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a b s t r a c t

The sparse matrix–vector multiply (SpMV) operation is a key computational kernel in many simulations
and linear solvers. The large communication requirements associated with a reference implementation
of a parallel SpMV result in poor parallel scalability. The cost of communication depends on the
physical locations of the send and receive processes: messages injected into the network are more
costly than messages sent between processes on the same node. In this paper, a node aware parallel
SpMV (NAPSpMV) is introduced to exploit knowledge of the system topology, specifically the node-
processor layout, to reduce costs associated with communication. The values of the input vector are
redistributed to minimize both the number and the size of messages that are injected into the network
during a SpMV, leading to a reduction in communication costs. A variety of computational experiments
that highlight the efficiency of this approach are presented.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The sparse matrix–vector multiply (SpMV) is a widely used
operation in many simulations and the main kernel in iterative
solvers. The focus of this paper is on the parallel SpMV, namely

w← A · v (1)

where A is a sparse N×N matrix and v is a dense N-dimensional
vector. In parallel, the sparse system is often distributed across np
processes such that each process holds a contiguous block of rows
from the matrix A, and equivalent rows from the vectors v and w,
as shown in Fig. 1. A common approach is to also split the rows
of A on a single process into two groups: an on-process block,
containing the columns of the matrix that correspond to vector
values stored locally, and an off-process block, containing matrix
non-zeros that are associated with vector values that are stored
on non-local processes. Therefore, non-zeros in the off-process
block of the matrix require vector values to be communicated
during each SpMV.

✩ This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation, USA (awards
OCI-0725070 and ACI-1238993) and the state of Illinois, USA. Blue Waters is a
joint effort of the University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications. This material is based in part upon
work supported by the National Science Foundation, USA Graduate Research
Fellowship Program under Grant Number DGE-1144245. This material is based in
part upon work supported by the Department of Energy, USA, National Nuclear
Security Administration, USA, under Award Number DE-NA0002374. Portions of
this work are funded in part by ExxonMobil Upstream Research Company.
∗ Corresponding author.

E-mail addresses: bienz2@illinois.edu (A. Bienz), wgropp@illinois.edu
(W.D. Gropp), lukeo@illinois.edu (L.N. Olson).

The SpMV operation lacks parallel scalability due to large
costs associated with communication, specifically in the strong
scaling limit of a few rows per process. Increasing the number
of processes that a matrix is distributed across increases the
number of columns in the off-process blocks, yielding a growth
in communication.

Fig. 2 shows the percentage of time spent communicating dur-
ing a SpMV operation for two large matrices from the SuiteSparse
matrix collection at scales varying from 50 000 to 500 000 non-
zeros per process [12]. The results show that the communication
time dominates the computation as the number of processes is
increased, thus decreasing the scalability.

Machine topology plays an important role in the cost of com-
munication [32]. Multicore distributed systems present new chal-
lenges in communication as the bandwidth is limited while the
number of cores participating in communication increases [14].
Injection limits and network contention are significant road-
blocks in the SpMV operation [5], motivating the need for SpMV
algorithms that take advantage of the machine topology. The
focus of the approach developed in this paper is to use the
node-processor hierarchy to more efficiently map communica-
tion, leading to notable reductions in SpMV costs on modern HPC
systems for a range of sparse matrix patterns. Throughout this
paper, the term node aware refers to knowledge of the mapping
of processes to physical nodes, although other aspects of the
topology — e.g. socket information — could be used in a similar
fashion. The mapping of virtual ranks to physical processors
can be easily determined on many super computers. The flag
MPICH_RANK_REORDER_METHOD can be set to a predetermined
ordering on Cray machines, while modern Blue Gene machines
allow the user to specify the ordering among the coordinates
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Fig. 1. A matrix partitioned across four processes, where each process stores two
rows of the matrix, and the equivalent rows of each vector. The on-process block
of each matrix partition is represented by solid squares, while the off-process
block is represented by outlined entries.

Fig. 2. Percentage of total SpMV time spent during communication for rotated
anisotropic diffusion matrix with 10240000 rows, with rotation of π

4 and
anisotropy of ϵ = 0.001.

A, B, C, D, E, and T through the variable RUNJOB_MAPPING or a
runscript option of --mapping.

There are a number of existing approaches for reducing com-
munication costs associated with sparse matrix–vector multipli-
cation. Communication volume in particular is a limiting factor
and the ordering and parallel partition of a matrix both in-
fluence the total data volume. In response, graph partitioning
techniques are used to identify more efficient layouts in the data
[9,16,22,30]. ParMETIS [19] and PT-Scotch [10], for example, pro-
vide parallel partitioning of matrices that often lead to improved
system loads and more efficient sparse matrix operations. Com-
munication volume is accurately modeled through the use of a
hypergraph [8]. As a result, hypergraph partitioning also leads to a
reduction in parallel communication requirements, albeit at a
larger one-time setup cost. Similarly, redistribution of data
throughout linear solvers such as multigrid yield improved per-
formance of matrix operations [23,33]. Topology-aware task map-
ping is used to accurately map partitions to the allocated nodes of
a supercomputer, reducing the overall cost associated with com-
munication
[1,17,21,27,29]. The approach introduced in this paper comple-
ments these efforts by providing an additional level of optimiza-
tion in handling communication.

