed

T
im

e
(S

ec
on

d
s)

RD SMP NAP

Fig. 11. The modeled cost of performing an allreduce of various reduction
sizes with each method on 32 768 processes.

128 512 1024 2048 4096 8192 16384 32768
Number of Processes

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

A
llr

ed
u

ce
T

im
e

(S
ec

on
d

s)

RD SMP NAP

Fig. 12. The measured cost of performing an allreduce of a single value with
the recursive-doubling (RD), SMP, and NAP methods.

process for various process counts. Furthermore, Figure 13
shows the associated speedups obtained with the NAP method.
The NAP allreduce algorithm obtains notable speedups over
the other methods, particularly at process counts that are a
power of ppn.

Figures 14 and 15 show the costs and speedups, respec-
tively, for performing the various allreduce methods on 32 768
processes for a variety of reduction sizes. The NAP method
yields significant speedups over the recursive-doubling and
SMP methods for smaller message sizes. However, the SMP
approach outperforms the NAP method for reduction sizes
over 2048 bytes, similar to expected performance based on
the models in Figure 10.

VI. CONCLUSIONS AND FUTURE WORK

The NAP allreduce method yields notable improvements
over standard recursive-doubling and existing node-aware
SMP methods, in both performance models and measured
costs for small message sizes, of up to 2048 bytes. The NAP



128 512 1024 2048 4096 8192 16384 32768
Number of Processes

1.0

1.5

2.0

S
p

ee
d

u
p

RD / NAP SMP / NAP

Fig. 13. Speedup acquired from the NAP allreduce over the recursive-
doubling and SMP methods when reducing a single value.

8 32 128 512 2048 8192
Reduction Size (Bytes)

10−4

10−3

A
llr

ed
u

ce
T

im
e

(S
ec

on
d

s)

RD SMP NAP

Fig. 14. The cost of reducing various numbers of values over 32 768 processes
with the recursive-doubling, SMP, and NAP allreduce methods.

algorithm relies on power of ppn process counts, but natural
extensions allow for all other process counts. However, non
power of ppn process counts require the same number of
inter-node communication steps as the succeeding power of
ppn. Therefore NAP allreduce speedups are most significant
at power of ppn process counts.

This paper is focused on the cost of the recursive-doubling,
SMP, and NAP allreduce methods when implemented on top of
MPICH, calling MPI_Send and MPI_Recv for each step of
communication. However, there is significant overhead associ-
ated with these calls, in comparison to direct implementation
of these methods in MPICH. Figures 16 and 17 display the
cost of performing the SMP and NAP allreduce methods on
top of MPI, compared to the SMP method as implemented in
MPICH, measured by calling the MPI_Allreduce routine.
The overhead associated with implementing on top of MPICH
can be seen as the difference between the MPI and SMP costs.

8 32 128 512 2048 8192
Reduction Size (Bytes)

2

4

6

S
p

ee
d

u
p

RD / NAP SMP / NAP

Fig. 15. The speedup in the NAP allreduce algorithm over the recursive-
doubling and SMP methods for reducing various numbers of values on 32 768
processes. The NAP allreduce yields improved performance up to a reduction
size of 2048 bytes.

128 512 1024 2048 4096 8192 16384 32768
Number of Processes

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

A
llR

ed
u

ce
T

im
e

(S
ec

on
d

s)
MPI SMP NAP

Fig. 16. The cost of reducing various numbers of values over 32 768 processes
with the SMP algorithm as implemented in MPICH (labeled MPI), SMP, and
NAP allreduce methods.

While the node-aware allreduce yields slight improvements
over MPICH’s SMP approach, speedups are minimal due
to the additional overhead. Therefore, this method should
be implemented as a part of MPICH to achieve optimal
performance.

Similar node-aware approaches can be extended to
other collective algorithms. Natural extensions exist to the
MPI_Allgather, in which a similar recursive-doubling
algorithm performs well for small gather sizes. Furthermore,
the node-agnostic ring algorithm again has multiple processes
communicating duplicate data between nodes, which could be
improved upon. Using the max-rate model as a guide, node-
aware extensions could be applied to larger MPI_Allreduce
methods, optimizing the reduce-scatter and allgather approach
to avoid injection bandwidth limits while utilizing as many



8 32 128 512 2048 8192
Reduction Size

10−4

10−3

A
llR

ed
u

ce
T

im
e

(S
ec

on
d

s)
MPI SMP NAP

Fig. 17. The cost of reducing various numbers of values over 32 768 processes
with the SMP algorithm as implemented in MPICH (labeled MPI), SMP, and
NAP allreduce methods.

processes per node as possible.
Finally, locality-aware collective algorithms can be extended

to other parts of the architecture, such as reducing inter-
socket communication in exchange for increased intra-socket
message counts. Similary, these algorithms can be optimized
for heterogeneous architectures, in which many layers of
memory and communication exist.

REFERENCES

[1] “MPI: A message-passing interface standard,” Knoxville, TN, USA,
Tech. Rep., 1994.

