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Abstract. This paper provides a unified and detailed presentation of root-node–style algebraic
multigrid (AMG). AMG is a popular and effective iterative method for solving large, sparse linear
systems that arise from discretizing partial differential equations. However, while AMG is designed
for symmetric positive definite (SPD) matrices, certain SPD problems, such as anisotropic diffusion,
are still not adequately addressed by existing methods. Non-SPD problems pose an even greater
challenge, and in practice AMG is often not considered as a solver for such problems. The focus of
this paper is on so-called root-node AMG, which can be viewed as a combination of classical and
aggregation-based multigrid. An algorithm for root-node AMG is outlined, and a filtering strategy
is developed, which is able to control the cost of using root-node AMG, particularly on difficult
problems. New theoretical motivation is provided for root-node and energy-minimization as applied
to symmetric as well nonsymmetric systems. Numerical results are then presented demonstrating
the robust ability of root-node AMG to solve nonsymmetric problems, systems-based problems, and
difficult SPD problems, including strongly anisotropic diffusion, convection-diffusion, and upwind
steady-state transport, in a scalable manner. New detailed estimates of the computational cost of
the setup and solve phases are given for each example, providing additional support for root-node
AMG over alternative methods.
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1. Introduction. Algebraic multigrid (AMG) methods such as classical AMG
(CF AMG1) [11, 42] and smoothed aggregation AMG (SA AMG) [48] are efficient
solution techniques for large, sparse linear systems. AMG was developed specifically
for symmetric positive-definite (SPD) systems that arise from the discretization of
elliptic partial differential equations (PDEs), and software packages such as Boomer-
AMG [28] in the hypre library [26] demonstrate its parallel scalability to hundreds of
thousands of cores [3].

AMG targets solution of a sparse linear system (typically SPD),

(1) Ax = b,
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with O(n) work, where x, b ∈ Rn and A ∈ Rn×n. This optimality is achieved through
two complementary parts of a multigrid method, relaxation and coarse-grid correction,
which together uniformly damp error of all frequencies (see section 2).

However, there are certain SPD systems and many nonsymmetric systems for
which AMG continues to struggle. Problems with strongly anisotropic components,
and problems arising in particle transport, advective flow calculations, and strongly
varying material properties, among others, challenge the standard approaches to
AMG, thus highlighting the need for more robust methods. There have been a num-
ber of efforts in recent years to improve the convergence and scope of applicability of
AMG. Adaptive methods focus on improving the multigrid hierarchy through trial cy-
cles in the setup phase [16, 17, 18, 22]. Other methods focus on modified or improved
strength measures when forming coarse grids [7, 9, 10, 12, 13, 15, 22, 31, 36, 39].
Furthermore, generalizing interpolation through energy minimization [41] and other
methods [20, 23, 27, 50] is used to improve the accuracy of interpolation between grid
levels. Nevertheless, many problems remain difficult for AMG to solve, while many
“robust” AMG methods suffer from high computational cost.

An AMG solver consists of a hierarchy of matrices, {A`}, with the initial matrix
on level ` = 0, A0 := A, and progressively smaller matrices on levels ` = 1, 2, . . . , L.
Interpolation and restriction operators, also known as transfer operators, transfer
vectors between different levels of the hierarchy. For a given matrix A`, the next
“coarser” matrix in the hierarchy (level ` + 1) is generally developed in one of two
different ways: using a CF-splitting of points (CF AMG) or using an aggregation of
points (SA AMG). A CF-splitting splits the set of all DOFs of matrix A` into a coarse
set of C-points and a fine set of F-points, with C-points corresponding to DOFs on the
coarse grid. Transfer operators are then defined using the CF-splitting, where values
at C-points are restricted and interpolated by injection, and values at F-points use a
linear combination of connected neighboring points. In SA AMG, a measure of the
strength-of-connection (SOC) between nodes is used to form “aggregates,” which are
disjoint sets of strongly connected nodes, where each aggregate represents one node
on the coarse grid, and transfer operators are formed based on aggregates. A more
detailed look at SA AMG and CF AMG is given in section 2.

Root-node AMG (RN AMG) uses a hybrid approach, wherein SA-type SOC and
aggregation routines are used to form aggregates. In each aggregate, one node is
chosen to be the “root-node,” which corresponds to a C-point, and other nodes are
designated as F-points. Transfer operators are then formed based on this CF-splitting
together with aggregation.

RN AMG was initially identified in [41] as a small part of a general, energy-
minimizing framework for forming interpolation operators in AMG. The work in [45]
implemented the RN approach and demonstrated its potential as an effective and scal-
able solver for strongly anisotropic, non–grid-aligned diffusion operators—problems
which have proven difficult for other multigrid methods. However, certain problems
required a large computational cost, especially in the setup of the method.

This paper provides, for the first time, a unified and detailed presentation of
RN AMG and how it combines many of the benefits of CF AMG and SA AMG. RN
AMG allows for classical pointwise decisions in the setup, to help control complexity2

and provide theoretical motivation, as well as aggregation-style construction, to facil-
itate the design of a multigrid solver based on the spectral behavior of the problem.

2“Complexity” or “cost” refers to the overall computational cost of the method in terms of
floating point operations.
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New theoretical motivation is given for the pairing of RN AMG with energy minimiza-
tion, in both the symmetric and nonsymmetric cases, proving the equivalence of the
energy-minimization process to minimizing the difference with an optimal form of in-
terpolation. Moreover, a new interpolation filtering strategy is developed to limit the
complexity of the method, which proves critical for problems that require large spar-
sity patterns in transfer operators. Last, a numerical survey is presented to highlight
the robustness and flexibility of RN AMG in comparison to CF AMG and SA AMG,
including scalable convergence for strongly anisotropic diffusion problems and a dis-
continuous, upwind discretization of the steady-state transport equation. For each
test problem, a detailed measure of computational cost or complexity is provided, a
novel addition to AMG literature, which provides a complete picture of a method
when coupled with convergence factors.

In section 2, background information on AMG methods is discussed, including
current limitations and the basic motivation for an RN-type algorithm. The RN AMG
method and algorithm are presented in section 3, along with a discussion of computa-
tional complexity and a filtering process proposed to address cases of high complexity.
Section 4 provides theoretical motivation for RN AMG. Numerical results are provided
in section 5, and conclusions and future work discussed in section 6.

2. Background. Multigrid methods, such as SA AMG and CF AMG, involve
two phases: (i) the setup phase, where a multilevel solver hierarchy is constructed,
and (ii) the solve phase, where the constructed solver hierarchy is applied to solving
the linear system (1) to a desired tolerance. SA AMG and CF AMG are distinguished
by the setup phase; that is, once a hierarchy is constructed, both methods execute
the solve phase in the same fashion.

In the following, a multigrid hierarchy consists of a set of matrices starting with
an initial, fine matrix A0 ≡ A ∈ Rn×n. Matrices for additional levels in the hierarchy,
A` ∈ Rn`×n` , are then constructed based on interpolation and restriction operators,
P` : Rn`+1 → Rn` and R` : Rn` → Rn`+1, respectively, via A`+1 = R`A`P`, where
n`+1 < n`. In the case of an SPD matrix, restriction R = PT .

The AMG solve phase iterates using two complementary parts: relaxation—e.g.,
weighted Jacobi—to reduce the high-energy error that is associated with large eigen-
values in the operator, and coarse-grid correction, which targets algebraically smooth
error, A0e ≈ 0, associated with the small eigenvalues. A two-grid solve proceeds as
follows. Prerelaxation on A0x0 = b0 is applied, and the resulting residual is then
restricted to the coarse grid, b1 = R0(b0 − A0x0), which serves as the right-hand
side for the coarse-grid equation, A1x1 = b1, where A1 = R0A0P0. The solution,
x1, provides a coarse-grid error correction that is interpolated back to the fine grid,
x0 ← x0 + P0x1. Last, postrelaxation is applied to the updated x0. Together, these
three steps form a two-level multigrid V(νpre, νpost)-cycle, where νpre refers to the
number of prerelaxations, and νpost to the number of postrelaxations. A full solve
then consists of using successive V-cycles to iterate on a vector until the relative
residual norm, ‖r0‖/‖b0‖, is less than some tolerance—e.g., 10−8.