Topology-aware methods and aggregation of data are com-
monly used to reduce communication costs, particularly in col-
lective operations [18,20,24,26]. Aggregation of data is used in
point-to-point communication through Tram, a library for stream-
lining messages in which data is aggregated and communicated

only through neighboring processors [31]. The method presented
in this paper aggregates messages at the node level and com-
municates all aggregated data at once, yielding little structural
change from standard MPI communication while reducing overall
cost.

The performance of matrix operations can also be improved
through the use of hybrid architectures and accelerators, such as
graphics processing units (GPUs). The throughput of GPUs allows
for improved performance when memory access patterns are
optimized [3,11,15].

Many preconditioners for iterative methods, such as alge-
braic multigrid, rely on the SpMV as a dominant operation and
therefore lack scalability due to large communication costs. A va-
riety of methods exist for altering the preconditioning algorithms
to reduce the communication costs associated with each SpMV
[2,4,28].

This paper focuses on increasing the locality of communication
during a SpMV to reduce the amount of communication injected
into the network. Section 2 describes a reference algorithm for
a parallel SpMV, as implemented in RAPtor [6], which resembles
the approach commonly used in practice. A performance model
is also introduced in Section 3, which considers the cost of intra-
and inter-node communication and the impact on performance.
A new SpMV algorithm is presented in Section 4, which reduces
the number and size of inter-node messages by increasing the
significantly cheaper intra-node communication. The code and
numerics are presented in Section 5 to verify the performance.
Finally, there are a variety of functions defined throughout this
paper. These function names and definitions are listed in Table 1
for reference.

2. Background

Modern supercomputers incorporate a large number of nodes
through an interconnect to form a multi-dimensional grid or
torus network. Standard compute nodes are comprised of one or
more multicore processors that share a large memory bank. The
algorithm developed in this paper targets a general machine with
this layout and the results are highlighted on Blue Waters, a Cray
machine at the National Center for Supercomputing Applications.
Blue Waters consists of 22 640 Cray XE nodes, each containing
two AMD 6276 Interlagos processors for a total of 16 cores per
node, and 4228 Cray XK nodes consisting of a single AMD proces-
sor along with an NVIDIA Kepler GPU.1 The nodes are connected
through a three-dimensional torus Gemini interconnect, with
each Gemini serving two nodes. The remainder of this paper will
focus on only the Cray XE nodes within Blue Waters.

Consider a system with np processes distributed across nn
nodes, resulting in ppn processes per node. Rank r ∈

[
0, np − 1

]
is described by the tuple (p, n) where 0 ≤ p < ppn is the local
process number of rank r on node n. Assuming SMP-style order-
ing, the first ppn ranks are mapped to the first node, the next
ppn to the second node, and so on. Therefore, rank r is described
by the tuple

(
r mod ppn, ⌊ r

ppn⌋

)
. Thus, for the remainder of the

paper, the notation of rank r is interchangeable with (p, n).
Parallel matrices and vectors are distributed across all np ranks

such that each process holds a portion of the linear system. Let
Rows(r) be the rows of an N×M sparse linear system, w← A ·v,
stored on rank r . In the case of an even, contiguous partition
where the kth partition is placed on the kth rank, Rows(r) is
defined as

Rows(r) =
{⌊

N
np

⌋
r, . . . ,

⌊
N
np

⌋
(r + 1)− 1

}
(2)

1 https://bluewaters.ncsa.illinois.edu/hardware-summary.
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Table 1
List of functions defined throughout this paper.
Symbol Definition

Rows(r) Rows of linear system stored on rank r
Procs(r) Processes to which rank r sends
Data(r, t) Global vector indices that process r sends to process t
Nodes(n) Set of nodes to which any process on node n sends
Node_Data(n,m) Global vector indices to be sent from node n to node m
Send_Nodes((p, n)) Nodes to which process (p, n) sends
Recv_Nodes((p, n)) Nodes that sends to process (p, n)
Global_Procs((p, n)) Off-node processes to which (p, n) sends
Global_Data((p, n), (q,m)) Global vector indices that (p, n) sends to (q,m)
locality Tuple describing locality of both the origin and destination of data
Local_Procs((p, n), locality) Processes to which process (p, n) sends during communication step

described by locality
Local_Data((p, n), (s, n), locality) Global vector indices send from process (p, n) to (s, n) during

communication step described by locality

Fig. 3. An example parallel system with six processes distributed across three
nodes.

Fig. 4. An example 6 × 6 sparse matrix for the parallel system in Fig. 3. The
striped shading denotes blocks that require only on-node communication, while
the outlined shading denotes blocks that require communication with distant
nodes.

or equivalently as

Rows((p, n)) =
{⌊

N
np

⌋
(p, n), . . . ,

⌊
N
np

⌋
((p, n)+ 1)− 1

}
. (3)

The rows of a matrix A are partitioned into on-process and off-
process blocks, as described in Section 1. Accounting for parallel
nodal awareness, the off-process block is further partitioned into
on-node and off-node blocks, as described in Example 2.1.

Example 2.1. Suppose the parallel system consists of six pro-
cesses distributed across three nodes, as displayed in Fig. 3. Let
the linear system w ← A · v displayed in Fig. 4 be partitioned
across this processor layout with each process holding a single
row of the matrix and associated row of the input vector. In this
example, the diagonal entry falls into the on-process block, as
the corresponding vector value is stored locally. The off-process
block, which requires communication, consists of all off-diagonal
non-zeros as the associated vector values are stored on other
processes.

For any process (p, n), the on-node columns of A correspond to
vector values that are stored on some process (s, n), where s ̸= p.

