
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 4, pp. C581–C604

SCALING STRUCTURED MULTIGRID TO 500K+ CORES
THROUGH COARSE-GRID REDISTRIBUTION∗

ANDREW REISNER† , LUKE N. OLSON† , AND J. DAVID MOULTON‡

Abstract. The efficient solution of sparse, linear systems resulting from the discretization of
partial differential equations is crucial to the performance of many physics-based simulations. The
algorithmic optimality of multilevel approaches for common discretizations makes them good can-
didates for an efficient parallel solver. Yet, modern architectures for high-performance computing
systems continue to challenge the parallel scalability of multilevel solvers. While algebraic multigrid
methods are robust for solving a variety of problems, the increasing importance of data locality and
cost of data movement in modern architectures motivates the need to carefully exploit structure in
the problem. Robust logically structured variational multigrid methods, such as black box multigrid,
maintain structure throughout the multigrid hierarchy. This avoids indirection and increased coarse-
grid communication costs typical in parallel algebraic multigrid. Nevertheless, the parallel scalability
of structured multigrid is challenged by coarse-grid problems where the overhead in communication
dominates computation. In this paper, an algorithm is introduced for redistributing coarse-grid
problems through incremental agglomeration. Guided by a predictive performance model, this algo-
rithm provides robust redistribution decisions for structured multilevel solvers. A two-dimensional
diffusion problem is used to demonstrate the significant gain in performance of this algorithm over
the previous approach that used agglomeration to one processor. In addition, the parallel scalability
of this approach is demonstrated on two large-scale computing systems, with solves on up to 500K+
cores.

Key words. multigrid, structure, parallel, scalability, stencil

AMS subject classifications. 65F50, 65Y05, 65N55

DOI. 10.1137/17M1146440

1. Introduction. The efficient solution of large, sparse linear systems resulting
from the discretization of elliptic partial differential equations (PDEs) is crucial to
the performance of many numerical simulations. Although there has been significant
progress in developing general algebraic multigrid (AMG) solvers [34], modern high-
performance computing (HPC) architectures continue to pose significant challenges
to parallel scalability and performance (e.g., [3, 14, 5]). These challenges include
reducing data movement, increasing arithmetic intensity, and identifying opportuni-
ties to improve resilience and are more readily addressed in settings where problem
structure can be identified and exploited. For example, robust structured variational

∗Submitted to the journal’s Software and High-Performance Computing section September 6,
2017; accepted for publication (in revised form) May 8, 2018; published electronically July 17, 2018.

http://www.siam.org/journals/sisc/40-4/M114644.html
Funding: This work was carried out under the auspices of the National Nuclear Security Admin-

istration of the U.S. Department of Energy, at the University of Illinois at Urbana–Champaign
under award DE-NA0002374, and at Los Alamos National Laboratory under contract DE-AC52-
06NA25396, and was partially supported by the Advanced Simulation and Computing/Advanced
Technology Development and Mitigation Program. This research is part of the Blue Waters sustained-
petascale computing project, which is supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the State of Illinois. Blue Waters is a joint effort of the University
of Illinois at Urbana–Champaign and its National Center for Supercomputing Applications. This
research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-00OR22725.
†Department of Computer Science, University of Illinois at Urbana–Champaign, Urbana, IL 61801

(areisne2@illinois.edu, lukeo@illinois.edu).
‡Applied Mathematics and Plasma Physics, Los Alamos National Laboratory, Los Alamos, NM

87544 (moulton@lanl.gov).

C581

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://www.siam.org/journals/sisc/40-4/M114644.html
mailto:areisne2@illinois.edu
mailto:lukeo@illinois.edu
mailto:moulton@lanl.gov


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C582 A. REISNER, L. N. OLSON, AND J. D. MOULTON

multigrid methods, such as black box multigrid (BoxMG) [10, 11], take advantage of
direct memory addressing and fixed stencil patterns throughout the multigrid hierar-
chy to realize a 10× speed-up over AMG for heterogeneous diffusion problems [24].
In addition, the communication patterns in a parallel BoxMG solve are fixed and pre-
dictable throughout the multigrid hierarchy. Here we explore using this information
to improve the parallel scalability and performance of elliptic solves for problems with
structure.

The meshing strategy used in the discretization of a PDE has a significant impact
on the amount of structure that can be exploited by the solver. For example, single-
block locally structured grids can be mapped to conform to smooth nonplanar geome-
tries [9] and can use embedded boundary discretization techniques to add additional
flexibility to the representation of object boundaries. Robust structured variational
methods, such as BoxMG, are directly applicable to these cases. In contrast, fully
unstructured grids can capture very complex geometries, including nonsmooth fea-
tures over a range of scales, but demand general algebraic multilevel solvers, such as
AMG or smoothed aggregation AMG. The needs of many applications lie between
these extremes, and a variety of adaptive or multimesh strategies have been devel-
oped to preserve structure and enable its use in the discretization and solver. These
approaches generally lead to specialized hybrid solvers, favoring structured techniques
at higher levels of refinement and unstructured techniques below a suitably chosen
coarse level [32, 15]. In [15], memory efficient matrix-free geometric methods are used
on fine levels with hybrid hierarchical grids to solve a problem reaching 1.1 × 1013

degrees of freedom (dof). While these hybrid solvers present a variety of challenges,
a single-block logically structured solver is a critical component of their design and
performance.

A common approach to parallel multigrid solvers for PDEs is to partition the
spatial domain across available processor cores. However, on coarser levels, the local
problem size decreases and the communication cost begins to impact parallel perfor-
mance. A natural approach to alleviate this problem is to gather the coarsest problem
to a single processor (or redundantly to all the processors) and to solve it with a serial
multigrid cycle. This approach was first motivated by a performance model of early
distributed memory clusters [17] where core counts were quite small, and it was used
in the initial version of parallel BoxMG. Unfortunately, as the weak scaling study in
Figure 1 shows, this approach scales linearly with the number of cores and hence is
not practical for modern systems. A modification of this approach that gathers the
coarse problem to a multicore node [28], and then leverages OpenMP threading on
that node, improves the performance but does not address the scaling. This chal-
lenge of reducing communication costs at coarser levels is even more acute in AMG
methods, and this led to exploration of agglomeration to redundant coarse problems
at higher levels [3], as well as redistribution of smaller portions of the coarse problem
to enhance scalability [14], leading to approximately 2× speedup in the solve phase.

An alternative to this two-level gather-to-one approach is a more conservative
redistribution strategy that can be applied recursively as the problem is coarsened.
In single-block structured solvers, the decision to redistribute data is driven by bal-
ancing communication costs in relaxation with diminishing local work. This approach
was first considered in a structured setting [35] and used a heuristic to guide recursive
application of nearest neighbor agglomeration. Later, in the Los Alamos AMG solver,
a heuristic was developed to guide the reduction of the number of active cores at each
level by a power of two [21]. In [13], agglomeration is performed on a per-process
basis in AMG. When the number of unknowns on a process falls below a specified

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C583

32 128 512 2048 8192
Cores

10−1

100

101
T

im
e

(s
)

Rectangular local problem

Square local problem

Fig. 1. Weak scaling on Blue Waters for a local problem size of 568 × 71 (rectangular) and
200× 200 (square) using V (2, 1)-cycles with a gather-to-one serial BoxMG coarse-grid solver.

threshold, the process donates their local problem to their neighbor with the fewest
unknowns. Hierarchical agglomeration is performed for hierarchical distributed grids
in [30] beginning with the coarse problem on one process and performing incremental
refinement of the processor grid. In [31], uniform agglomeration is used to minimize
communication costs during geometric coarsening. The necessity of processor agg-
lomeration at scale was noted in [25]—motivating the addition of an agglomeration
framework in PETSc. While manual specification of agglomeration is required, per-
formance model guided agglomeration is proposed as future work. While these works
use recursive agglomeration to address parallel scalability of coarse-grid problems,
they use fixed agglomeration strategies and do not explore optimizing agglomeration
through predictive performance models.