The effectiveness of this complementary process is explained by considering the
corresponding two-grid error propagation operator. Let e(0) be the initial error in
approximating the solution to (1), and let e(0) ← Ge(0) represent the error propagator
for the relaxation method—e.g., G = I−ωD−1A in the case of weighted Jacobi. Then
(dropping subscripts), the error after a two-grid cycle is given by

(2) e(1) ← Gν2
(
I − P (RAP )−1

RA
)
Gν1e(0),
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S726 MANTEUFFEL, OLSON, SCHRODER, AND SOUTHWORTH

aggregates

(a) Aggregation.

F-pts C-pts

(b) C/F splitting.

Fig. 1. Example SA AMG and CF AMG coarsening for a linear finite element approximation
to a Laplace operator. The fine level problem has 191 DOFs. In this example, aggregation yields 25
coarse DOFs (aggregates), while a CF-splitting yields 51 coarse DOFs (C-points).

where P (RAP )−1
RA is a projection onto R(P ). In the case of SPD A, R = PT , and

this is an A-orthogonal projection. In either case, if Ge(0) ∈ R(P ), then the iteration
is exact. In other words, if interpolation is complementary and accurate for modes
not effectively reduced by relaxation, then error reduction with (2) will be large.

AMG methods attempt to automatically determine interpolation and coarse-grid
operators (P` and A`) that yield optimal error reduction with (2). The two standard
approaches are SA AMG and CF AMG, which are outlined in sections 2.1 and 2.2,
respectively. Broadly, SA AMG defines a coarse problem through an aggregation of
nodes (see Figure 1(a), while CF AMG defines a coarse problem through a splitting
of the DOFs into coarse C-points and fine F-points (see Figure 1(b)). Each offers
advantages, as noted in the following descriptions.

2.1. AMG based on smoothed aggregation. The effectiveness of SA AMG
relies on a priori knowledge of algebraically smooth error in the form of candidate vec-
tors, B. These vectors generally represent the lowest energy modes of the governing
PDE with no boundary conditions—e.g., the constant for diffusion and rigid-body-
modes for elasticity [48]. Using B (possibly determined a priori), the setup phase
first uses a strength measure on the connectivity of nodes to define an SOC matrix,
S, which is used to identify so-called aggregates (see Figure 1(a)). The goal of the
strength measure is to ensure that algebraically smooth error at each DOF in an
aggregate strongly correlates with algebraically smooth error at other DOFs in that
aggregate. This holds for model problems, where algebraically smooth error over each
aggregate is well represented by the restriction of the candidate vectors to the ag-
gregate. Consequently, this injection of the candidate vectors over each aggregate is
what leads to the initial representation of interpolation, termed the tentative interpo-
lation operator T , with candidate vectors exactly in the range of T . Each aggregate
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(a) Three aggregates and two candidate vec-
tors.

0 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 T P

(b) Columns of interpolation using a single
candidate with SA AMG.

Fig. 2. 1D Laplace example using SA AMG.

corresponds to one block in the block-diagonal operator T , with one column for each
candidate and one row for each point in the aggregate.

As an example, consider the one-dimensional (1D) Laplace operator on an eight-
node mesh, using standard finite differences, with candidate vectors B = [1,x]. This
yields three aggregates, Ai, i = 0, 1, 2, as shown in Figure 2(a). The aggregation
pattern matrix, C, coupled with the candidate vectors, B, yield the following:
(3)

C =



∗
∗
∗
∗
∗
∗
∗
∗


, B =



1 1/9
1 2/9
1 3/9
1 4/9
1 5/9
1 6/9
1 7/9
1 8/9


→ T =



1 −1
1 1

1 −1
1 0
1 1

1 −1
1 0
1 1


D,

where D = diag([2, 2, 3, 2, 3, 2])−1/2 is a diagonal matrix to normalize each column in
the l2-norm. Each block of T in (3) is an orthogonal basis for the restriction of B to
each aggregate.

In the case of a single candidate vector, B = [1], T consists of columns 0, 2, and
4 in (3). These columns are plotted in Figure 2(b) (dashed lines). It is important to
note that each column is nonzero only on its respective aggregate. To improve the
accuracy of interpolation for algebraically smooth modes—i.e., to make R(P ) more
complementary to relaxation—the columns of the tentative interpolation operator are
smoothed—e.g., with weighted Jacobi—to form P (Figure 2(b), solid lines). As the
range of P becomes richer, so does the nonzero footprint in the operator. Indeed,
nonzero elements of the middle column of P in Figure 2(b) (solid green) now overlap
into the neighboring aggregates.

Given a set of candidate vectors B on the current grid that are exactly represented
in the range of T , coarse-grid candidate vectors are constructed as the preimage of
B under T . The motivation is that the preimage of low-energy vectors for A` should
be low-energy vectors for A`+1. Let the orthogonal projection onto R(T ) be given
by πT = T (TTT )−1TT . Since the columns of T are orthonormal, πT = TTT , and
requiring πTB = B, that is B ∈ R(T ), results in a coarse-grid preimage of B under
T given by Bc = TTB. Since B is assumed to be a low energy mode, forming P by
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S728 MANTEUFFEL, OLSON, SCHRODER, AND SOUTHWORTH

applying smoothing iterations to T to improve multilevel convergence [46] keeps B
close to the range of P .

A general SA AMG setup algorithm is given in Algorithm 1.

Algorithm 1: SA setup()

Input: A0: fine-grid operator
B0: fine-grid candidate vectors
max size: threshold for maximum size of coarsest problem

Output: A1, . . . , AL,
P0, . . . , PL−1

1 ` = 0
2 while size(A`) > max size
3 S` = strength(A`) {strength-of-connection}

4 A` = aggregate(S`) {aggregation}

5 T`, B`+1 = inject(A`, B`) {form tentative interpolation and coarse candidates}

6 P` = smooth(A`, T`) {smooth T`}

7 A`+1 = PT` A`P` {coarse-grid operator}

8 ` = `+ 1

2.2. AMG based on coarse-fine splittings. In contrast to SA AMG, CF
AMG builds a multilevel hierarchy through a CF-splitting. On each level, ` =
0, 1, . . . ,L, the index set of DOFs, Ω` = {0, . . . , n`}, is split into Ω` = C` ∪ F`, where
C` ∩ F` = ∅. The set C` defines the coarse-level DOFs so that n`+1 = |C`|. Similar
to SA AMG, a strength measure, S, is used to determine the splitting so that alge-
braically smooth errors at F-points are well approximated by evaluating neighboring
C-points. Then interpolation, P : Rn`+1 → Rn` , is formed as

(4) P =
[
W
I

]
} F-points,
} C-points,

where W ∈ R|F`|×R|C`| is a sparse matrix with entries chosen to approximate smooth
error at F-points (rows of W ) as a linear combination of C-points (columns of W ).

The form of interpolation in (4) highlights two attributes of interpolation in
CF AMG that distinguishes it from SA AMG. The first is that the source of complex-
ity and accuracy is clear: the number of nonzeros in W controls both the accuracy
and cost of interpolation. This is explored further in section 2.4. Second, coarse
values are injected to the finer grid through the identity in the bottom block. This
in turn ensures linear independence of the columns of P , an important feature not
guaranteed in SA AMG.

A general CF AMG setup algorithm is given in Algorithm 2.