Similarly, the off-node columns of A correspond to vector values
stored on some process (q,m), where m ̸= n. To make this clear,
we define the following

on_process(A, (p, n)) =
{
Aij ̸= 0 | i, j ∈ Rows((p, n))

}
(4)

off_process(A, (p, n)) ={
Aij ̸= 0 | i ∈ Rows((p, n)), j ̸∈ Rows((p, n))

}
(5)

on_node(A, (p, n)) ={
Aij ̸= 0 | ∃ q ̸= pwith i ∈ Rows((p, n)), j ∈ Rows((q, n))

}
(6)

and

off_node(A, (p, n)) ={
Aij ̸= 0 | ∃ q,m ̸= nwith i ∈ Rows((p, n)),

j ∈ Rows((q,m))
}
. (7)

2.1. Standard SpMV

For a sparse matrix–vector multiply, w ← A · v, each process
receives all values of v associated with the non-zero entries in
the off-process block of A. For example, if rank r contains a non-
zero entry of A, Aij, at row i, column j, then rank s with row
j ∈ Rows(s) sends the jth vector value, vj, to rank r . Typically,
these communication requirements are determined as the sparse
matrix is formed [7,13,25].

In the reference SpMV, for each rank r there is a list of
processes to which data is sent, as well as the global vector
indices to be sent to each. The function Procs(r) defines the list
of processes to which a rank r sends. Specifically,

Procs(r) =
{
t | Aij ̸= 0 with i ∈ Rows(t), j ∈ Rows(r), r ̸= t

}
(8)

For each t in Procs(r), define the function Data(r, t) to return
the global vector indices that process r sends to process t . This
function is defined as follows.

Data(r, t) =
{
i | Aij ̸= 0 with i ∈ Rows(t), j ∈ Rows(r), r ̸= t

}
(9)

Consider a standard SpMV for the linear system described in
Example 2.1. Table 2 lists the processes to which each rank must
send, while Table 3 displays the indices that each rank r sends to
any rank t .

With these definitions, the standard or reference SpMV is
described in Algorithm 1. It is important to note that the parallel
communication in Algorithm 1 is executed independent of any
locality in the problem. That is, messages sent to another process
may be both on-node or off-node depending on the process,
however this is not considered in the algorithm.
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Table 2
Communication pattern for rank r in Example 2.1, containing the values for
Procs(r).

r

0 1 2 3 4 5

P(r) {3, 4, 5} {0, 3} {3, 4} {0, 2} {1} {0}

Table 3
Each column r lists the indices of values sent to each process t in Procs(r),
namely Data(r, s).

r

0 1 2 3 4 5

t

0 {} {1} {} {3} {} {5}
1 {} {} {} {} {4} {}

2 {} {} {} {3} {} {}

3 {0} {1} {2} {} {} {}

4 {0} {} {2} {} {} {}

5 {0} {} {} {} {} {}

Algorithm 1: standard_spmv: Reference Implementation
Input: r

A|Rows(r)
v|Rows(r)

Output: w|Rows(r)

Aon_process = on_process(A|Rows(r))
Aoff_process = off_process(A|Rows(r))
for t ∈ Procs(r) do

for i ∈ Data(r, t) do
bsend ← v|Rows(r)i

MPI_Isend(bsend, . . . , t, . . .)
brecv ← ∅
for t s.t. r ∈ Procs(t) do

MPI_Irecv(brecv, . . . , t, . . .)
local_spmv(Aon_process, v|Rows(r))
MPI_Waitall
local_spmv(Aoff_process, brecv)

3. Communication models

The performance of Algorithm 1 is sub-optimal since it does
not take advantage of node locality in the communication. To see
this, a communication performance model is developed in this
section. One approach is that of the max-rate model [14], which
describes the communication time as

T = α +
ppn · s

min(BN, Bmax + (ppn− 1)Binj)
, (10)

where α is the latency or start-up cost of a message, which may
include preparing a message for transport or determining the
network route; s is the number of bytes to be communicated;
ppn is again the number of communicating processes per node;
Binj is the maximum rate at which messages are injected into the
network; Bmax is the achievable message rate of each process or
bandwidth; and BN is the peak rate of the network interface con-
troller (NIC). All bandwidth rates, Binj, Bmax, and BN, are measured
in bytes per second. In the simplest case of ppn = 1, the familiar
postal model suffices:

T = α +
s

Bmax
. (11)

Table 4
Measurements for α, Binj , Bmin , and BN for Blue Waters, as published by Gropp
et. al [14].

α Binj Bmax BN

Short 4.0 · 10−6 6.3 · 108
−1.8 · 107

∞

Eager 1.1 · 10−5 1.7 · 109 6.2 · 107
∞

Rend 2.0 · 10−5 3.6 · 109 6.1 · 108 5.5 · 109

Table 5
Measurements for intra-node variables, αℓ and Bmaxℓ

.

αℓ Bmaxℓ

Short 1.3 · 10−6 4.2 · 108

Eager 1.6 · 10−6 7.4 · 108

Rend 4.2 · 10−6 3.1 · 109

MPI contains multiple message passing protocols, including
short, eager, and rendezvous. Each message consists of an enve-
lope, including information about the message such as message
size and source information, as well as message data. Short mes-
sages contain very little data which is sent as part of the envelope.
Eager and rendezvous messages, however, send the envelope
followed by packets of data. Eager messages are sent under the
assumption that the receiving process has buffer space available
to store data that is communicated. Therefore, a message is sent
without checking buffer space at the receiving process, limiting
the associated latency. However, if a message is sufficiently large,
rendezvous protocol must be used. This protocol requires the
sending process to inform the receiving rank of the message so
that buffer space is allocated. The message is sent only once the
sending process is informed that this space is available. There-
fore, there is a larger overhead with sending a message using
rendezvous protocol. Table 4 displays the measurements for α,
Binj, Bmax, and BN for Blue Waters, as determined for the max-rate
model.