In this paper, an optimized redistribution algorithm is proposed for robust struc-
tured multigrid methods that balances the computation and communication costs at
each level. The structured setting enables the enumeration of possible coarse-grid
configurations, and a performance model is developed to support optimization of the
coarsening path that is selected through these configurations. The utility of this app-
roach is demonstrated through scaling studies extending beyond 100K cores on two
modern supercomputers.

The remainder of this paper is organized as follows. Section 2 highlights relevant
features of robust variational multigrid methods, examines the domain decomposi-
tion implementation in BoxMG, and proposes a redistribution algorithm that can be
applied recursively. The performance model for this parallel algorithm with redis-
tribution is developed in section 3, and the optimization algorithm is presented in
section 4. Scaling studies are presented in section 5 demonstrating the efficacy of the
proposed method, and section 6 gives conclusions.

2. Robust variational multigrid on structured grids. In the case of a sym-
metric, positive definite matrix problem, a Galerkin (variational) coarse-grid operator

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C584 A. REISNER, L. N. OLSON, AND J. D. MOULTON

is effective in defining the coarse-level problems because it minimizes the error in the
range of interpolation [7]. This variational operator is formed as the triple matrix
product of the restriction (transpose of interpolation), the fine-grid operator, and
the interpolation, making it well suited for black box and algebraic multilevel solver
algorithms. In the case of structured grids, the complexity of the coarse-grid operators
is bounded, and the stencil pattern can be fixed a priori.

However, in this approach, the interpolation must be sufficiently accurate to
ensure the variational coarse-grid operator satisfies the approximation property [34].
For example, in two-dimensional (2D) diffusion problems with discontinuous coeffi-
cients, bilinear interpolation is not accurate across discontinuities because the gradient
of the solution is not continuous. Thus, a key element in robust multigrid methods
is operator-induced interpolation [8, 34], which uses the matrix problem to construct
intergrid transfer operators. In the case of structured grid problems, operator-induced
interpolation is naturally motivated by noting the normal component of the flux is
continuous [10], and its impact on the properties of the variational coarse-grid oper-
ator is understood through its connection to homogenization [27, 23]. This approach
has natural extensions to nonsymmetric problems as well [11, 36].

Robust methods also require careful consideration of the smoothing operator.
Although Gauss–Seidel is effective for many problems, anisotropy often demands alt-
ernating line smoothing or plane smoothing [8, 34]. With coarse-grid operators and
interpolation defined, a standard multigrid cycling is used, for example, a V-cycle as
in Algorithm 1.

Algorithm 1: Multilevel V-cycle

Input: uL−1 fine-grid initial guess
fL−1 fine-grid right-hand side
A0, . . . , AL−1

P1, . . . , PL−1

Output: uL−1 fine-grid iterative solution

1 for l = L− 1, . . . , 1 do
2 relax(Al, ul, fl, ν1) {relax ν1 times}

3 rl = fl −Alul {compute residual}

4 fl−1 = PTl rl {restrict residual}

5 u0 = solve(A0, f0) {coarse-grid direct solve}

6 for l = 1, . . . , L− 1 do
7 ul = ul + Plul−1 {interpolate and correct}

8 relax(Al, ul, fl, ν2) {relax ν2 times}

In this paper, interpolation and coarse-grid operators are constructed using the
implementation in BoxMG [1, 10, 27] with standard coarsening by a factor of 2;
however, the approach applies to any structured method. BoxMG is used because its
operator-induced interpolation is designed to handle discontinuous coefficients, and
additional heuristics ensure optimal performance for Dirichlet, Neumann, and Robin
boundary conditions on logically structured grids of any dimension (i.e., it is not
restricted to grids 2k + 1). BoxMG supports vertex- and cell-based discretizations
of the diffusion equation on logically structured grids that lead to nearest neighbor
stencils (i.e., five- and nine-point operators in two dimensions). In addition, only

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C585

Fig. 2. Domain partition. Circles represent dof, with denoting points on process k, repre-
senting halo points needed for communication from other processors, and points on other proces-
sors. Fictitious points on the domain boundary are denoted by .

the fine-grid problem is specified; coarse-grid operators are constructed through the
variational (Galerkin) product. The package is also released as open source in the
Cedar Project [26].

2.1. Domain decomposition parallel implementation. The distributed me-
mory parallel implementation of BoxMG divides the problem domain among available
processors. The processors are arranged in a structured grid and points in the fine-
grid problem are divided among processors in each dimension—see Figure 2. Since
the computation is structured, interprocess communication occurs through nearest
neighbor halo updates with a halo width of 1. An important feature of BoxMG is
bounded complexity in the coarse-grid operator. By exploiting the structure of the
problem, BoxMG produces coarse-grid problems with a fixed structure. This results
in known communication patterns and guaranteed data locality.

Examining the distributed memory parallel implementation of BoxMG in the
context of parallel scalability, many of the operations are stencil based computations
with halo updates. Since the operations are relatively local, they are not expected to
significantly limit parallel scalability. For this paper, the particular focus is in parallel
decisions at coarse grids. To balance useful local work with communication costs,
agglomeration methods are used to redistribute coarse problems. A straightforward
approach is agglomeration to one task. This task is then mapped either to a single
processor or to all processors redundantly. This method of agglomeration was used
in the initial distributed memory implementation of BoxMG; while effective for low
processor counts it suffers at scale since the global coarse problem grows linearly with
the number of processors. As seen in Figure 1, this is especially true with rectangular
local problems for which the coarsest local problem size is larger, and hence, the linear
growth is faster and overall parallel scaling is lower. In addition to agglomerating to
one task, the coarse problem can be redistributed by agglomerating to n tasks, where n
is less than the number of processors. The problem then becomes choosing a desirable
value of n which is dependent on the problem distribution on the processor grid. This
agglomeration can be applied recursively to gradually reduce the size of the processor
grid as the size of the global coarse-grid problem is reduced.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C586 A. REISNER, L. N. OLSON, AND J. D. MOULTON

0 1 2 3

4 5 6 7

8 9 a b

c d e f

0 1 2 3

4 5 6 7

8 9 a b

c d e f

Agglomerate

G
at
he
r

0 1

4 5

2 3

6 7

8 9

c d

a b

e f

0 1 2 3

4 5 6 7

8 9 a b

c d e f

Cycle

Scatter

Fig. 3. A redistribution of a 4× 4 processor grid to 2× 2 processor blocks. The boxes represent
the processing elements and the circles represent their respective coarse-grid local problems.