[2] NCSA, “Blue Waters,” https://bluewaters.ncsa.illinois.edu/, 2012.
[3] B. Bode, M. Butler, T. Dunning, T. Hoefler, W. Kramer, W. Gropp,

and W. Hwu, “The Blue Waters super-system for super-science,” in
Contemporary High Performance Computing: From Petascale Toward
Exascale, 1st ed., ser. CRC Computational Science Series, J. S. Vetter,
Ed. Boca Raton: Taylor and Francis, 2013, vol. 1, pp. 339–366.
[Online]. Available: http://j.mp/RrBdPZ

[4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface
standard,” Parallel Computing, vol. 22, no. 6, pp. 789 – 828,
1996. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0167819196000245

[5] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, pp. 49–66, Feb. 2005. [Online]. Available:
http://dx.doi.org/10.1177/1094342005051521

[6] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: Theory, practice, and experience: Research articles,”
Concurr. Comput. : Pract. Exper., vol. 19, no. 13, pp. 1749–1783, Sep.
2007. [Online]. Available: http://dx.doi.org/10.1002/cpe.v19:13

[7] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Comput.
Surv., vol. 52, no. 4, pp. 65:1–65:43, Aug. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3320060

[8] R. Rabenseifner, “Optimization of collective reduction operations,” in
Computational Science - ICCS 2004, M. Bubak, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 1–9.

[9] M. Ruefenacht, M. Bull, and S. Booth, “Generalisation of recursive
doubling for allreduce,” in Proceedings of the 23rd European
MPI Users’ Group Meeting, ser. EuroMPI 2016. New York,
NY, USA: ACM, 2016, pp. 23–31. [Online]. Available: http:
//doi.acm.org/10.1145/2966884.2966913

[10] J. Worringen, “Pipelining and overlapping for MPI collective opera-
tions,” in 28th Annual IEEE International Conference on Local Com-
puter Networks, 2003. LCN ’03. Proceedings., Oct 2003, pp. 548–557.

[11] A. Bienz, W. D. Gropp, and L. N. Olson, “Improving performance
models for irregular point-to-point communication,” in Proceedings
of the 25th European MPI Users’ Group Meeting, Barcelona, Spain,
September 23-26, 2018, 2018, pp. 7:1–7:8. [Online]. Available:
https://doi.org/10.1145/3236367.3236368

[12] W. Gropp, L. N. Olson, and P. Samfass, “Modeling MPI communication
performance on SMP nodes: Is it time to retire the ping pong test,”
in Proceedings of the 23rd European MPI Users’ Group Meeting,
ser. EuroMPI 2016. New York, NY, USA: ACM, 2016, pp. 41–50.
[Online]. Available: http://doi.acm.org/10.1145/2966884.2966919

[13] H. Zhu, D. Goodell, W. Gropp, and R. Thakur, “Hierarchical collectives
in MPICH2,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, M. Ropo, J. Westerholm, and J. Dongarra,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 325–
326.

[14] J. L. Träff and A. Rougier, “MPI collectives and datatypes for
hierarchical all-to-all communication,” in Proceedings of the 21st
European MPI Users’ Group Meeting, ser. EuroMPI/ASIA ’14. New
York, NY, USA: ACM, 2014, pp. 27:27–27:32. [Online]. Available:
http://doi.acm.org/10.1145/2642769.2642770

[15] S. Jain, R. Kaleem, M. G. Balmana, A. Langer, D. Durnov, A. Sannikov,
and M. Garzaran, “Framework for scalable intra-node collective
operations using shared memory,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp.
29:1–29:12. [Online]. Available: https://doi.org/10.1109/SC.2018.00032

[16] R. L. Graham and G. Shipman, “MPI support for multi-core architec-
tures: Optimized shared memory collectives,” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface, A. Lastovetsky,
T. Kechadi, and J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 130–140.

[17] A. Bienz, W. D. Gropp, and L. N. Olson, “Node aware sparse
matrix-vector multiplication,” Journal of Parallel and Distributed
Computing, vol. 130, pp. 166 – 178, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731519302321

[18] T. Ma, T. Herault, G. Bosilca, and J. J. Dongarra, “Process distance-
aware adaptive MPI collective communications,” in 2011 IEEE Interna-
tional Conference on Cluster Computing, Sep. 2011, pp. 196–204.

[19] J. Zhang, J. Zhai, W. Chen, and W. Zheng, “Process mapping for
MPI collective communications,” in Euro-Par 2009 Parallel Processing,
H. Sips, D. Epema, and H.-X. Lin, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 81–92.

[20] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W. Draeger,
B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine, V. Pascucci,
M. Schulz, and C. H. Still, “Mapping applications with collectives
over sub-communicators on torus networks,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 97:1–97:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389128

[21] P. Sack and W. Gropp, “Faster topology-aware collective algorithms
through non-minimal communication,” in Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’12. New York, NY, USA: ACM, 2012,
pp. 45–54. [Online]. Available: http://doi.acm.org/10.1145/2145816.
2145823

[22] T. Ma, G. Bosilca, A. Bouteiller, and J. J. Dongarra, “Kernel-assisted
and topology-aware MPI collective communications on multicore/many-
core platforms,” Journal of Parallel and Distributed Computing, vol. 73,
no. 7, pp. 1000 – 1010, 2013, best Papers: International Parallel
and Distributed Processing Symposium (IPDPS) 2010, 2011 and
2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731513000166

[23] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda, “Designing
topology-aware collective communication algorithms for large scale
infiniband clusters: Case studies with scatter and gather,” in 2010 IEEE
International Symposium on Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), April 2010, pp. 1–8.