The max-rate model can be improved by distinguishing be-
tween intra- and inter-node communication. If the sending and
receiving processes lie on the same physical node, data is not in-
jected into the network, yielding low start-up and byte transport
costs. As intra-node messages are not injected into the network,
communication local to a node can be modeled as

Tℓ = αℓ +
sℓ

Bmaxℓ

, (12)

where αℓ is the start-up cost for intra-node messages; sℓ is the
number of bytes to be transported; and Bmaxℓ

is the achievable
intra-node message rate.

Nodecomm,2 a topology-aware communication program,
measures the time required to communicate on various levels
of the parallel system, such as between two nodes of varying
distances and between processes local to a node. Communication
tests between processes local to one node were used to calculate
the intra-node model parameters, as displayed in Table 5. These
parameters were calculated in python with a least squares data
fitting.

Furthermore, Fig. 5 shows the time required to send a single
message of varying sizes between two processes. The thin lines
display Nodecomm measurements for time required to send a
single message, on average, as either inter- or intra-node com-
munication. Furthermore, these timings test various numbers of
processes-per-node active in communication, from one to six-
teen. Finally, the thick lines represent the time required to send a
message of each size, according to the max-rate model in (10) and

2 See https://bitbucket.org/william_gropp/baseenv.

https://bitbucket.org/william_gropp/baseenv
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Fig. 5. The time required to send a single message of various sizes, with the
thin lines representing timings measured by Nodecomm and the thick lines
displaying the max-rate and intra-node models in (10) and (12), respectively.

intra-node model in (12). This figure displays a significant differ-
ence between the costs of intra- and inter-node communication.

4. Node aware parallel SpMV

To reduce communication costs, the algorithm proposed in
this section decreases the number and size of messages being
injected into the network by increasing the amount of intra-node
communication, which is less-costly than inter-node communi-
cation. This trade-off is accomplished through a so-called node
aware parallel SpMV (NAPSpMV), where values are gathered in
processes local to each node before being sent across the network,
followed by a distribution of processes on the receiving node. As a
result, as the matrix is formed each process (p, n) determines the
communicating processes during the various steps of a NAPSpMV,
as well as the accompanying data. A high level overview of the
process is described in Example 4.1. It is important to note that
the communication for each NAPSpMV is load-balanced such that
all processes local to node n send and receive both a similar
number and size of messages through inter-node communication.
Therefore, it is assumed that the nodes n and m in Example 4.1
are only a portion of the parallel system, and n is communicating
with other nodes in a similar fashion.

Example 4.1. During each NAPSpMV, off-node data is com-
municated through a three-step process, as displayed in Fig. 6.
This figure displays a portion of a parallel system consisting of
8 processes partitioned across two nodes, labeled n and m. The
solid circles on node n represent vector values that must be
sent to node m. Therefore, each process on node n must send
values to processes on node m. Instead of sending directly to
destination processes, each process (s, n) sends to the process
labeled (p, n), displayed by the dashed arrows on node n. Process
(p, n) then sends all collected values through the network to
process (q,m). Finally, process (q,m) distributes received values
among the processes local to node m, displayed by the dashed
arrows on node m.

On-node data is communicated directly between the process
on which the vector values are stored and that which requires
the data, as displayed in Fig. 7. In this example, the solid circles
represent vector values that are stored on each process (s, n) and
needed by (p, n). This data is sent directly between the processes
in a single step.

Fig. 6. The various arrows exemplify the process of communicating data from
each process on node n to processes on node m through a three-step algorithm.
The bold circles on node n represent vector values that must be communicated
to node m.

Fig. 7. An example of how vector values corresponding with matrix entries
in the on-node block are communicated. All values (p, n) must receive from
other processes (q, n) are communicated directly as nothing is injected into the
network.

Table 6
Communication requirements for each node n in Example 2.1.

n

0 1 2

Nodes(n) {1, 2} {0, 2} {0}

4.1. Inter-node communication setup

To eliminate the communication of duplicated messages, a list
of communicating nodes is formed for each node n along with the
accompanying data values. These lists are then distributed across
all processes local to n by balancing the number of nodes and
volume of data for communication. To facilitate this, the function
Nodes(n) defines the set of nodes to which the processes on node
n must send,

Nodes(n) =
{
m | ∃ p, q s.t. Aij ̸= 0

with i ∈ Rows((q,m)), j ∈ Rows((p, n)), n ̸= m} .

(13)

Table 6 contains Nodes(n), the list of nodes to which each
node n sends. The associated data values are defined for each
node m ∈ Nodes(n) with Node_Data(n,m), which returns the
data indices to be sent from node n to node m. That is,

Node_Data(n,m) =
{
i | ∃ p, q s.t. Aij ̸= 0

with i ∈ Rows((q,m)),
j ∈ Rows((p, n)), n ̸= m

}
. (14)
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Table 7
In Example 2.1, each column n contains the values sent from n to m, as in
Node_Data(n,m).

n

0 1 2

m
0 {} {3} {4, 5}
1 {0, 1} {} {}

2 {0} {2} {}

Table 8
Processor mappings for Nodes(n), namely Send_Nodes((p, n)) and
Recv_Nodes((p, n)) for Example 2.1.