2.2. Redistribution. To extend parallel coarsening in a structured setting, the
algorithm introduced in this paper aims to redistribute the coarse-grid problem to
an incrementally smaller subset of processors. Parallel coarsening continues until a
parameterized minimum local problem size is reached. At this point, a set of possible
redistributions is enumerated. Here, a redistribution is given by (p0, p1, . . . , pD−1),
where pk is the number of processors in space direction k. These redistributions are
evaluated based on a cost derived through a performance model. An optimal redis-
tribution sequence is then selected. It is important to note that since a redistributed
problem on a given level also limits parallel coarsening, the selection algorithm is
designed to be applied recursively to obtain the highest efficiency possible for the
multigrid cycle. Section 4.1 discusses the redistribution of a grid of processors to
coarser processor grids.

To redistribute the coarse-grid problem on a smaller number of processors, the
processor grid is agglomerated into processor blocks. This agglomeration is performed
by dimension to maintain a distributed tensor-product grid structure. Each processor
block is then mapped to one task in the redistributed solver.

To map the coarse tasks to processors, two approaches are considered. The first
approach uses one processor from each processor block. This is visualized in Figure 3,
where the following steps are taken:

1. Agglomerate: processors grouped into blocks to define coarse tasks.
2. Gather : processors within each block perform gather on coarse problem.
3. Cycle: cycling continues with redistributed problem.
4. Scatter : iterative solution scattered after redistributed cycle completes.

The second approach employs redundancy by mapping each processor in the processor
block to the coarse task. This is visualized in Figure 4 with the following steps:

1. Agglomerate: processors grouped into blocks to define coarse tasks.
2. Allgather : processors within each block perform allgather on coarse problem.
3. Cycle: cycling continues redundantly with redistributed problem.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C587

0 1 2 3

4 5 6 7

8 9 a b

c d e f

0 1 2 3

4 5 6 7

8 9 a b

c d e f

Agglomerate

A
llg
at
he
r

0 1

4 5

0 1

4 5

0 1

4 5

0 1

4 5

2 3

6 7

2 3

6 7

2 3

6 7

2 3

6 7

8 9

c d

8 9

c d

8 9

c d

8 9

c d

a b

e f

a b

e f

a b

e f

a b

e f

0 1 2 3

4 5 6 7

8 9 a b

c d e f

×4
Redundant Cycle

Fig. 4. A redundant redistribution of a 4 × 4 processor grid to 2 × 2 processor blocks. The
boxes represent the processing elements and the circles represent their respective coarse-grid local
problems.

While the second approach avoids an additional communication phase at the end
of each cycle and adds an opportunity for resilience through redundant cycling, the
first approach avoids the increased network usage involved in simultaneous coarse
cycles. Algorithm 2 supplements Algorithm 1 with steps needed for redistribution.
The algorithm is annotated with parallel communication required for each step.

3. Performance model. In this section, a performance model is introduced
for the BoxMG V-cycle (see Algorithm 2). The model helps identify the parallel
performance limitations of the V-cycle, particularly at coarse levels in the multigrid
hierarchy, and also provides a cost metric that is used to guide the coarse-level redis-
tribution algorithm introduced in section 4.

A key kernel in the V-cycle is that of matrix-vector multiplication. Since the
stencil-based computations for this operation are relatively uniform, the cost of paral-
lel communication in matrix-vector multiplication is accurately modeled with a postal
model [4], leading to a total cost of

(1) T = nf · γ︸ ︷︷ ︸
computation

+ α+m · β︸ ︷︷ ︸
communication

with nf denoting the number of floating point operations, γ a measure of the com-
putation rate or inverse effective FLOP rate, α the interprocessor latency, 1/β the
network bandwidth, and m the number of bytes in an MPI message. The value γ
is determined by measuring the computation time of a local stencil-based matrix-
vector product, which is a memory bandwidth bound operation. The values α and
β are determined through standard machine benchmarks such as mpptest.1 As an
example, the parameters derived for a nine-point 2D stencil on Blue Waters, a Cray

1http://www.mcs.anl.gov/research/projects/mpi/mpptest/.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://www.mcs.anl.gov/research/projects/mpi/mpptest/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C588 A. REISNER, L. N. OLSON, AND J. D. MOULTON

Algorithm 2: Multilevel V-cycle with redistribution

Input: uL−1 fine-grid initial guess
fL−1 fine-grid right-hand side
A0, . . . , AL−1

P1, . . . , PL−1

p0, . . . , pL−1 number of processors on each level

Output: uL−1 fine-grid iterative solution

1 for l = L− 1, . . . , 1 do
2 relax(Al, ul, fl, ν1) {halo exchange}

3 rl = fl −Alul {halo exchange}

4 fl−1 = PTl rl
5 if pl > pl−1

6 gather rhs(fl−1, pl, pl−1) {local gather}

7 u0 = solve(A0, f0)
8 for l = 1, . . . , L− 1 do
9 if pl > pl−1

10 scatter sol(ul−1, pl, pl−1) {local scatter}

11 ul = ul + Plul−1 {halo exchange}

12 relax(Al, ul, fl, ν2) {halo exchange}

Table 1
Model parameters on Blue Waters.

α β γ

0.65 µs 5.65 ns/B 0.44 ns/flop

XE6 machine at the National Center for Supercomputing Applications,2 are listed in
Table 1. A more accurate model for communication may be used, particularly for
multiple communicating cores with large message sizes [18] or to account for network
contention [6], which may play a prominent role in communication.

In an L-level multigrid V-cycle, Algorithm 1 is modeled through

(2) TV-cycle = Tcgsolve +

L−1∑
l=1

T lsmooth + T lresidual + T lrestrict + T linterp + T lagglomerate.

In the following expressions, each component of (2) represents the time taken in
the actual implementation in BoxMG and does not necessarily form a lower bound
on each portion of the computation. In the model parameters below, D denotes the
number of dimensions in the problem, nld the number of local grid points in dimension
d on level l, and ns the number of points in the stencil. Grid quantities involved in
communication and computation are assumed to be 8-byte double-precision floating
point numbers. The dimension of the parallel decomposition is also assumed to match
the dimension of the problem. The communication required for a halo exchange of

2https://bluewaters.ncsa.illinois.edu/blue-waters.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://bluewaters.ncsa.illinois.edu/blue-waters


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C589

width 1 in D dimensions on level l is modeled as

(3) T lexchange(D) = 2 ·D · α+ 2 ·
D−1∑
d=0

nld · 8 · β.

Smoothing, using Gauss–Seidel with nc colors, results in

(4) T lsmooth = 2 · ns ·
D−1∏
d=0

nld · (ν1 + ν2) · γ + nc · (ν1 + ν2) · T lexchange(D),

where the factor of 2 accounts for both multiply and addition operations. Likewise,
the residual computation is

(5) T lresidual = 2 · ns ·
D−1∏
d=0

nld · γ + T lexchange(D).

Since it is unnecessary to communicate halo regions in restriction, the computation
is entirely local, leading to

(6) T lrestrict = 2 · ns ·
D−1∏
d=0

nld · γ.