[24] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk,
and J. Bresnahan, “Exploiting hierarchy in parallel computer networks
to optimize collective operation performance,” in Proceedings 14th

https://bluewaters.ncsa.illinois.edu/
http://j.mp/RrBdPZ
http://www.sciencedirect.com/science/article/pii/0167819196000245
http://www.sciencedirect.com/science/article/pii/0167819196000245
http://dx.doi.org/10.1177/1094342005051521
http://dx.doi.org/10.1002/cpe.v19:13
http://doi.acm.org/10.1145/3320060
http://doi.acm.org/10.1145/2966884.2966913
http://doi.acm.org/10.1145/2966884.2966913
https://doi.org/10.1145/3236367.3236368
http://doi.acm.org/10.1145/2966884.2966919
http://doi.acm.org/10.1145/2642769.2642770
https://doi.org/10.1109/SC.2018.00032
http://www.sciencedirect.com/science/article/pii/S0743731519302321
http://dl.acm.org/citation.cfm?id=2388996.2389128
http://doi.acm.org/10.1145/2145816.2145823
http://doi.acm.org/10.1145/2145816.2145823
http://www.sciencedirect.com/science/article/pii/S0743731513000166
http://www.sciencedirect.com/science/article/pii/S0743731513000166


International Parallel and Distributed Processing Symposium. IPDPS
2000, May 2000, pp. 377–384.

[25] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” Journal of Parallel and Distributed
Computing, vol. 69, no. 2, pp. 117 – 124, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731508001767

[26] P. Patarasuk and X. Yuan, “Bandwidth efficient all-reduce operation on
tree topologies,” in 2007 IEEE International Parallel and Distributed
Processing Symposium, March 2007, pp. 1–8.

[27] A. Faraj and X. Yuan, “Automatic generation and tuning of MPI
collective communication routines,” in Proceedings of the 19th Annual
International Conference on Supercomputing, ser. ICS ’05. New
York, NY, USA: ACM, 2005, pp. 393–402. [Online]. Available:
http://doi.acm.org/10.1145/1088149.1088202

[28] A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: Self tuned adaptive
routines for MPI collective operations,” in Proceedings of the 20th
Annual International Conference on Supercomputing, ser. ICS ’06.
New York, NY, USA: ACM, 2006, pp. 199–208. [Online]. Available:
http://doi.acm.org/10.1145/1183401.1183431

[29] K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy,
and D. K. Panda, “Designing optimized MPI broadcast and allreduce
for many integrated core (MIC) infiniband clusters,” in 2013 IEEE 21st
Annual Symposium on High-Performance Interconnects, Aug 2013, pp.
63–70.

[30] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K.
Panda, “MVAPICH2-GPU: optimized GPU to GPU communication for
InfiniBand clusters,” Computer Science - Research and Development,
vol. 26, no. 3, p. 257, Apr 2011. [Online]. Available: https:
//doi.org/10.1007/s00450-011-0171-3

[31] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient inter-node MPI communication using GPUDirect RDMA for
InfiniBand clusters with NVIDIA GPUs,” in 2013 42nd International
Conference on Parallel Processing, Oct 2013, pp. 80–89.

[32] L. Oden, B. Klenk, and H. Frning, “Energy-efficient collective reduce
and allreduce operations on distributed GPUs,” in 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May
2014, pp. 483–492.

[33] I. Faraji and A. Afsahi, “GPU-aware intranode MPI Allreduce,” in
Proceedings of the 21st European MPI Users’ Group Meeting, ser.
EuroMPI/ASIA ’14. New York, NY, USA: ACM, 2014, pp. 45:45–
45:50. [Online]. Available: http://doi.acm.org/10.1145/2642769.2642773

[34] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.
1995.

[35] J. D. McCalpin, “STREAM: Sustainable memory bandwidth in
high performance computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep., 1991-2007, a continually updated technical
report. http://www.cs.virginia.edu/stream/. [Online]. Available: http:
//www.cs.virginia.edu/stream/

http://www.sciencedirect.com/science/article/pii/S0743731508001767
http://doi.acm.org/10.1145/1088149.1088202
http://doi.acm.org/10.1145/1183401.1183431
https://doi.org/10.1007/s00450-011-0171-3
https://doi.org/10.1007/s00450-011-0171-3
http://doi.acm.org/10.1145/2642769.2642773
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/

	I Introduction
	II Background
	II-A Node-Awareness
	II-B Related Work

	III Node-Aware Parallel Allreduce (NAPAllreduce)
	III-A Non-Power of ppn Processes

	IV Node-Aware Performance Modeling
	V Results
	VI Conclusions and Future Work
	References