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

Send_Nodes((p, n)) {1} {2} {0} {2} {0} {}

Recv_Nodes((p, n)) {2} {1} {} {0} {1} {0}

Table 9
Inter-node communication requirements of each process (p, n) for Example 2.1.

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

Global_Procs((p, n)) {(1, 1)} {(1, 2)} {(1, 0)} {(0, 2)} {(0, 0)} {}

Extending Example 2.1, Table 7 displays the global vector indices,
Node_Data(n,m), for each set of nodes n and m.

Send_Nodes((p, n)) defines the nodes to which (p, n) must
send, that is the nodes in Nodes(n) that are distributed to process
(p, n). Similarly, Recv_Nodes((p, n)) contains the nodes that send
to (p, n). Specifically,

Send_Nodes((p, n)) = {m ∈ Nodes(n) | m maps to (p, n)} ,
(15)

Recv_Nodes((p, n)) = {m | n ∈ Nodes(m), n maps to (p, n)} .
(16)

This paper considers a simple distribution in which the node
m ∈ Nodes(n) to which the most data |Data(n,m)| is sent is
mapped to process (0, n), the node with the second most data is
mapped to process (1, n), and so on. The opposite ordering is used
for Recv_Nodes((p, n)), mapping the node n ∈ Nodes(m) with
largest |Data(m, n)| to process (ppn−1, n), the second largest to
process (ppn−2, n), etc. If there are fewer nodes in Nodes(n) than
there are processes per node, a single node is mapped to multiple
local processes so that all processes communicate, such that all
processes send a similar number of bytes. There are various other
possible mapping strategies, such as mapping a node m to the
process (p, n) storing the majority of the data in Data(n,m).
However, as this would only affect intra-node communication
requirements, these mappings are not explored in this paper.

The processor layout in Example 2.1 is displayed in Table 8,
where the columns contain the send and receive nodes that are
mapped to each process.

Finally, Global_Procs((p, n)) defines the set of all off-node
processes to which process (p, n) sends data during the inter-
node communication step of the NAPSpMV. Specifically,

Global_Procs((p, n)) = {(q,m) | m ∈ Send_Nodes((p, n)),
n ∈ Recv_Nodes((q,m))} . (17)

Following Example 2.1, the columns of Table 9 list the indices of
the values that each (p, n) sends, Global_Procs((p, n)). Finally,
let Global_Data((p, n), (q,m)) define the global data indices cor-
responding to the values sent from process (p, n) to (q,m):

Global_Data((p, n), (q,m)) =
{Node_Data(n,m) | m ∈ Send_Nodes((p, n)),

Table 10
Inter-node communication requirements for each set of processes (p, n) and
(q,m). Each column (p, n) contains the indices of values sent from (p, n) to
(q,m).

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(q,m)

(0, 0) {} {} {} {} {4, 5} {}

(1, 0) {} {} {3} {} {} {}

(0, 1) {} {} {} {} {} {}

(1, 1) {0} {} {} {} {} {}

(0, 2) {} {} {} {2} {} {}

(1, 2) {} {0, 1} {} {} {} {}

n ∈ Recv_Nodes((q,m))} (18)

The global vector indices to which each process (p, n) sends and
receives for Example 2.1 are displayed in Table 10.

4.2. Local communication

The function Global_Procssend((p, n)) for p = 0, . . . , ppn −
1, describes evenly distributed inter-node communication re-
quirements for all processes local to node n. However, many
of the vector indices to be sent to off-node process (q,m) ∈
Data((p, n), (q,m)), are not stored on process (p, n). For instance,
in Table 10, process (0, 1) sends global vector indices 0 and 1.
However, only row 1 is stored on process (0, 1), requiring vector
component 0 to be communicated before inter-node messages
are sent.

Similarly, many of the indices that a process (q,m) receives
from (p, n) are redistributed to various processes on node n.
Table 10 requires process (1, 2) to receive vector data accord-
ing to indices 0 and 1. Process (0, 2) uses both of these vector
values, yielding a requirement for redistribution of data received
from inter-node communication. Therefore, local communication
requirements must be defined.

Each NAPSpMV consists of multiple steps of intra-node com-
munication. Let a function Local_Procs((p, n), locality) de-
fine all processes, local to node n, to which process (p, n) sends
messages, where locality is a tuple describing the locality of
both the original location of the data as well as its final destina-
tion. The locality of each position is described as either on_node,
meaning a process local to node n, or off_node, meaning a
process local to node m ̸= n.

There are three possible combinations for locality: 1. the
data is initialized on_node with a final destination off_node;
2. the original data is off_node while the final destination is
on_node; or 3. both the original data and the final location are
on_node. These three types of intra-node communication are
described in more detail in the remainder of Section 4.2.

For each process (s, n) ∈ Local_Procs((p, n), locality),
Local_Data((p, n), (s, n), locality) defines the global vector
indices to be sent from process (p, n) to (s, n) through intra-node
communication. This notation is used in following sections.

4.2.1. Local redistribution of initial data
During inter-node communication, a process (p, n) sends all

vector values corresponding to the global indices in Global_Data
((p, n), (q,m)) to each process (q,m) ∈ Global_Procs((p, n)).
The indices in Global_Data((p, n), (q,m)) originate on node n,
but not necessarily process (p, n). Therefore, the initial vector
values must be redistributed among all processes local to node
n.