2.3. Benefits and limitations. In CF AMG, it is assumed that the constant
vector is representative of the near null space of the underlying problem, as in the case
of a Poisson problem. As a result, convergence can degrade if this is not an accurate
assumption. Moreover, the interpolation formulas for CF AMG are static and offer
no immediate ways to improve them for more difficult problems.

One benefit of CF AMG is that it provides a structure for controlling sparsity
through the determination of weights (see line 5 in Algorithm 2). Each row of W
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Algorithm 2: CF setup()

Input: A0: fine-grid operator
max size: threshold for max size of coarsest problem

Output: A1, . . . , AL,
P0, . . . , PL−1

1 ` = 0
2 while size(A`) > max size
3 S` = strength(A`) {strength-of-connection}

4 C`, F` = splitting(S`) {C/F -splitting}

5 W = weights(S`, A`, C`, F`) {interpolation weights}

6 P` =
[
W
I

]
{form interpolation}

7 A`+1 = PT` A`P` {coarse-grid operator}

8 ` = ` + 1

(see (4)) represents an interpolation formula for a given F-point from surrounding
C-points. As a result, this leads to simple filtering strategies in P [23] that eliminate
small entries in each row. In SA AMG, interpolation is based on having algebraically
smooth columns of P . Consequently, existing methods to explicitly filter entries in
P are limited, as removing entries can greatly reduce smoothness [20]. The structure
of interpolation operators in CF AMG also allows for theoretical results that are not
feasible for arbitrary transfer operators, as in SA AMG [25, 38, 49], and which are
used in section 4 to motivate RN AMG.

For problems in which a single global vector adequately represents the alge-
braically smooth error, SA AMG and CF AMG can each be effective. One benefit
of SA AMG is that the method allows for multiple candidate vectors to help define
the range of interpolation in order to improve the coarse-grid correction. However,
the computational cost of iterating tends to increase substantially when additional
candidate vectors are included. Since each candidate vector occupies a column in P
for each aggregate (see (3)), additional candidate vectors quickly increase the number
of DOFs and nonzeros in coarse-level operators.

As an example, consider a two-level multigrid method for a 2D Laplacian dis-
cretized with linear quadrilateral finite elements over a 50× 50 uniform grid. In this
case, A0 ∈ R2500×2500, with 21904 nonzero elements. Using the symmetric strength
matrix—i.e., Sij = 1 if Aij/

√
AiiAjj > 0.25 (see [48])—along with standard, greedy

aggregation [48] yields 289 aggregates. This results in P0 ∈ R2500×298 in the case
of a single candidate vector, and a coarse-grid operator A1 ∈ R289×289 with 2401
nonzeros. Using two candidate vectors, P ∈ R2500×578, and the coarse-grid operator,
A1 ∈ R578×578, has 9604 nonzeros. In this two-grid example, there is approximately
a 30% increase in the total number of matrix nonzeros in the hierarchy, which will
correspond to a comparable increase in the cost of each iteration.3 A key feature
of the RN AMG method introduced in section 3 is that the growth in complexity is
mitigated when incorporating multiple candidate vectors in the range of P .

Additionally, SA AMG provides a simple way to improve interpolation operators

3See [30] for an example where a scalar diffusion-like problem requires multiple candidate vectors.
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through the interpolation smoothing process. While classical SA AMG uses only one
weighted-Jacobi iteration to improve P , multiple iterations as well as smoothing with
a filtered operator to further improve P have been used [20, 33]. Nevertheless, because
each traditional smoothing iteration expands the sparsity pattern of P , this process
is limited, a problem which is overcome in RN AMG through a priori fixed sparsity
patterns of transfer operators.

2.4. Computational cost. The computational kernel in the multigrid setup
and solve phases is a sparse matrix-vector product (SpMV). Thus, a representative
measure of the cost of an AMG solver is the number of floating point operations
relative to one SpMV with the initial matrix. This measure is referred to as a work
unit (WU), where one WU is the cost of computing an SpMV on the finest level.
Both CF AMG and SA AMG often yield minimal setup costs or setup complexity
(SC), but as more features are introduced—e.g., improved SOC methods and energy
minimization—the SC may grow. In contrast to the fixed cost of setup, the solve
cost depends on the number of iterations or cycles taken, which in turn depends on
the stopping residual tolerance. Consequently, the cycle complexity (CC), denoted
χCC, is defined as the number of WUs required for each multigrid cycle and is used to
measure the solve cost. A similar measure is the operator complexity (OC), denoted
χOC, which models the cost of a multigrid hierarchy as the ratio of the total number
of nonzeros on all levels to the number of nonzeros on the finest level:

(5) χOC =
∑
`

|A`|
|A0|

,

where |C| denotes the number of nonzeros in some sparse matrix C. Note that this
is equivalent to the total cost of performing one SpMV on each level of the hierarchy.
Using this, the CC is often considered to scale with the OC. For example, in the
case of a V(2,2) cycle, χCC ≈ 4χOC. However, a more detailed model for CC includes
the residual computation and coarse-grid correction steps. While it is not typical to
account for these parts of the solve phase, they often contribute significantly to the
CC, especially for the richer interpolation sparsity patterns examined later. To this
end, the CC for a V(νpre, νpost) cycle is defined here as

(6) χCC =
∑
`

(νpre + νpost + 1)|A`|+ |P`|+ |R`|
|A0|

,

which reflects pre- and postrelaxation, a residual calculation, and one interpolation
and restriction per level (see solve phase discussion in section 2).

Detailed estimates of the complexity measures are often neglected in numerical
results. One contribution of this work is that precise estimates of the SC, OC, and
CC are provided for the numerical results presented in section 5. Coupled with the
convergence factor, this information is used to assess the effectiveness of the solver.
The SC estimates have been used to expose the expensive parts of the algorithm and
motivated the complexity reduction techniques introduced in section 5.1.

3. Root-node method. The general algorithm for constructing an RN AMG
hierarchy with L+1 levels, using energy-minimizing interpolation smoothing, is given
in Algorithm 3 below. The following subsections detail each algorithmic step, com-
paring and contrasting with the SA AMG and CF AMG.
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Algorithm 3: root node setup

Input: A0: fine-grid operator
B0: fine-grid candidate vectors for A
B̂0: fine-grid candidate vectors for AT (if A 6= AT )
d: interpolation sparsity pattern width
vector: flag indicating vector-based problem
max size: threshold for max size of coarsest problem
prefilter: prefiltering of interpolation sparsity pattern
postfilter: postfiltering of interpolation sparsity pattern

Output: A1, . . . , AL,
P0, . . . , PL−1,
R0, . . . , RL−1

1 ` = 0
2 while size(A`) > max size
3 S` = strength(A`) {strength-of-connection of matrix}

4 if vector
5 S` = amalgamate(S`) {amalgamate from degree-of-freedom to nodal}

6 C`, roots = aggregate(S`) {construct aggregates and root-nodes}

7 N` ← Sd`C` {form interpolation sparsity pattern}

8 if prefilter
9 N` = filter(N`) {eliminate small entries}

10 if vector
11 N`, roots = unamalgamate(N`, roots) {from nodal to degree-of-freedom}

12 N` = root node pattern(N`) {convert to root-node pattern}

13 B` = smooth(A`, B`) {improve candidates with relaxation}

14 T`, B`+1 = inject(C`, N`, B`, roots) {form tentative interpolation and B`+1}

15 P` = improve(A`, T`, B`, B`+1) {create smooth P` with P`B`+1 = B`}

16 if postfilter
17 P` = filter(P`) {eliminate small entries}

18 P` = enforce(P`, B`, B`+1 ) {enforce mode constraint with (12)}

19 P` = improve(A`, P`, B`, B`+1) {re-smooth P with one iteration}

20 if symmetric(A`)
21 R` = PT`
22 else
23 B̂` = smooth(AT` , B̂`) {improve candidates for the nonsymmetric case}