Following [12], the interpolation and correction computes

ul ← ul + I ll−1u
l−1 + rl/C,(7)

where rl is the previously computed residual and C is the center, diagonal stencil
coefficient of the operator. Interpolation for edges (see Figure 5) yields

ul ← ul + ωwu
l−1
w + ωeu

l−1
e + rl/C︸ ︷︷ ︸

5FLOPs

(8)

for the x-direction (and similar for the y-direction). Likewise, the interior stencil (see
Figure 5) yields

ul ← ul + ωswu
l−1
sw + ωseu

l−1
se + ωnwu

l−1
nw + ωneu

l−1
ne + rl/C︸ ︷︷ ︸

9FLOPs

.(9)

Here interpolation is given as weights stored at the coarse points. For example, the
interpolation stencil stored at a given coarse point isωnw ωn ωne

ωw ωe

ωsw ωs ωse

 .
In total (with injection), interpolation in two dimensions is modeled as

(10) T linterp =

(
1∏
d=0

nld + 20 ·
1∏
d=0

nl−1
d + 6 ·

1∑
d=0

nl−1
d

)
· γ + T lexchange(2).

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C590 A. REISNER, L. N. OLSON, AND J. D. MOULTON

(a)

ωeωw

active coarse point

previously updated
coarse point

active fine point
(on coarse line)

active fine point
(cell center)(b)

ωn

ωs

(c)

ωn

ωeωw

ωs

ωseωsw

ωnw ωne

Fig. 5. Interpolation computation in two dimensions. (a) The top two grids show computation
performed on the first coarse line in the first dimension. (b) Similarly, the middle two grids show
computation performed on the first coarse line in the second dimension. Each coarse point performs
injection to the corresponding fine point. Interpolation to the preceding fine point embedded in the
coarse line is then computed using the surrounding coarse points. (c) The bottom three grids show
computation performed for interior coarse points. For each coarse point, the corresponding fine
point is injected. The preceding coarse points in each dimension are then interpolated. Finally, the
logical cell center preceding the coarse point is interpolated using the surrounding coarse points.

Using a similar derivation, interpolation in three dimensions is

T linterp =

(
2∏
d=0

nld + 60 ·
2∏
d=0

nl−1
d + 15 · nl−1

0 · nl−1
2 + 6 · nl−1

1 · nl−1
2 + nl−1

2

)
· γ

+ T lexchange(3).

(11)

To agglomerate the coarse problem, the right-hand side is gathered within processor
blocks before the redistributed cycle begins and approximate solution scattered after
the redistributed cycle completes. This time is then given by

(12) T lagglomerate =

{
T lgather rhs + T lscatter sol if pl > pl−1,

0 else,

where T lgather rhs and T lscatter sol represent the time to gather and scatter the right-
hand side and solution, as follows. The number of processors within a processor block
and the local problem size for a processor in a processor block are given as

plblock =

D−1∏
d=0

⌈
pl+1
d

pld

⌉
, nlblock =

D−1∏
d=0

⌈
N l
d

pld

⌉
.

For this operation, an MPI allgather or gather/scatter is used depending on
whether the redistribution is redundant. Following [33], the cost of these collective

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C591

operations is given by

(13) T lgather rhs = dlog2(plblock)e · α+ nlblock ·
plblock − 1

plblock

· 8β,

(14) T lscatter sol =

{
0 if redundant,

T lgather rhs else.

Finally, the time for the solve on the very coarsest level after agglomerating to
one processor is the cost of a Cholesky direct solve:

(15) Tcgsolve = T 0
agglomerate +

(
D−1∏
d=0

N0
d

)2

· γ.

This assumes the Cholesky factorization has been computed and stored in the setup
phase.

This performance model provides a basic predictive model to begin exploring
the guided redistribution algorithm proposed in this paper. In contrast to [16, 15],
the performance model in the present work is used to provide an estimate of the
communication and computation costs involved in the multigrid solve phase that can
be used to predict the impact of different coarse-grid redistribution options on the
overall solve time.

4. Optimized parallel redistribution algorithm.

4.1. Coarse processor grid enumeration. To enumerate potential redistri-
butions, the fine-grid tasks described by the processor grid are agglomerated into
coarser tasks called processor blocks. In agglomerating by dimension, the processor
blocks form a coarser tensor product grid. The potential redistributions are enumer-
ated by beginning with a 1 × 1 processor block and refining greedily by dimension
with respect to the agglomerated local problem size.

Figure 6 illustrates this process. A dimension is considered for refinement if the
refinement is feasible. A refinement is feasible if the number of processor blocks in
that dimension after refinement is less than or equal to the initial fine-grid task size
in that dimension. If refinements in multiple dimensions are feasible, the dimension
with the largest agglomerated local problem size is chosen. As refinement is chosen
in each step by dimension, the number of enumerated processor blocks is bounded by
dlog2 npe using a refinement factor of 2.

Table 2 illustrates this enumeration strategy using a 16 × 8 initial fine-grid task
fine size. This refinement procedure is used to limit the number of potential redistri-
butions, thereby making the global search feasible within the setup phase.

4.2. Redistribution search. The recursive enumeration of coarse processor
grids generates a search space of possible redistributions. To find an optimal redis-
tribution, a state in the search space is given by the size of the processor grid and
the size of the coarse-grid associated with a distributed solver. The search space can
be viewed as a directed graph—an example is given in Figure 7. The initial state is
given by the top-level distributed solver and the goal state is the state with a 1 × 1
processor grid (in the case of a 2D problem). State transitions have varying costs; the
goal is an inexpensive path from the initial state to the goal state.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C592 A. REISNER, L. N. OLSON, AND J. D. MOULTON

1 x 1

1 x 2

1 x 4

2 x 1

4 x 1

2 x 2

41 2

(a) Processor grid refinement by a factor
of 2.

8

1 2 4

1 1 2

1

(b) All possible redistributions for 8 pro-
cessors.

Fig. 6. (a) Processor grid refinement by a factor of 2. The dimension chosen for refinement in
each step depends on the agglomerated local problem size. (b) A tree of all possible redistributions
with an initial processor grid containing eight processors. Nodes in the tree represent the number
of processors in the redistribution. Redistributions are enumerated on each level of the tree using
refinement by dimension recursively.

Table 2
Example redistribution enumeration using a fine-grid problem of 9088× 568 dof with a 16× 8

processor grid. The global coarse-grid considered for agglomeration contains 1136 × 71 dof. After
step 4 refinement in the first dimension is infeasible.