Let Local_Procs((p, n), (on_node, off_node)) represent all
processes, local to node n, to which (p, n) sends initial vector
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Table 11
Initial intra-node communication requirements for each process
(p, n) in Example 2.1. The row of the table describes
Local_Procs((p, n), (on_node, off_node)).

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

Local_Procs {(1, 0)} {} {(1, 1)} {(0, 1)} {} {(0, 2)}

Table 12
Global vector indices of initial data that is communicated between processes
local to each node n in Example 2.1. Each column contains the indices of
values sent from (p, n) to (q, n). Note: dashes (—) throughout the table represent
processes on separate nodes, which do not communicate during intra-node
communication.

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(q, n)

(0, 0) {} {} — — — –
(1, 0) {0} {} — — — –
(0, 1) — — {} {3} — –
(1, 1) — — {2} {} — –
(0, 2) — — — — {} {5}
(1, 2) — — — — {} {}

Table 13
Intra-node communication requirements containing processes to which each
(p, n) sends received inter-node data, according to Example 2.1. The row of
the table describes Local_Procs((p, n), (off_node, on_node)).

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

Local_Procs {} {(0, 0)} {} {} {} {(0, 2)}

values. This function is defined as

Local_Procs((p, n), (on_node, off_node)) =
{(s, n) | ∃ j ∈ Rows((p, n)),

j ∈ Global_Data((s, n), (q,m))} . (19)

The local processes to which each (p, n) sends initial data in
Example 2.1 are displayed in Table 11.

Furthermore, the data global vector indices that must be
sent from process (p, n) to each (s, n) ∈ Local_Procs((p, n),
(on_node, off_node)) are defined as

Local_Data((p, n), (s, n), (on_node, off_node)) =
{i | i ∈ Rows((p, n)),∀ i ∈ Global_Procs((s, n))} . (20)

The global vector indices that each (p, n) must send to other
processes on node n in Example 2.1 are displayed in Table 12.

4.2.2. Local redistribution of received off-node data
During inter-node communication, a process (p, n) sends all

data with final destination on node m to process (q,m) ∈
Global_Procs((p, n)). Process (q,m) then distributes these val-
ues across the processes local to node m. Let Local_Procs
((q,m), (off_node, on_node)) define all processes local to node
m to which process (q,m) sends vector values that have been
received through inter-node communication. This function is
defined as

Local_Procs((q,m), (off_node, on_node)) ={
(s,m) | ∃ Aij ̸= 0 with i ∈ Rows((s,m)),

j ∈ Global_Data((p, n), (q,m))
}
. (21)

This is highlighted, for Example 2.1, in Table 13. Furthermore, the
data global vector indices that must be sent from process (q,m)
to each (s,m) ∈ Local_Procs((q,m), (off_node, on_node)) are

Table 14
Global vector indices of received inter-node data that must be communicated
between processes local to each node n in Example 2.1. Each column contains
the indices of values sent from (p, n) to (q, n). Note: dashes (—) throughout the
table represent processes on separate nodes, which cannot communicate during
intra-node communication.

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(q, n)

(0, 0) {} {3} — — — –
(1, 0) {} {} — — — –
(0, 1) — — {} {} — –
(1, 1) — — {} {} — –
(0, 2) — — — — {} {1}
(1, 2) — — — — {} {}

Table 15
Intra-node communication requirements containing processes to which each
process (p, n) must send vector data, according to Example 2.1. The row of
the table describes Local_Procs((p, n), (on_node, on_node)).

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

Local_Procs {} {(0, 0)} {} {(0, 1)} {} {}

Table 16
Global vector indices that must be communicated between processes local to
each node n in Example 2.1. Each column contains the indices of values sent
from (p, n) to (q, n). Note: dashes (—) throughout the table represent processes
on separate nodes, which cannot communicate during intra-node communication.

(p, n)

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(s, n)

(0, 0) {} {1} — — — –
(1, 0) {} {} — — — –
(0, 1) — — {} {3} — –
(1, 1) — — {} {} — –
(0, 2) — — — — {} {}

(1, 2) — — — — {} {}

defined as

Local_Data((q,m), (s,m), (off_node, on_node)) ={
j ∈ Global_Data((p, n), (q,m)) | Aij ̸= 0

with i ∈ Rows((s,m))
}
. (22)

The global vector indices, received from the inter-node commu-
nication step, which (p, n) must send to each local process (q, n)
in Example 2.1 are displayed in Table 14.

4.2.3. Fully local communication
A subset of the values needed by a process (p, n) are stored

on local process (s, n). One advantage is that these values by-
pass the three-step communication, and are communicated di-
rectly. Let Local_Procs((p, n), (on_node, on_node)) define all
processes local to node n to which (p, n) sends vector data. This
function is defined as

Local_Procs((p, n), (on_node, on_node)) ={
(s, n) | ∃ Aij ̸= 0 with i ∈ Rows((s, n)), j ∈ Rows((p, n))

}
. (23)

The processes local to node n, to which (p, n) must send initial
vector data in Example 2.1 are displayed in Table 15. Furthermore,
the global vector indices that must be sent from process (p, n)
to each (s, n) ∈ Local_Procs((p, n), (on_node, on_node)) are
defined as follows.