24 T̂`, B̂`+1 = inject(C`, N`, B̂`, roots) {form tentative restriction and B̂`+1}

25 RT` = improve(AT` , T̂`, B̂`, B̂`+1) {create smooth R` with RT
` B̂`+1 = B̂`}

26 if postfilter
27 RT` = filter(RT` ) {eliminate small entries}

28 RT` = enforce(RT` , B̂`, B̂`+1 ) {enforce mode constraint with (12)}

29 RT` = improve(AT` , RT` , B̂`, B̂`+1) {re-smooth R with one iteration}

30 A`+1 = R`A`P` {form coarse-grid}

31 ` = `+ 1
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S732 MANTEUFFEL, OLSON, SCHRODER, AND SOUTHWORTH

3.1. Candidate vectors B. As with SA AMG, a priori knowledge of the alge-
braically smooth error is assumed as input in the form of a set of candidate vectors
B. These vectors are critical for ensuring accurate interpolation of important alge-
braically smooth modes. In the case of A being symmetric, one set of candidate
vectors, B, is sufficient. In the case of nonsymmetric problems, a restriction operator
R is formed independently (whereas R = PT in the case of symmetry) through the left
candidate vectors B̂, which target smooth error in AT . Generally if candidate vectors
are not known or provided, a constant vector is used, as the constant is geometrically
smooth and a good choice for many problems. Finally, to ensure smooth (including
at the boundaries) candidate vectors, a small number of relaxation sweeps are applied
to A`B` = 0 (line 13). This improves the algebraic smoothness of B`, especially near
boundaries of a domain. Even for textbook examples such as a Laplacian, the stan-
dard candidate B` = 1 can yield a poor approximation to algebraically smooth error
near Dirichlet boundaries.

3.2. Strength matrix S. The first level-specific step is the construction of an
n` × n` SOC matrix, S` (line 3), which indicates strong connections between DOFs
in the problem. This matrix is used for the aggregation of DOFs, and for the con-
struction of a sparsity pattern, N , for P . This work considers the classical strength
measure [42], symmetric strength measure [48], and so-called evolution strength mea-
sure [39], although other measures have also been proposed [10, 12]. The classical
and symmetric strength measures essentially look at the magnitude of an off-diagonal
entry when determining whether it represents a strong connection. In contrast, the
evolution measure computes strength around a DOF i by locally evolving a unit vector
centered at i with a few sweeps of weighted-Jacobi relaxation. This creates a locally
smooth vector which is then postprocessed to determine which matrix entries in row
i are strong. For instance, for anisotropic diffusion, the directions in which the unit
vector diffuses most quickly are selected as strong connections.

After finishing, each method produces a matrix S` in which individual entries
represent the SOC in the graph of A`. One modification to S` that is used here is to
normalize each row so that

(7) max
j 6=i

(S`)ij = (S`)ii = 1.

That is, all elements are nonnegative, and for each row in S` the diagonal and the
largest off-diagonal, i.e., the strongest connection, both equal 1. This scaling and the
nonbinary nature of S` are important when computing the sparsity pattern in line 7.

For vector-based problems, A` has a block structure of block-size m × m, and
for common cases such as elasticity each block corresponds to the DOFs associated
with different variables but defined at the same spatial node. It is typical to group
each block into a single so-called supernode [48], followed by aggregation only at the
supernode level. This requires condensing the SOC with an amalgamate step in line 5,
which reduces S` to an n`/m× n`/m matrix. The amalgamated entry is equal to the
maximal entry of its associated m×m block in S`. This allows for aggregation based
on supernodes.

3.3. Aggregation. The next operation is forming an aggregation, A`, as in
SA AMG (see Algorithm 1), and an associated list of root-nodes (line 6). The classical
greedy aggregation algorithm [48] is used, wherein an unaggregated vertex in S` is
selected (as the root-node) and all neighboring vertices with strong edge weights are
collected to form an aggregate. An aggregation pattern matrix C` is then defined as
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a partition of unity such that C`(i, j) = 1 if node i belongs to aggregate j, and zero
otherwise. This pattern will be used in forming the sparsity pattern for P`. Other
aggregation routines such as pairwise aggregation [22, 36] have been considered but
have not demonstrated improvements in RN AMG performance, and the choice of
root-node is less clear than in a greedy aggregation routine.

Example aggregates for standard isotropic diffusion problems are given in Fig-
ure 3. For the systems case, m DOFs at each supernode implies that each root-node
also contains m DOFs.

Rootnode

AggregateAggregate
Rootnode

Two-dimensional example One-dimensional example

Fig. 3. Sample aggregates on the finest level for standard isotropic diffusion in one and two
dimensions.

3.4. Arbitrary sparsity pattern N . Aggregation gives an interpolation struc-
ture, with each root-node corresponding to one block column of T and P as in (3),
but not a sparsity pattern for P . Thus, in lines 7–12, the sparsity pattern N` for in-
terpolation is built, where (i, j) 6∈ N` ⇔ N`(i, j) = 0. Nonzero elements are based on
growing the aggregation pattern matrix, C`, based on the strength matrix, S`, through
multiplication N` = Sd`C` for some degree or distance d. Using d applications of S`
extends the interpolation stencil for a given F-point to a distance of d in the strength
matrix. Large values of d allow the sparsity pattern to grow in the direction of strong
connections, allowing for long-distance interpolation. This approach differs from that
of [41, 45] in that a normalized SOC matrix (7) is used with C`, and as a result,
N` can be filtered (line 9) by examining the magnitude of the entries: larger entries
indicate a stronger path from the root-node i. As a result, the normalization of S`
imbues a relative size across columns, so that the product with the binary aggregation
matrix C` yields individual entries related to the SOC.

In the case of vector problems, the unamalgamate step in line 11 reverses amalga-
mation and converts the list of root-nodes into a list of DOFs. If the amalgamated list
of roots is of length n`+1/m, then the unamalgamated list is of length n`. Similarly, the
unamalgamated entry N`(i, j) is equal to the amalgamated entry N`(bi/mc, bj/mc).

The last step in computing the sparsity is root node pattern in line 12. This
function enforces the root-node pattern of interpolation in (4) by traversing N` to
change each root-node row to be the corresponding row of the identity—i.e., the
restriction to each root-node for the coarse-grid does not involve other root-nodes,
and each root-node is interpolated by value back to the fine-grid. Other than this
root-node requirement, RN AMG allows for arbitrary sparsity patterns and enables
selective control of the number of interpolation points. This flexibility is used in the
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S734 MANTEUFFEL, OLSON, SCHRODER, AND SOUTHWORTH

next section, where the sparsity pattern is filtered (dropping entries) in a way that
targets only strong long-distance connections in P`.

It should be noted that the sparsity pattern for RT is built in the same manner
as P : by expanding a tentative operator with an SOC matrix based on A. Another
option is to construct the sparsity pattern for R based on an SOC from AT ; however,
numerical results consistently indicate a degradation in convergence factors when
doing the latter. Choosing the optimal sparsity pattern for both P and for R remains
an important and open research question.

3.5. Filtering sparsity pattern. A filtering step, which removes nonzeros in
N`, is used after the construction of the sparsity pattern for P . A large degree d (see
line 7) is often needed [30, 45] to construct effective interpolation operators; filtering
can limit the additional cost due to the growth in the sparsity pattern. In particular,
filtering allows for long-distance interpolation in the direction of strong connections,
while limiting complexity.

Prefiltering is used to filter the sparsity pattern matrix N` before the energy-
minimization. Here, entries are eliminated in N` prior to constructing P` based on
the size of entries in N` = Sd`C`, which indicate the SOC between two DOFs. Because
prefiltering is only based on SOC and not the fully formed interpolation operator, it
is possible that influential entries are inadvertently removed, thus degrading conver-
gence. However, in practice, trimming the sparsity pattern of P` before initiating the
construction significantly lowers the SC in many cases, with minimal impact on AMG
convergence.