Step Redistribution Agglomerated local problem

1 1× 1 1136× 71
2 2× 1 568× 71
3 4× 1 284× 71
4 8× 1 142× 71
5 16× 1 71× 71
6 16× 2 71× 36
7 16× 4 71× 18

To search the state space, a path cost function is defined as

(16) f(s) = g(s) + h(s),

where s is a vertex or state in the graph in Figure 7, g is the cost to reach s from
the initial state, and h is an estimate of the cost to reach the goal state from state s.
That is, g(s) represents the time predicted by the performance model for a solve phase
executed down to coarse-grid state s. For the heuristic function h(s), a weighted
combination of the coarse-grid problem and the processor grid size is used to predict
the cost. If the performance model is an accurate predictive model, an inexpensive
path from the initial state to the goal state will identify a redistributed solver with an
efficient run time. With the path cost function defined, the space of redistributions
is searched for an optimal path. This is performed in the MG setup phase to dictate
agglomeration when a coarsening limit is reached. Using a brute force approach by

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C593

proc grid
coarse grid

16 x 8
1136 x 71

16 x 2
284 x 18

4 x 1
71 x 5

16 x 1
142 x 9

16 x 4
568 x 36

1 x 1
71 x 5

2 x 1
71 x 5

8 x 1
71 x 5

Fig. 7. Example redistribution search space: The fine-grid global problem is 9088×568 dof with
a 16× 8 processor grid, yielding a fine-grid local problem of 568× 71. The optimal path through this
redistribution space is highlighted.

searching every path for the best redistribution strategy incurs an O(np) cost, since
the redistribution search space is constructed recursively. To show this, we let d =
dlog2(np)e and consider building a tree of possible redistributions (see Figure 6(b)).
We let a node in the tree represent the total number of processors for a given processor
grid. Building this tree recursively using the above processor grid enumeration results
in the equation for the number of possible redistributions

(17) R(d) =

d−1∑
k=0

R(k) + 1,

as the immediate children of a node include the powers of two up to but not including
np. Using induction, we wish to show R(d) = 2d − 1. For the base case, we have
R(0) = 0 = 20 − 1. Assuming R(d) = 2d − 1, we find

R(d+ 1) =

d∑
k=0

R(k) + 1

= (R(d) + 1) +

d−1∑
k=0

R(k) + 1

=
(
(2d − 1) + 1

)
+
(
2d − 1

)
= 2d + 2d − 1

= 2d+1 − 1;

this leads to R(d) = 2d − 1 = 2log2(np) − 1 = np − 1.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C594 A. REISNER, L. N. OLSON, AND J. D. MOULTON

2 8 32 128 512 2048 8192 32768 131072
Cores

10−3

10−2

10−1

100

101
T

im
e

(s
)

Brute Force

A*

O(log2(np))

O(np)

Fig. 8. Performance of redistribution search algorithms weak scaling with local problem size
568× 71. np denotes the number of cores.

To address the O(np) cost, the A* algorithm [20] is used to determine the optimal
path. While the worst case complexity for A* is O(np) for this search, the cost with
an optimal heuristic with evaluation cost O(1) is the length of the solution path. The
length of this path in the redistribution search is O(log2(np)). Figure 8 shows the A*
heuristic is effective in avoiding the brute force cost but does not reach the optimal
cost.

5. Experimental results. To explore the performance of the proposed redis-
tribution algorithm a standard five-point finite volume discretization of the diffusion
equation is used. Since square problems may lead to a natural or predictable red-
istribution path, rectangular local problems are used in order to fully stress the redis-
tribution algorithm in a weak scaling study. In particular, the ratio of processors in
the processor grid is fixed at 2 : 1, and the ratio of unknowns in the fine-grid local
problem is fixed at 8 : 1. Other processor grid ratios lead to similar findings.

Note that for an isotropic diffusion problem this grid stretching results in anisot-
ropy in the discrete problem, causing the convergence of the solver to deteriorate when
using pointwise smoothing. Consequently, a diffusion problem with compensating
anisotropy is defined in order to focus on the parallel scalability of the coarse-grid
redistribution algorithm (rather than the well-established convergence rate of the
multigrid algorithm itself). Specifically, the following diffusion problem is used in
these numerical experiments:

−∇ · (D∇u) = f(x, y) in Ω = (0, 1)× (0, 1) ,(18)

u = 0 on ∂Ω ,(19)

where the diffusion tensor is D = diag[ 1
r , r] and r ≈ 16. This compensating anisotropy

results in optimal convergence of multigrid V-cycles with pointwise smoothing.

5.1. Scaling studies. Both the weak and strong scalability of multigrid V-cycles
that use the proposed redistribution algorithm are important for applications on

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C595

exascale systems. Here, the discretization of the diffusion problem given above is
used for both weak and strong scaling studies and the algorithmic components of the
BoxMG multigrid library (e.g., interpolation, restriction) are used in the redistributed
multigrid V-cycles.

Since the cost of coarsening (with redistribution) and the cost of the coarse-
grid problem are dominated by parallel communication, network speed and machine
topology play an important role in timings. To explore this dependency, two different
petascale systems are considered in the scaling tests:

Mira.3 An IBM Blue Gene/Q system at Argonne National Laboratory. Mira
uses an IBM network which comprises a 5D torus with 49,152 compute
nodes using PowerPC A2 processors. Each compute node and Mira
has a shared cache size of 32MB.

Blue Waters.4 A Cray XE system at the National Center for Supercomputing App-
lications (NCSA) at the University of Illinois at Urbana–Champaign.
Blue Waters employs a 3D torus using a Cray Gemini interconnect
and has 22,640 XE compute nodes each with two AMD Interlagos
processors. Each XE compute node has a total cache size of 32MB,
with a 16MB L3 cache for each socket.

In each case, the machine parameters used in the performance model of section 3 are
determined using the beff benchmark [29].

Weak scalability. In this section, a weak scaling study is conducted to highlight
the scalability of the redistribution algorithm at large core counts. For the numerical
experiments below, 10 V(2,1)-cycles are executed using two different local problem
sizes: 568 × 71 =40,328 and 288 × 36 =10,368. We observed an average geometric
convergence factor of 0.1 for these runs with the largest error norm being approxi-
mately 10−10. The memory footprint for these two local problems was approximately
7MB per core for the 40k local problem size, and 1.8 MB per core for the 10k local
problem size. For both machines, the per-core cache size when using 16 cores on each
node is 2MB.

Figures 9 and 10 show the run times on Mira of various computational kernels in
the multigrid solve phase. The “solve” line shows the time of the entire solve phase and
includes the other timings. The “redistribution” line shows communication needed to
redistribute coarse problems. This communication is low in comparison to the cost of
relaxation. Overall, the algorithm exhibits high parallel scalability in the solve time
for both local problem sizes on Mira.

With different network capacities, redundant redistribution (see section 2.2) may
not yield the lowest communication costs. Indeed, the results in Figure 11 for the Blue
Waters system show that while redundant redistribution of the data at course levels
is inexpensive, the network contention introduced by redundant cycling contributes
to an increase in communication at high core counts. This suggests that triggering
redundancy on a per-level basis could lead to reduced costs. In contrast, nonredundant
redistribution (in Figure 11) exhibits high scalability—thus, it is used for the following
runs on Blue Waters.

Figures 12 and 13 show run times on Blue Waters for the multigrid solve phase,
highlighting that the proposed algorithm achieves good parallel scalability here as
well. However, comparing runs on the two machines, it is apparent that the weak
scalability is superior on Mira. This is in part attributed to the network capabilities

3https://www.alcf.anl.gov/mira.
4https://bluewaters.ncsa.illinois.edu/blue-waters.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://www.alcf.anl.gov/mira
https://bluewaters.ncsa.illinois.edu/blue-waters


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C596 A. REISNER, L. N. OLSON, AND J. D. MOULTON

32 128 512
2048

8192
32768

131072
524288

Cores

10−4

10−3

10−2

10−1

100
T

im
e

(s
)

87% 79% 75% 71%
60% 62% 58% interpolation

residual

redistribution

restriction

coarse-solve

solve

smoothing

Fig. 9. Weak scaling on Mira with local problem size 568 × 71. The parallel efficiency (%)
relative to 32 cores for the overall solve is shown for each data point.