Local_Data((p, n), (s, n), (on_node, on_node)) ={
j | ∃ Aij ̸= 0 with i ∈ Rows((s, n)), j ∈ Rows((p, n))

}
. (24)

The global vector indices which (p, n) must send to each local
process (s, n) in Example 2.1 are displayed in Table 16.
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4.3. Alternative SpMV algorithm

Algorithm 2: local_comm
Input: (p, n) : tuple describing local rank and

node of process
v|Rows((p,n)): rows of input vector v local to

process (p, n)
locality: locality of input and output data

Output: ℓrecv: values that rank (p, n) receives from
other processes

// Initialize sends
for (s, n) ∈ Local_Procs((p, n), locality) do

for i ∈ Local_Data((p, n), (s, n), locality) do
ℓsend ← v|Rows((p,n))i

MPI_Isend(ℓsend, . . . , (s, n), . . .)

// Initialize receives
ℓrecv ← ∅

for (s, n) s.t. (p, n) ∈ Local_Procs((s, n), locality) do
MPI_Irecv(ℓrecv, . . . , (s, n), . . .)

// Complete sends and receives
MPI_Waitall

The method of communicating vector values to on-node pro-
cesses is described in Algorithm 2. Using the definitions for the
various steps of intra- and inter-node communication, the NAP-
SpMV is described in Algorithm 3, where local_spmv() refers
to a row-wise, non-distributed SpMV — e.g. with Intel’s MKL
library or with the Eigen Library. It is important to note that
many slight variations to the algorithm are possible. The fully
local communication has no dependencies, and can be performed
anytime before calling local_spmv(Aon_node, bℓ→ℓ). Furthermore,
the function local_spmv(Aon_process, v|Rows) has no communica-
tion requirements and, hence, can be performed at any point in
the algorithm.

5. Results

In this section, the parallel performance and scalability of the
NAPSpMV in comparison to the standard SpMV is presented. The
matrix–vector multiplication in an algebraic multigrid (AMG) hi-
erarchy is tested for both a structured 2D rotated anisotropic and
for unstructured linear elasticity on 32 768 processes in order to
expose a variety of communication patterns. In addition, scaling
tests are considered for random matrices with a constant number
of non-zeros per row to investigate problems with no structure.
Lastly, scaling tests on the largest 15 matrices from the SuiteS-
parse matrix collection are presented. All tests are performed
on the Blue Waters parallel computer at University of Illinois at
Urbana-Champaign.

AMG hierarchies consist of successively coarser, but denser
levels. Therefore, while a standard SpMV performed on the orig-
inal matrix often requires communication of a small number of
large messages, coarse levels require a large number of small
messages to be injected into the network. Fig. 8 shows that both
the number and size of inter-node messages required on each
level of the linear elasticity hierarchy are reduced through use
of the NAPSpMV. There is a large reduction in communication
requirements for coarse levels of the hierarchy, which includes
a high number of small messages. However, as the NAPSpMV re-
quires redistribution of data among processes local to each node,

Algorithm 3: NAPSpMV
Input: (p, n): tuple describing local rank and node

of process
A|R: rows of matrix A local to process (p, n)
v|R: rows of input vector v local to process

(p, n)

Output: w|Rows: rows of output vector w← Av,
local to process (p, n)

Aon_process = on_process(A|Rows)
Aon_node = on_node(A|Rows)
Aoff_node = off_node(A|Rows)

bℓ→ℓ ← local_comm((p, n), v|Rows, (on_node→ on_node))
bℓ→nℓ ← local_comm((p, n), v|Rows, (on_node→ off_node))

// Initialize sends
for (q,m) ∈ Global_Procs((p, n)) do

for i ∈ Global_Data((p, n), (q,m)) do
gsend ← biℓ→nℓ

MPI_Isend(gsend, . . . , (q,m), . . .)

// Initialize receives
grecv ← ∅
for (q,m) s.t. (p, n) ∈ Global_Procs((q,m)) do

MPI_Irecv(grecv, . . . , (q,m), . . .)

// Serial SpMV for local values
local_spmv(Aon_process, v|Rows)

// Serial SpMv for on-node values
local_spmv(Aon_node, bℓ→ℓ)

// Complete sends and receives
MPI_Waitall

bnℓ→ℓ ← local_comm((p, n), v|Rows, (off_node→ on_node))

// Serial SpMV for off-node values
local_spmv(Aoff_node, bnℓ→ℓ)

the intra-node communication requirements increase greatly for
the NAPSpMV, as shown in Fig. 9. The ratio of inter- to intra-
node communication is shown in Fig. 10. This compares both
the number and size of messages communicated on-node and
through the network.

While there is an increase in intra-node communication re-
quirements, the reduction in more expensive inter-node mes-
sages results in a significant reduction in total time for the
NAPSpMV algorithm, particularly on coarser levels near the mid-
dle of each AMG hierarchy, as shown in Fig. 11.

The reduction in cost associated with communication, partic-
ularly on the coarse levels of the hierarchies, yields increased
performance and scalability of the AMG solve phase, as displayed
in Fig. 12. The NAPSpMV reduces the cost of a single V-cycle of the
strongly scaled linear elasticity hierarchy and greatly improves
the strong scaling limit.

Random matrices, formed with a constant number of non-
zeros per row, lack structure that is found in many finite element
discretizations. As these matrices are distributed across an in-
creasingly large number of processes, non-zeros are more likely
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Fig. 8. The maximum number (left) and size (right) of inter-node messages communicated by a single process during a standard SpMV and NAPSpMV on each level
of the linear elasticity AMG hierarchy.