Given an initial sparsity pattern, entries are filtered as in [23], by either retaining
the k largest values in a row or by applying a drop tolerance θ. Algorithm 4 describes
this process in detail, where max(G, i, k) is the kth largest off-diagonal entry in row
i. The idea of prefiltering has shown to be effective for model problems using a
polynomial approximation to A−1

ff in [14]. In contrast, the prefiltering used here is
less expensive and relies on values already computed by the root-node algorithm.

Algorithm 4: filter(G)

Input: G: matrix to be filtered
θ: filtering drop-tolerance
k: filtering threshold

Output: G
1 if k
2 for |G(i, j)| < max(G, i, k) do
3 G(i, j)← 0
4 if θ
5 for |G(i, j)| < θmax(G, i, 1) do
6 G(i, j)← 0

3.6. Interpolation construction. A tentative interpolation operator, T , is
constructed from the sparsity pattern. The full interpolation is then formed based on
a constrained energy-minimization with the following principles:

i. T and P satisfy interpolation constraints of the provided algebraically smooth
candidates. That is,

(8) TBc = B and PBc = B
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for candidates B and coarse level candidates Bc.
ii. The improve procedure reduces the energy of each jth column of P :

(9) ‖P(j)‖ ≤ ‖T(j)‖

for some A-induced norm ‖ · ‖. Interpolation smoothing in SA AMG is one
example.

iii. Given sparsity pattern N ,

(10) Tij = 0 if (i, j) /∈ N and Pij = 0 if (i, j) /∈ N .

The energy-minimization approach [41] is used here, which satisfies these principles.
Energy-minimization is an iterative smoothing process that improves P through sev-
eral passes. As a result, growth in the sparsity pattern of P necessitates a constraint
on the sparsity pattern constraint, N . However, in enforcing N by dropping entries
in P , the constraints are no longer satisfied. In response, the constraints are enforced
as an additional step.

RN AMG proceeds by taking the aggregation and list of root-nodes to construct
the coarse-grid candidates by injection, B`+1(i, j) = B`(k, j), where k is the ith root-
node. If m is the block-size of the original matrix (m = 1 for a scalar problem),
then only the first m candidates are injected over each aggregate to form an initial
T` (line 14). As a result, each root-node represents m DOFs on the coarse-grid. An
additional step is performed on T`, normalizing each column so that the coarse-grid
variables are interpolated by value to the fine-grid root-nodes. This process yields the
following form:

(11) T` =
[
W`

I

]
} non–root-nodes,
} root-nodes.

For m = 1, T` has nonoverlapping columns; for m > 1, W` is block-diagonal, as T in
(3). With the identity over C-points in T`, interpolation in RN AMG resembles that
of CF AMG (cf. (4)).

If there are more than m candidates, the remaining candidates are projected into
ran(T`) in the Euclidean inner-product. In RN AMG, it is assumed that the sparsity
pattern has sufficient DOFs that this is an underdetermined problem. This results
in the minimal norm update to each row of T` such that T`B`+1 = B` and T` obeys
the sparsity pattern N`. More specifically, an update u to only the allowed nonzero
portion of row i of T` (called t) is computed by solving

(12) (t+ u)B`+1 = B` ⇔ BT`+1u
T = BT` −BT`+1t

T

for u using least-squares. Note that only W` is modified in (12); that is, injection over
C-points is maintained, and W` is expanded to interpolate candidate vectors.

Next, interpolation P` is formed using improve in line 15. Energy-minimization
forms P` as a succession of energy-minimization updates to T`. Each update U is
computed to reduce the energy of each column via a Krylov process and also to
satisfy UB`+1 = 0. As a result, (i) (T` + U)B`+1 = T`B`+1 (constraints are satisfied
exactly), and (ii) ‖T` + U‖ ≤ ‖T − `‖ (energy is reduced). The projection operator
enforcing the constraints is analogous to (12) (see [41]).

3.7. Filtering interpolation. After P` is formed, a postfiltering process (simi-
lar to the prefiltering in section 3.5) is applied in line 17 to reduce complexity. Postfil-
tering removes elements directly from P` after smoothing, but this leads to a P` that
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violates the mode interpolation constraints (8). Thus, the function enforce is used to
reapply these constraints via (12). Finally, an additional iteration of improve is used
to account for large increases in energy caused by removing entries. One advantage
of postfiltering is that element removal is based on the actual smoothed interpolation
stencil entries, and is thus less likely to inadvertently degrade convergence compared
with prefiltering—i.e., by removing important entries from P . Postfiltering gener-
ally results in a lower complexity in the Galerkin coarse-grid operator (line 30) and
all subsequent coarser grid operations. A similar filtering approach is also effective
for CF AMG methods [23]. However, postfiltering does not reduce the OC and SC
as effectively as prefiltering, in particular because energy-minimization (one of the
dominant costs in SC) is applied to a larger sparsity pattern, which is then trimmed
afterwards.

3.8. Coarse-grid construction. The final step in Algorithm 3 is the construc-
tion of the coarse-grid operator through a (Petrov) Galerkin triple-matrix product
A`+1 = R`A`P`. For symmetric A`, restriction is the transpose of interpolation. For
nonsymmetric A`, the interpolation construction process is duplicated for RT` using
AT` (the ·̂ notation is used to denote the quantities used to compute R`) [18].

3.9. Discussion: Compare and contrast RN AMG with SA AMG. Simi-
larly to SA AMG, RN AMG facilitates the use of multiple arbitrary candidate vectors,
but it handles the complexity challenges by not adding columns to P for each addi-
tional candidate. The dimensions of T and P are fixed, with the number of columns
in T and P being equal to the number of aggregates. The candidates B are projected
exactly into ran(P ) and ran(T ), assuming a sparsity pattern with enough entries.
With SA AMG, for each candidate vector added to B, a new column is added to
T and P for every aggregate (see (3)). This difference allows RN AMG to exhibit
significantly lower complexity than SA AMG in some instances.

RN AMG also uses interpolation smoothing, like SA AMG, so that P is iteratively
improved. However, standard interpolation smoothing does not satisfy the exact
candidate interpolation constraints in general, although it does attempt to target
the same three principles outlined in section 3.6 (including accurate but not exact
candidate vector interpolation). A consequence of satisfying the constraints is that
the candidate vectors are exactly represented in the range of interpolation. To measure
this, consider the error in interpolating B found through an orthogonal projection of
B into the range of interpolation:

(13) eB = (I − PP †)B,

where P † is the pseudoinverse of P . The pointwise values of the error eB are shown in
Figure 4, where RN AMG achieves much lower error, directly satisfying the constraints
(globally).

Additionally, standard interpolation smoothing does not allow for multiple smooth-
ing passes (and hence longer-distance interpolation) without suffering from complex-
ity issues and fill-in in P . The arbitrary sparsity pattern allows RN AMG to have
longer-distance interpolation and multiple smoothing iterations, while also effectively
managing complexity.

An SA AMG-type method supporting vector problems can be derived from Algo-
rithm 3 by removing the root-node specific lines and by using the inject and smooth
functions from Algorithm 1 to form T` and P`. This form of SA AMG also supports
nonsymmetric problems [43].
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0 1
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SA

RN

Fig. 4. Error eB in satisfying the constraints B ≡ 1 ∈ ran(P ) for a 1D Poisson problem with
eight DOFs using central finite differences.