32 128 512
2048

8192
32768

131072
524288

Cores

10−4

10−3

10−2

10−1

100

T
im

e
(s

)

78% 67% 59% 54%
44% 44% 40%

interpolation

residual

redistribution

restriction

coarse-solve

solve

smoothing

Fig. 10. Weak scaling on Mira with local problem size 288 × 36. The parallel efficiency (%)
relative to 32 cores for the overall solve is shown for each data point.

and scheduling differences of the two machines, noting that communication is included
in these measurements (see Figure 14). Jobs on Mira receive a dedicated, full torus
partition of the machine, which often reduces contention resulting from neighboring
jobs on the machine, since partitions receive a full torus network. Moreover, the lower
dimensional 3D torus on Blue Waters also contributes to an increase in contention
within the running job.

Nevertheless, on Blue Waters communication cost for redistribution remains rel-
atively low in comparison to smoothing, which remains the dominant kernel in the
overall solve. Figure 14 decomposes the cost of smoothing into communication and
computation. This decomposition indicates that the communication cost of the halo
exchange is the primary contributor to the reduced scalability.

In contrast to the network advantages of Mira, lower floating point performance
is observed for the key computational kernels on Mira than on Blue Waters. This

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C597

32 128 512
2048

8192
32768

131072

Cores

10−4

10−3

10−2

10−1

100
T

im
e

(s
)

redistribution

redundant redistribution

solve

redundant solve

Fig. 11. Weak scaling on Blue Waters with local problem size 288 × 36 shows the significant
improvement of nonredundant redistribution compared to redundant redistribution beyond 8192 cores.

32 128 512
2048

8192
32768

131072

Cores

10−4

10−3

10−2

10−1

100

T
im

e
(s

)

69% 60% 54% 46% 39%
30%

interpolation

residual

redistribution

restriction

coarse-solve

solve

smoothing

Fig. 12. Weak scaling on Blue Waters with local problem size 568× 71. The parallel efficiency
(%) relative to 32 cores for the overall solve is shown for each data point.

difference, combined with an extra core dedicated to operating system functions,
yields more predictable performance and superior scaling behavior on Mira. This is
also observed for a variety of applications [22]: loss in performance on the Cray XE6
in comparison to BG/Q systems as the core count increases. However, with the data
locality and fixed communication patterns of the algorithm, the network performance
on Blue Waters is good enough to let its superior floating performance yield the best
time to solution, solving approximately 2.5 times faster at 131K cores.

Strong scalability. Turning to strong scalability, an isotropic model diffusion
problem is set up on a 3200 × 3200 grid and then executed on a sequence of square
processor grids. The number of cores in each coordinate direction is successively
doubled from 8 to 128, to create a range of core counts from 64 to 16,384, with a
corresponding local problem size ranging from 160,000 to 625 dof. The strong scaling
performance for Blue Waters is shown in Figure 15. Here, the strong scaling limit is
reached at 1024 cores which is equivalently 10K dof per core. The parallel efficiency

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C598 A. REISNER, L. N. OLSON, AND J. D. MOULTON

32 128 512
2048

8192
32768

131072

Cores

10−4

10−3

10−2

10−1

100
T

im
e

(s
)

53%
42%

35%
27% 24%

19%

interpolation

residual

redistribution

restriction

coarse-solve

solve

smoothing

Fig. 13. Weak scaling on Blue Waters with local problem size 288× 36. The parallel efficiency
(%) relative to 32 cores for the overall solve is shown for each data point.

32 128 512
2048

8192
32768

131072

Cores

10−4

10−3

10−2

10−1

100

T
im

e
(s

)

communication

model communication

computation

model computation

Fig. 14. Weak scaling of smoothing routine on Blue Waters with local problem size 568× 71.

relative to 64 cores drops from 125% to 53% from 256 cores to 1024 cores and then to
13% at 4096 cores. This scaling limit is consistent with other performance assessments
of multilevel solvers in application codes (e.g., [19, 32]). Superlinear speedup is also
observed with a parallel efficiency of 125% as the fine-grid problem is able to fit in
cache at 256 cores.

The computational cost of the solve is again dominated by smoothing and scaling
is limited by communication, as supported in Figure 16 by the performance model
of section 3. The steady reduction in computation cost due to a decreasing local
problem size is not reflected in the near constant communication cost. The com-
munication cost is expected to be reduced at a slower rate than computation since
the size of the halo region is proportional to the surface area of the local problem.
The performance model is reasonably accurate, although the slowly increasing und-
erestimation of the communication cost suggests that further investigation of more
advanced topology-aware performance models [18] may be worthwhile. In addition,
increased network utilization at higher core counts may also contribute to the overes-
timation. Often a hybrid Gauss–Seidel Jacobi sweep is used to limit communication

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C599

64 256 1024 4096 16384
Cores

10−4

10−3

10−2

10−1

100
T

im
e

(s
)

125%

53% 13% 2%

interpolation

residual

redistribution

restriction

coarse solve

solve

smoothing

Fig. 15. Strong scaling on Blue Waters with problem size 3200× 3200. The parallel efficiency
(%) relative to 64 cores for the overall solve is shown for each data point.

64 256 1024 4096 16384
Cores

10−4

10−3

10−2

10−1

100

T
im

e
(s

)

communication

model communication

computation

model computation

Fig. 16. Strong scaling of smoothing routine on Blue Waters with problem size 3200× 3200.

to once per relaxation sweep [3]. This improves the cycle’s strong scaling behavior but
may slow convergence. Here, the focus is on redistribution and the impact of commu-
nication is highlighted with a strict implementation of four-color Gauss–Seidel, which
results in four halo exchanges per relaxation sweep. The granularity of the compo-
nent timers is such that the residual and interpolation operations each include a single
halo exchange. This leads to strong scaling curves for these operations that are very
similar to smoothing but much faster in absolute terms.

In contrast, the restriction has no communication and would exhibit perfect strong
scaling in the absence of redistribution. With redistribution fewer cores are used at
coarser levels, and strong scaling begins to degrade at 2.5K dof per core, although
speedup is still realized even at 625 dof per core. This observation highlights the
complexity of trade-offs in multilevel algorithms on modern systems and the important
role of performance models in design and run time optimization.

5.2. Extension to three dimensions. This approach was extended naturally
to three dimensions. Following the 2D results, the ratio of processors in the pro-
cessor grid was fixed at 2 : 2 : 1. We considered two local problem sizes, one with

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C600 A. REISNER, L. N. OLSON, AND J. D. MOULTON

256 2048 16384 131072
Cores

10−4

10−3

10−2

10−1

100
T

im
e

(s
)

75%
60%

21%

interpolation

residual

redistribution

restriction

solve

smoothing

fine-level smoothing

Fig. 17. Weak scaling on Blue Waters with local problem size 52 × 28 × 28. The parallel
efficiency (%) relative to 256 cores for the overall solve is shown for each data point.