Fig. 9. The maximum number (left) and size (right) of intra-node messages communicated by a single process during a standard SpMV and NAPSpMV on each level
of the linear elasticity AMG hierarchy.

Fig. 10. The ratio of inter- to intra-node messages, with number of messages (left) and size of communicated data (right) during a standard SpMV and NAPSpMV
on each level of the linear elasticity AMG hierarchy.

to be located in off-process blocks of the matrix. Therefore, both
weak and strong scaling studies of random matrices yield in-
creases in communication requirements with scale. The sparsity
pattern of random matrices varies with random number genera-
tor seeds and are dependent on the number of non-zeros per row.
Therefore, the standard SpMV and NAPSpMV were performed on
five different random matrices for each tested density of 25, 50,
and 100 non-zeros per row, as shown in Fig. 13. The standard
and NAPSpMV costs for all random matrices of equivalent density
are comparable. Furthermore, there is little difference in costs

between each density. Therefore, extended tests are performed
on only a single random matrix with 100 non-zeros per row.
Fig. 14 displays the time required for a NAPSpMV in comparison
to the standard SpMV in both weak and strong scaling studies. For
these random matrices, the NAPSpMV exhibits improved perfor-
mance over the reference implementation by up to two orders of
magnitude and also improves scalability.

The time required to perform the various SpMVs on 13 of the
15 largest matrices from the SuiteSparse matrix collection are
shown with strided and balanced partitions, in Figs. 15 and 16
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Fig. 11. The time required to perform the various SpMVs on each level of the rotated anisotropic (left) and linear elasticity (right) AMG hierarchies.

Fig. 12. The time required to perform a single V-cycle of AMG for the linear
elasticity hierarchy at various scales, using a standard SpMV and NAPSpMV in
every operation.

respectively. The remaining 2 large matrices were not included
due to partitioning constraints. For the strided partitions with
np processes, each row r is local to process p = r mod np.
Some matrices in this subset have nearly dense blocks of rows,
allowing for improved load balancing over each process hold-
ing a contiguous block of rows. The balanced partitions were
formed with PT Scotch graph partitioning, using the strategy
SCOTCH_STRATBALANCE.

The NAPSpMV improves upon many of the matrices with
strided partitions, as communication patterns are far from opti-
mal, while only minimally improving upon the graph partitioned
matrices as expected. However, the cost of partitioning motivates
the use of less optimal partitions when a smaller number of Sp-
MVs are anticipated. Fig. 17 shows the time required to perform
various numbers of NAPSpMVs on both the strided and balanced
partitions at the strongest scale tested, with 50 000 non-zeros per
core. In these tests, the balanced partitioned timings include the
time required to graph partition and redistribute the matrix. The
crossover point for the various SuiteSparse matrices, at which the
graph partitioning becomes less costly than performing NAPSp-
MVs on strided partitions, occurs only after hundreds, or often
thousands, of SpMVs have been performed.

6. Conclusion and future work

This paper introduces a method to reduce communication
that is injected into the network during a sparse matrix–vector
multiply by reorganizing messages on each node. This results
in a reduction of the inter-node communication, replaced by
less-costly intra-node communication, which reduces both the
number and size of messages that are injected into the network.
The current implementation could be extended to take various
levels of the hierarchy into account, such as splitting intra-node
messages into on-socket and off-socket. Fig. 18 shows that on-
socket messages are significantly cheaper and could be targeted
to further reduce communication costs. Furthermore, node-aware
communication could be applied to other instances of irreg-
ular point-to-point communication, in both alternative matrix

Fig. 13. The time required to perform the various SpMVs on weakly (left) and strongly (right) scaled random matrices. Five different random matrices are tested
for each density of 25, 50, and 100 non-zeros per row. The weak-scaling study tests matrices with 1000 rows per process, while the strongly-scaled matrix contains
4 096 000 rows.
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Fig. 14. The time required to perform the various SpMVs on weakly (left) and strongly (right) scaled random matrices, each with 100 non-zeros per row. The
weak-scaling study tests matrices with 1000 rows per process, while the strongly-scaled matrix contains 4 096 000 rows.

Fig. 15. The speedup of NAPSpMVs over reference SpMVs on a subset of the largest real matrices from the SuiteSparse matrix collection at various scales, where
nnz
core is the average number of non-zeros per core, partitioned so that each row r is stored on process p = r mod np , where np is the number of processes.

Fig. 16. The speedup of NAPSpMVs over reference SpMVs on a subset of the largest real matrices from the SuiteSparse matrix collection at various scales, where
nnz
core is the average number of non-zeros per core, partitioned with PT Scotch.
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Fig. 17. The time required to perform various numbers of NAPSpMVs on strided and balanced partitions of the largest real SuiteSparse matrices with 50 000 non-zeros
per process. The time to perform a NAPSpMV on a balanced partition includes the setup cost of partitioning and redistributing the matrix. The crossover points
represent the number of NAPSpMVs required before graph partitioning becomes less costly than performing NAPSpMVs on the strided partition.

Fig. 18. The time required to send a single message of various sizes, with the
thin lines representing timings measured by Nodecomm and the thick lines
displaying the max-rate and intra-node models in (10) and (12), respectively.
The intra-node models are split into two categories, on-socket and off-socket.

operations as well as applications and solvers independent of
matrices.
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