3.10. Discussion: Compare and contrast RN AMG with CF AMG.
Compared with CF AMG, RN AMG adopts the structure of P from (4), which aids
the use of pre- and postfiltering since the columns of interpolation are normalized
(with the identity). (In section 4, additional theoretical motivation for using this
form is investigated.) To understand this, consider how the CF AMG structure (11)
scales interpolation around each root-node for a simple 1D Laplace example on eight
nodes with finite differencing and B = 1. In this case, three aggregates are formed,
as in Figure 2(a). Each column of T is shown in Figure 5(a), where a relative balance
in weighting across aggregates is observed, in contrast to SA AMG, which is shown in
Figure 2(b). This balance in weighting is evident again in the final P in Figure 5(b),
again because the identity form is preserved according to (11).

0 1

0.0

0.2

0.4

0.6

0.8

1.0

(a) Columns of tentative interpolation T .

0 1

0.0

0.2

0.4

0.6

0.8

1.0

(b) Columns of interpolation P .

Fig. 5. Interpolation using a single candidate B = 1 in RN AMG.

This scaling aids the filtering strategy, which eliminates relatively small interpo-
lation weights in the rows of P , because it provides the rationale for comparing the
magnitude of entries across columns. In other words, RN AMG stipulates that a large
interpolation weight is one, representing injection from the coarse- to fine-grid, visible
as the peaks in Figure 5(b).

In contrast to CF AMG, there are the many similarities that RN AMG shares with
SA AMG, with key differences being the ability to iteratively improve P and guarantee
accurate interpolation of the user-defined candidate vectors B. Regarding similarities
to more recent adaptive CF-style AMG methods, bootstrap AMG (BAMG) [8] also fits
multiple candidate vectors into the range of interpolation but does so by generating a
set of many candidates and overdetermining each row of P . In this respect, RN AMG
is closer to SA AMG, as each row of P is underdetermined and fits only a small
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number of candidate vectors into the range of P , using interpolation smoothing to
fully determine each interpolation entry.

In contrast to both CF AMG and SA AMG, RN AMG allows for automatically
expanded sparsity patterns N`, which can be filtered to facilitate long-distance inter-
polation. This is critical for robustness and performance, as shown in the examples
in section 5, and is a unique feature of RN AMG.

4. Theoretical motivation for root-node. In this section, theoretical moti-
vation for RN AMG is introduced. Initially, it is assumed that A is SPD, in order to
connect with classical AMG theory. Based on relations established in the symmetric
setting, some results are extended to nonsymmetric systems in section 4.2.

4.1. The symmetric case. Let A ∈ Rn×n be SPD; ‖ · ‖ and ‖ · ‖A represent
the l2- and A-norms, respectively; and P : Rnc → Rn be an interpolation operator
defining a coarse space of size nc. The error propagation operator for a two-grid
method is given by

(14) ETG = I − P (PTAP )
−1
PTA,

and a multilevel version EMG is similarly defined (see [32]). Here, bounds on the
A-norm of ETG and EMG are constructed. The weak approximation property (WAP)
gives necessary and sufficient conditions for two-grid convergence as follows: there
exists K ∈ R such that for any vector u ∈ Rn,

(15) min
wc∈Rnc

‖u− Pwc‖2 ≤
K

‖A‖‖u‖
2
A,

wherein ‖ETG‖A = 1 − 1
KT G

and 1 ≤ KTG ≤ K [49]. For simplicity, (15) is based
on Richardson relaxation. A WAP with respect to a general relaxation scheme along
with a tight bound on KTG can be found in [25, 49]. The strong approximation
property (SAP) establishes multilevel convergence with a stronger condition: there
exists K ∈ R such that for any vector u ∈ Rn,

(16) min
wc∈Rnc

‖u− Pwc‖2A ≤
K

‖A‖‖Au‖2.

If (16) holds on each level of the hierarchy, then ‖EMG‖A = 1− 1
KMG

and 1 ≤ KMG ≤
1 +K ‖M‖‖A‖ , where M is the chosen relaxation scheme of the form xk+1 = xk +M−1rk
for residual r [49].

Since A is assumed to be SPD, its eigenvectors form an l2- and A-orthonormal
basis for the space Rn. Thus, if the WAP and SAP hold for all eigenvectors, they hold
for all vectors, and it follows that the WAP requires that eigenvectors be interpolated
with accuracy on the order of the corresponding eigenvalue, and the SAP requires
that interpolation accuracy on the order of the eigenvalue squared. This leads to an
equivalence of satisfying the WAP based on A2 and the SAP for A as follows.

Lemma 4.1 (Lemma 5.20 of [49]). Let A ∈ Rn×n be SPD and P ∈ Rn×nc . Then

min
wc∈Rnc

‖u− Pwc‖2 ≤
K2

‖A2‖‖u‖
2
A2 for all u(17)

if and only if

min
wc

‖u− Pwc‖2A ≤
K

‖A‖‖Au‖2 for all u.(18)
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The accuracy demands of the WAP and SAP with respect to eigenvalues indicates
that the range of P should contain eigenvectors of A associated with small eigenvalues
(or so-called algebraically smooth modes). In building AMG hierarchies, this generally
takes one of two forms, (i) ensuring that known low-energy modes are exactly repre-
sented in the range of P , and (ii) minimizing columns of P in the A-norm so that the
range of P corresponds to algebraically smooth vectors. Recall that RN AMG com-
bines each of these approaches in a constrained energy-minimization [14, 41, 45, 40].

Given a CF-splitting of the current grid, consider a matrix ordering of the form
A =

[Aff Afc

Acf Acc

]
, where Aff corresponds to F-point-to-F-point connections, Afc to

F-point-to-C-point connections, and so on. In a CF AMG context, interpolation is
then assumed to have the form P =

(
W
I

)
, where the lower identity block interpolates

and restricts C-points by injection and W interpolates and restricts F -points based on
linear combinations. The minimizing coarse-grid vector, wc, in the WAP and the SAP
is given by l2-orthogonal and A-orthogonal projections, respectively, of the vector u
onto the range of P . In practice, such projections are generally too expensive to form
explicitly; thus, computable measures are also of interest. One option consistent with
CF AMG is to let wc = uc, that is, define wc as the restriction of u to C-points. This
provides a bound on the WAP, as minwc∈Rnc ‖u−Pwc‖2 ≤ ‖u−Puc‖2 for all u, and
thus

µ(P ) := max
u6=0

‖u− Puc‖2
‖u‖2A

≥ KTG.(19)

Assuming P =
(
W
I

)
, the optimal interpolation operator under µ(P ) is given by

Pideal = argmin
P

max
u

‖u− Puc‖2
‖u‖2A

=
[
−A−1

ffAfc
I

]
,(20)

where Pideal is referred to as “ideal interpolation.”
In addition to Pideal being optimal with respect to the measure µ(P ) (and thus

satisfying the WAP for some K ≥ KTG), if Aff is well-conditioned, then ‖A−1
ff ‖ is

bounded by a small constant, in which case Pideal also satisfies the following SAP:

min
wc∈Vc

‖u− Pidealwc‖2A ≤ ‖u− Pidealuc‖2A ≤ ‖A−1
ff ‖‖Au‖2 ≤ K

‖A‖‖Au‖2

for some K. While Pideal indicates an effective interpolation scheme, A−1
ffAfc is of-

ten a dense matrix and difficult to compute. However, if Aff is well-conditioned,
its entries decay exponentially fast away from the diagonal [14], suggesting that a
sparse approximation can be formed. In addition to directly satisfying constraint
vectors, the energy-minimization piece of root-node interpolation constructs a sparse
approximation to Pideal, with the goal of retaining the convergence properties of ideal
interpolation while limiting coarse-grid complexity. In general, aggregation-based
AMG is motivated through energy-minimization principles over the columns of the
interpolation operator [19, 21, 29, 35, 46, 47]. The root-node approach, however, is
supported by a more complete theoretical motivation, as well as practical benefits in-
cluding the use of aggregation or CF-splittings for coarsening, and better conditioning
of the coarse-grid operator in the nonsymmetric setting (section 4.2).
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Observe that APideal =
(

0
S

)
, where S = Acc − AcfA−1

ffAfc is the Schur comple-
ment of A. Given that APideal = 0 over F-points, this motivates minimizing columns
of P =

(
W
I

)
in the A-norm to approximate the action of Pideal. The identity block

over C-points along with any constraints enforced ensure that columns of W are
nonzero. (The solution to minimizing a general P in the A-norm without constraints
is P = 0.) Coupled with a predetermined sparsity pattern and constraints PBc = B,
where B is a set of columnwise constraint vectors to be in the range of P and Bc B
restricted to C-points, energy minimization in the A-norm is exactly the conjugate
gradient (CG) variant of energy-minimization proposed in [41]. Lemma 4.2 shows
the relationship between Pideal and energy-minimization. That is, the CG variant
of energy-minimization used to form P over a given sparsity pattern is equivalent to
minimizing the difference between columns of P and Pideal in the A-norm over a given
sparsity pattern.