256 2048 16384 131072
Cores

10−2

10−1

100

101

T
im

e
(s

)

91% 83%
63%

interpolation

residual

redistribution

restriction

coarse-solve

solve

smoothing

Fig. 18. Weak scaling on Blue Waters with local problem size 260 × 140 × 140. The parallel
efficiency (%) relative to 256 cores for the overall solve is shown for each data point.

approximately 40k unknowns per core and one with approximately 5M unknowns
per core. The memory footprint was approximately 14MB per core for the 40k local
problem size and 1.7GB per core for the 5M local problem size. Figure 17 shows
weak scaling on Blue Waters. These results are similar to the 2D results as they have
similar computation and communication requirements. The increased communica-
tion involved in a 3D halo exchange may account for the decreased parallel efficiency
relative to the 2D results. In two dimensions, we also customized the rank ordering
on Blue Waters to match the topology of the machine. This resulted in improved
performance, especially at higher core counts.

Figure 18 shows weak scaling with a much larger local problem size than the
previous weak scaling results. The previous local problem sizes were chosen to be near
the strong scaling limit where communication costs dominate and weak scalability is
challenged. The local problem size chosen in Figure 18, however, better saturates the
memory on each node. Since computation dominates in this case, the weak scaling
behavior is superior. The global problem size for this case reaches 6.5×1011 degrees of

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C601

Table 3
Example redistribution paths using a 64× 32 processor grid and 568× 71 local problem size.

Path Processor grid redistribution

0 64× 32 → 1× 1
1 64× 32 → 64× 16 → 64× 8 → 64× 4 → 32× 2 → 16× 1 → 1× 1
2 64× 32 → 64× 4 → 8× 1 → 4× 1
3 64× 32 → 16× 2 → 1× 1
4 64× 32 → 64× 16 → 2× 1 → 1× 1
5 64× 32 → 4× 1 → 1× 1
6 64× 32 → 64× 16 → 4× 1 → 1× 1
7 64× 32 → 64× 16 → 64× 8 → 2× 1 → 1× 1
8 64× 32 → 2× 1 → 1× 1

freedom with an overall solve time of 20 seconds. As a reference, in [15], matrix-free
geometric methods are used on fine levels of refinement to solve a problem with
1.1× 1013 dof in under 13 minutes.

While the focus of the present work is on the scalability limitations introduced
by coarse levels, future work could consider features of emerging architectures. In
addition, a performance analysis using a target architecture [16, 15] could be used to
assess the efficiency of the solver.

5.3. Performance of optimized redistribution. To understand the impact
of the redistribution path on solve time, the 568 × 71 weak scaling problem used in
Figure 12 with 2048 processors is executed over a variety of redistribution choices.
The selected redistribution paths are listed in Table 3. Path 1 indicates the optimal
redistribution path used in Figure 12 and is selected by the algorithm from section 4.
In stark contrast to Path 1 is Path 0, which is the original all-to-one redistribution
path that is known to scale poorly. The remaining paths highlight the flexibility in
the agglomeration sequence.

The bar graph in Figure 19 compares the run times and predicted times of the
multigrid solve phase for the various redistribution paths shown in Table 3. The
predicted times are computed using the performance model from section 3 and are in
good agreement with the actual run times. Comparing the run times of Path 0 and
Path 1, this graph shows a 40 times speedup of the new redistribution strategy over
the original all-to-one strategy. In addition, Path 1 has the lowest run time of several
plausible alternatives to the all-to-one strategy. Thus, Figure 19 demonstrates the
utility of using a global search guided by a performance model as a predictive tool
for choosing optimal redistribution paths. Moreover, using this strategy to select the
redistribution path delivered effective weak parallel scaling out to 500K+ cores on
Mira and out to 132K+ cores on Blue Waters, while the original code was essentially
unusable beyond 4K cores.

6. Conclusions. Emerging architectures place an increasing importance on data
locality and minimizing data movement. In these environments, structured approaches
benefit from predictable memory access patterns and avoiding indirect addressing.
This motivates the development of methods that exploit local structure to avoid inc-
urring the performance consequences of full algebraic generality. A robust structured
single-block multigrid implementation that scales well on modern architectures is an
important step toward this goal.

In this paper, a new optimized recursive agglomeration algorithm for redistribut-
ing coarse-grid work in structured multilevel solvers is introduced. This algorithm

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C602 A. REISNER, L. N. OLSON, AND J. D. MOULTON

0 1 2 3 4 5 6 7 8
Path

10−1

100

T
im

e
(s

)
model

run

Fig. 19. Model and run times on Blue Waters of various redistribution paths using a 64 × 32
processor grid and 568× 71 local problem size.

combines a predictive performance model with a structure exploiting recursive enu-
meration of coarse processor grids to enable a global search for the optimal agglom-
eration strategy. This approach significantly improves the weak parallel scalability of
robust, structured multigrid solvers such as BoxMG. In this study using BoxMG ope-
rators, this new algorithm delivers very good weak scaling up to 524,288 cores on an
IBM BG/Q (Mira) and reasonable weak scaling up to 131,072 cores on Cray XE (Blue
Waters). The speedup over the previous all-to-one agglomeration approach is signifi-
cant even at modest core counts, 40 times speedup on just 2048 cores and 144 times
speedup on 8192 cores when comparing the data from Figures 1 and 12. At larger
core counts, the all-to-one agglomeration approach became infeasible as the increased
memory requirements for the coarse-grid problem exceeded available memory.

In addition, the strong scaling of multigrid solves using this redistribution algo-
rithm is demonstrated on Blue Waters. Overall, the scaling limit is observed to be
approximately 10K dof per core, which is similar to results obtained in other stud-
ies and is dominated by the communication cost of the smoother. Future work on
additive variants of multigrid and improvements to the performance model to more
accurately capture deep memory hierarchies are needed to reduce this limit.

To focus on coarse-grid redistribution, only pointwise Gauss–Seidel relaxation is
considered in this paper. In the future, smoothers that may enhance performance,
such as hybrid or polynomial smoothers, or enhance robustness, such as line and plane
smoothers [2], may be considered and their impact on optimal coarse-grid redistribu-
tion explored.

REFERENCES

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter, The multi-grid method for the
diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput.,
2 (1981), pp. 430–454.

[2] T. M. Austin, M. Berndt, and J. D. Moulton, A Memory Efficient Parallel Tridiagonal
Solver, Tech. Report LA-UR 03-4149, Mathematical Modeling and Analysis Group, Los
Alamos National Laboratory, Los Alamos, NM, 2004.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING STRUCTURED MULTIGRID C603

[3] A. H. Baker, R. D. Falgout, H. Gahvari, T. Gamblin, W. Gropp, T. V. Kolev, K. E.
Jordan, M. Schulz, and U. M. Yang, Preparing Algebraic Multigrid for Exascale, Tech.
Report LLNL-TR-533076, Lawrence Livermore National Laboratory, Livermore, CA, 2012.

[4] A. Bar-Noy and S. Kipnis, Designing broadcasting algorithms in the postal model for message-
passing systems, in Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms
and Architectures, New York, 1992, pp. 13–22, https://doi.org/10.1145/140901.140903.

[5] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder, Reducing parallel
communication in algebraic multigrid through sparsification, SIAM J. Sci. Comput., 38
(2016), pp. S332–S357, https://doi.org/10.1137/15M1026341.

[6] A. Bienz, W. D. Gropp, and L. Olson, Topology-aware performance modeling of parallel
SpMvs, in Proceedings of the 17th SIAM Conference on Parallel Proceesing for Scien-
tific Computing, SIAM, Philadelphia, 2017, http://meetings.siam.org/sess/dsp talk.cfm?
p=75934.