Lemma 4.2. Let A ∈ Rn×n be SPD, Pideal ∈ Rn×nc be given by (20), and e` be
the `th canonical basis vector, where p` = Pe` is the `th column of P . Denote by
NF a sparsity pattern for any matrix W ∈ Rnf×nc , where Wij 6= 0 if (i, j) ∈ NF .
Then define the set P` as the `th column of any matrix with the structure of Pideal,
restricted to sparsity pattern NF ; that is,

(21) P` =
{
Pel : P =

[
W
I

]
,where W ∈ Rnf×nc and Wij = 0 if (i, j) 6∈ NF

ij

}
.

Then for l = 1, . . . , nc,

(22) argmin
p`∈P`

‖p`‖A = argmin
p`∈P`

‖p` − Pideale`‖A .

Equivalently, minimizing the columns of P in the A-norm is equivalent to minimizing
the difference between columns of P and Pideal in the A-norm.

Proof. Equivalence is established by demonstrating identical weak forms for the
two minimization problems in (22). Consider p` ∈ P`, and define N` to be the
diagonal matrix that enforces sparsity pattern NF on the `th column of W , w`. That
is, w` = We` = N`We`, where the kth entry of w` equals zero if (k, `) 6∈ NF .

1. Consider minimizing the lth column of P , given by p` =
[w`

e`

]
, in the A-norm.

To this end, define the functional G(w`) =
〈
Ap`,p`

〉
=
〈
A
[w`

e`

]
,
[w`

e`

]〉
, with

first variation

G′(w`; v) = 2
〈
N`AffN`w` −N`Afce`,v

〉
for v = N`v. The weak form for minimizing G is then given by

N`AffN`w` = N`Afce`.

2. Consider minimizing the difference between the lth column of P and Pideal in
the A-norm. That is, define the functional

H(w`) =
〈
A(P − Pideal)e`, (P − Pideal)e`

〉
=
〈
Aff (N`w` −A−1

ffAfce`), N`w` −A−1
ffAfce`

〉
.

Taking the first variation yields

H ′(w`; v) =
〈
N`AffN`w` −N`Afce`,v

〉
,
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with v = N`v, resulting in the weak form

N`AffN`w` = N`Afce`.

Remark 4.3. A result similar to Lemma 4.2 can be found in [14] in the Frobenius
norm.

Although Pideal in (20) is motivated through (and optimal in the sense of (19))
the WAP (15), and with an appropriate CF-splitting satisfies the SAP (16), Pideal is
not optimal in any sense with respect to the SAP. However, a similar derivation leads
to an equivalent “ideal interpolation” operator with respect to the SAP, as introduced
in Lemma 4.4.

Lemma 4.4. Let A ∈ Rn×n be SPD and P ∈ Rn×nc take the form P =
(
W
I

)
;

that is, C-points are interpolated by injection. Then, consider the SAP under the
assumption that the preimage of any vector u under P is given by uc,

µ̂(P ) := max
u6=0

‖u− Puc‖2A
‖Au‖2 .

Then for any smoothing scheme M , KMG ≤ 1 + µ̂(P )‖M‖‖A‖ , and the optimal P with
respect to minimizing µ̂ is given by

argmin
P

µ̂(P ) =
[
(A2

ff +AfcAcf )−1(AffAfc +AfcAcc)
I

]
,

which is exactly ideal interpolation (20) for A2.

Proof. First note from the SAP that

KMG ≤ 1 +
(

max
u6=0

min
wc

‖u− Pwc‖2A
‖Au‖2

) ‖M‖
‖A‖

≤ 1 +
(

max
u6=0

‖u− Puc‖2A
‖Au‖2

) ‖M‖
‖A‖ .

Based on the proofs of Theorem 3.1 and Corollary 3.2 in [25], it follows that

argmin
P

max
u6=0

‖u− Puc‖2A
‖Au‖2 = argmin

P
max
u6=0

‖u− Puc‖2
‖Au‖2 = argmin

P
max
u6=0

‖u− Puc‖2
‖u‖2A2

.

The final equation is µ(P ) from (19) as applied to A2, and thus the minimum is
attained by ideal interpolation (20) as applied to A2.

Remark 4.5. An equivalent result holds for A∗A and
√
A∗A (as opposed to A2

and A), which is used in the following section on nonsymmetric operators.

4.2. The nonsymmetric case. The difficulties of convergence theory for non-
symmetric A lie in the fact that A no longer defines a norm, raising the question of an
appropriate norm for measuring convergence. The spectral radius bounds asymptotic
convergence factors [37, 50]; however, consider the following error propagation matrix
as an example:

E =
(
ε k
0 ε

)D
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for ε < 1. Irrespective of k, ρ(E) = ε, while if k = 0, then the convergence factor in
any reasonable norm should be ε. But if k = 108, let e0 = [0, 1]T , and the convergence
factor in the l2-norm after one iteration is

ρ1 =
‖e1‖
‖e0‖

= ‖Me0‖ =
√

10002 + ε2 ≈ 1000.

This demonstrates the downside of considering convergence for nonsymmetric AMG
methods based on the spectral radius, namely, that iterations may diverge, and the
spectral radius bound on the convergence factor is not necessarily achieved in practice.
In the case of SPD A, the two-grid AMG error propagation operator, ETG, is A-
symmetric and ‖ETG‖A = ρ(ETG). In [18], energy-norm convergence is extended to
nonsymmetric problems through

√
A∗A- and

√
AA∗-norms (using the square root to

maintain the order of the problem). Here, for nonsingular A, energy minimization
and RN AMG are related to two-grid theory in the

√
A∗A-norm.

Energy-minimization techniques for nonsymmetric problems have also been pro-
posed in the A∗A-norm for P and in the AA∗-norm for R, as opposed to the A-norm
as referenced in Lemma 4.2 (see, for example, fGMRES [41, (2.7)] and CGNR [41,
(2.34)]), and are the basis of forming transfer operators in RN AMG for nonsym-
metric problems. Building on Lemmas 4.1 and 4.2 gives the result in Lemma 4.6.
Coupled with Conjecture 4.7, two-grid convergence follows from [18]. Lemma 4.6
provides a meaningful theoretical motivation for energy-minimization as applied to
nonsymmetric problems.

Lemma 4.6. The solution to energy-minimization in the A∗A- and AA∗-norms
satisfies the nonsymmetric strong approximation property in the

√
A∗A- and

√
AA∗-

norms, respectively; that is, for all v there exists a vc1 ,vc2 such that∥∥∥v − PA∗A
ideal vc1

∥∥∥2
√
A∗A
≤ K

‖A∗A‖‖v‖
2
A∗A,∥∥∥v − PAA∗

ideal vc2
∥∥∥2
√
AA∗
≤ K

‖AA∗‖‖v‖
2
AA∗ .

Proof. The proof follows immediately from the equivalence of the WAP(A2) and
SAP(A) (Lemma 4.1) and the convergence of energy-minimization to Pideal, in this
case Pideal for A∗A and AA∗ (Lemma 4.2).