[7] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix
equations, in Sparsity and Its Applications, Cambridge University Press, Cambridge, UK,
1984.

[8] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd.ed. SIAM,
Philadelphia, 2000.

[9] G. L. Delzanno, L. Chacón, J. M. Finn, Y. Chung, and G. Lapenta, An optimal robust
equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich
optimization, J. Comput. Phys., 227 (2008), pp. 9841–9864, http://www.sciencedirect.
com/science/article/pii/S0021999108004105.

[10] J. E. Dendy, Black box multigrid, J. Comput. Phys., 48 (1982), pp. 366–386.
[11] J. E. Dendy, Black box multigrid for nonsymmetric problems, Appl. Math. Comput., 13 (1983),

pp. 261–283.
[12] J. E. Dendy and J. D. Moulton, Black box multigrid with coarsening by a factor of three,

Numer. Linear Algebra Appl., 17 (2010), pp. 577–598, https://doi.org/10.1002/nla.705.
[13] M. Emans, Coarse-grid treatment in parallel amg for coupled systems in CFD applications,

J. Comput. Sci., 2 (2011), pp. 365– 376.
[14] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang, Systematic reduction of

data movement in algebraic multigrid solvers, in Proceedings of the 2013 IEEE 27th Inter-
national Symposium on Parallel and Distributed Processing Workshops and PhD Forum,
IPDPSW ’13, Washington, DC, 2013, pp. 1675–1682.

[15] B. Gmeiner, M. Huber, L. John, U. Rüde, and B. Wohlmuth, A quantitative performance
study for stokes solvers at the extreme scale, J. Comput. Sci., 17 (2016), pp. 509–521.

[16] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth, Towards textbook effi-
ciency for parallel multigrid, Numer. Math. Theory Methods & Appl., 8 (2015), pp. 22–46.

[17] W. Gropp, Parallel computing and domain decomposition, in Domain Decomposition Methods
for Partial Differential Equations, SIAM, Philadelphia, 1992, pp. 349 – 361.

[18] W. Gropp, L. N. Olson, and P. Samfass, Modeling MPI communication performance on
SMP nodes: Is it time to retire the ping pong test, in Proceedings of the 23rd European
MPI Users’ Group Meeting, New York, ACM, 2016, pp. 41–50, https://doi.org/10.1145/
2966884.2966919.

[19] G. E. Hammond, P. C. Lichtner, C. Lu, and R. T. Mills, PFLOTRAN: Reactive flow and
transport code for use on laptops to leadership-class supercomputers, in Groundwater Rea-
ctive Transport Models, F. Zhang, G. Yeh, and J. C. Parker, eds., Bentham Science Pub-
lishers, Sharjah, UAE, 2012, pp. 141–159, https://doi.org/10.2174/97816080530631120101.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Systems Sci. Cybern., 4 (1968), pp. 100–107.

[21] W. Joubert and J. Cullum, Scalable algebraic multigrid on 3500 processors, Electron. Trans.
Numer. Anal., 23 (2006), pp. 105–128.

[22] D. J. Kerbyson, K. J. Barker, A. Vishnu, and A. Hoisie, Comparing the performance
of Blue Gene/Q with leading Cray XE6 and InfiniBand systems, in Proceedings of the
International Conference on Parallel and Distributed Systems, 2012, pp. 556–563, https:
//doi.org/10.1109/ICPADS.2012.81.

[23] S. P. MacLachlan and J. D. Moulton, Multilevel upscaling through variational coarsening,
Water Resour. Res., 42 (2006), W02418, https://doi.org/10.1029/2005WR003940.

[24] S. P. MacLachlan, J. M. Tang, and C. Vuik, Fast and robust solvers for pressure-correction
in bubbly flow problems, J. Comput. Phys., 227 (2008), pp. 9742–9761.

[25] D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith, Extreme-scale multi-
grid components within PETSc, in Proceedings of the Platform for Advanced Scientific
Computing Conference, 2016, pp. 5:1–5:12.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1145/140901.140903
https://doi.org/10.1137/15M1026341
http://meetings.siam.org/sess/dsp_talk.cfm?p=75934
http://meetings.siam.org/sess/dsp_talk.cfm?p=75934
http://www.sciencedirect.com/science/article/pii/S0021999108004105
http://www.sciencedirect.com/science/article/pii/S0021999108004105
https://doi.org/10.1002/nla.705
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.2174/97816080530631120101
https://doi.org/10.1109/ICPADS.2012.81
https://doi.org/10.1109/ICPADS.2012.81
https://doi.org/10.1029/2005WR003940


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C604 A. REISNER, L. N. OLSON, AND J. D. MOULTON

[26] D. Moulton, L. N. Olson, and A. Reisner, Cedar Framework, Version 0.1, 2017, https:
//github.com/cedar-framework/cedar.

[27] J. D. Moulton, J. E. Dendy, and J. M. Hyman, The black box multigrid numerical homog-
enization algorithm, J. Comput. Phys., 141 (1998), pp. 1–29.

[28] K. Nakajima, Optimization of serial and parallel communications for parallel geometric multi-
grid method, in Proceedings of the 20th IEEE International Conference on Parallel and
Distributed Systems, 2014, pp. 25–32.

[29] R. Rabenseifner, Effective Bandwidth (beff) Benchmark, www.hlrs.de/mpi/b eff.
[30] S. Reiter, A. Vogel, I. Heppner, M. Rupp, and G. Wittum, A massively parallel geometric

multigrid solver on hierarchically distributed grids, Comput. Vis. Sci., 16 (2013), pp. 151–
164.

[31] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. Ineichen,
C. Bekas, A. Curioni, and O. Ghattas, An extreme-scale implicit solver for complex
PDEs: Highly heterogeneous flow in earth’s mantle, in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, 2015.

[32] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, Parallel
geometric-algebraic multigrid on unstructured forests of octrees, in Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis,
IEEE Computer Society Press, 2012, p. 43.

[33] R. Thakur, R. Rabenseifner, and W. Gropp, Optimization of collective communication
operations in MPICH, Int. J. of High Performance Comput. Appl., 19 (2005), pp. 49–66.

[34] U. Trottenberg and A. Schuller, Multigrid, Academic Press, Inc., Orlando, FL, 2001.
[35] D. E. Womble and B. C. Young, A Model and implementation of multigrid for massively

parallel computers, Int. J. High Speed Comput., 2 (1990), pp. 239–255.
[36] P. D. Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver,

J. Comput. Appl. Math., 33 (1990), pp. 1–27, https://doi.org/10.1016/0377-0427(90)
90252-U.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/cedar-framework/cedar
https://github.com/cedar-framework/cedar
www.hlrs.de/mpi/b_eff
https://doi.org/10.1016/0377-0427(90)90252-U
https://doi.org/10.1016/0377-0427(90)90252-U

	Introduction
	Robust variational multigrid on structured grids
	Domain decomposition parallel implementation
	Redistribution

	Performance model
	Optimized parallel redistribution algorithm
	Coarse processor grid enumeration
	Redistribution search

	Experimental results
	Scaling studies
	Extension to three dimensions
	Performance of optimized redistribution

	Conclusions
	References