Conjecture 4.7 (stability). Let A be nonsingular. The nonorthogonal coarse-grid
correction given by transfer operators R = (PAA

∗

ideal )
T

and P = PA
∗A

ideal is stable; that is,∥∥∥P (RAP )−1RA
∥∥∥√

A∗A
=
∥∥∥I − P (RAP )−1RA

∥∥∥√
A∗A

= C(23)

for some constant C, independent of mesh spacing.

Remark 4.8. In the symmetric case, R = PT and C = 1, as the coarse-grid
correction is an A-orthogonal projection. In the nonsymmetric case, the stability
assumption necessary for two-grid convergence as shown in [18] is primarily to ensure
a nonsingular and reasonably conditioned coarse-grid operator, RAP . Conjecture 4.7
appears to hold in general, but expanding the ideal operators and forming RAP or the
full projection (23) does not provide a clear method to bound its norm. However, in
practice the root-node approach over traditional aggregation offers greater stability of
the nonorthogonal projection through enforcing the identity over C-points in transfer
operators. Specifically, when forming the coarse-grid, the identity block in R and P
help ensure the nonsingularity of RAP .
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5. Numerical results. In the following, the open source software package PyAMG
[6] is used to implement RN AMG4 and SA AMG.5 In each routine, cumulative es-
timates of the SC and CC (see section 2.4) are tracked in WUs. All costs in the
setup phase are included, such as computing the triple matrix product RAP . In ad-
dition, the CC estimates include pre- and postsmoothing, computing and restricting
the residual, and coarse-grid correction, but the coarsest-grid direct solve is not in-
cluded. Measured CC multiplied by the time to perform one SpMV is highly accurate
when compared with the wall-clock time of the solve phase. Although measured SC
does not track as closely with wall-clock time (likely due to a more complicated setting
with memory allocation, conditionals, etc.), it still provides a good estimate of setup
cost and differs from wall-clock times by a small constant.

As with many AMG methods, RN AMG has several parameters. The optimal
SOC measure is problem dependent, although the evolution measure tends to be
more robust for problems with strong anisotropy. Still, the evolution measure does
result in higher setup costs, as observed in section 5.1. Another parameter is that
of the degree d of the sparsity pattern for P (see line 7 in Algorithm 3). Generally,
more difficult problems such as anisotropic diffusion require d to be as large as 4–
5. The number of smoothing iterations applied to P is generally set to d1.5de, as a
larger sparsity pattern requires more iterations to minimize the energy of the columns.
For SPD problems, the CG-based variant of energy minimization is the least costly,
while GMRES is used for nonsymmetric problems (GMRES does not offer improved
convergence for SPD problems; see Remark 5.1). Filtering P also requires user-level
decisions (lines 9 and 17 in Algorithm 3). Based on experimentation, a drop tolerance
of θ is most effective (in contrast to a fixed number of elements per row k) and is
used in the following tests. Optimal values depend on the connectivity of the matrix
and are beyond the scope of the numerical tests presented; however, θ ∈ [0.05, 0.25]
is used in most scenarios.

In each setup phase below, a maximum coarse-grid size of 20 is used, and candidate
vectors are improved (line 13, Algorithm 3) with four sweeps of relaxation. For cycling,
each test uses an accelerated V-cycle to iterate to a relative residual tolerance of
10−8. Details of the specific relaxation scheme, acceleration type, and other details
are specified on a problem-by-problem basis below.

5.1. 3D-diffusion.

5.1.1. Filtering and complexity. The first example demonstrates the effec-
tiveness of the proposed filtering strategy in reducing the CC and SC of an RN solver.
Although filtering is a key component of RN AMG on nearly all problems, it is espe-
cially applicable in three dimensions, where there is high connectivity between nodes,
resulting in relatively dense operators. Consider the anisotropic diffusion problem

uxx + uyy + 0.001uzz = f.(24)

Linear finite elements are used to discretize (24) on an unstructured tetrahedral mesh
of the unit cube, with homogeneous Dirichlet boundaries, yielding a matrix with
approximately 2.65M DOFs. While the anisotropy is aligned with the coordinate
axis, the unstructured mesh yields a variety of non–grid-aligned anisotropies, known
to be more difficult for AMG than the grid-aligned case (see section 5.2). Table 1
shows complexities and average convergence factors (ρ) for solving (24) using various

4See root node solver.
5See smoothed aggregation solver.
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Table 1
Impact of filtering for the 3D-anisotropic diffusion problem.

Prefilter θ – 0.1 0.2 – – 0.1 0.2
Postfilter θ – – – 0.1 0.2 0.1 0.2

SC 1157.9 161.7 123.2 581.5 432.9 156.2 129.8
OC 3.0 1.4 1.3 1.8 1.5 1.4 1.3
CC 18.9 8.0 7.1 10.1 8.0 7.7 6.9

ρ 0.52 0.60 0.62 0.51 0.53 0.59 0.61

Table 2
Break-down of setup cost in WUs for 3D-anisotropic diffusion.

Prefilter θ Postfilter θ Aggregation Candidates P RAP Total SC

– – 478.7 24.1 469.7 271.1 1243.6
0.2 – 48.5 10.4 55.1 9.2 123.2
– 0.2 64.1 11.7 338.7 18.5 432.9

0.2 0.2 46.3 10.1 65.4 7.9 129.8

combinations of pre- and postfiltering on P . A V(1, 1)-cycle with symmetric Gauss–
Seidel relaxation and CG acceleration is used. The evolution SOC measure is used,
with a drop tolerance of 4.0, and CG energy minimization with d = 4.

Table 1 shows up to an order of magnitude reduction in SC and more than a 50%
reduction in CC by using filtering. While filtering does not guarantee a reduction
in complexity, significant savings are often observed with only a marginal impact on
convergence. In some situations, filtering has been observed to not only reduce cost,
but also improve convergence (see section 5.4).

The SC in Table 1 is broken down into four main categories in Table 2. “Aggre-
gation” is the cost of computing the strength matrix S and forming aggregates A,
most of which is due to using the evolution measure. “Candidates” refers to relax-
ing candidate set B and restricting B to a coarse level. Column “P” refers to the
cost of forming the tentative interpolation operator and applying energy-minimization
smoothing iterations to construct P , while column “RAP” represents a measure of
the triple-matrix product. Each column gives the total cost for the given processes
over all levels, measured in WUs.

Filtering P has a direct impact on all setup components that use R and P matrix
operations (see “RAP” and “Candidates” in Table 2). Consequently, this reduces the
cost of restricting the residual and the coarse-grid correction as measured in the CC,
along with the cost of smoothing P , which is the focus of prefiltering. Table 2 also
highlights the high cost of the strength measure in cases when coarse-grid complexity
is not contained, i.e., filtering is not used, demonstrating the additional benefit of
reduced costs on all subsequent grids through a sparser coarse-grid operator, Ac =
RAP .

Remark 5.1. Although GMRES energy-minimization targets the SAP and CG the
WAP, when applied to SPD problems, there is not a notable difference in convergence.
For instance, if GMRES is used in Table 1, then the convergence rates change by no
more than 0.005, and operator complexities remain essentially the same.

5.1.2. Modified evolution SOC. One contribution of this paper is the detailed
SC estimates. Precise SC estimates are important when comparing AMG methods—
e.g., components such as energy-minimization and the evolution SOC measure may
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add significantly to the overall setup costs. Moreover, these estimates help identify
areas that are opportune for cost reduction.

In considering Table 2, one possible area for cost reduction is the aggregation
phase, where the cost of the SOC computation dominates. Traditional SOC measures
require only a few work units, usually 2 or 3 times the operator complexity. However,
Table 2 shows that evolution-based SOC is a substantial part of the setup phase, which
is attributed to the global spectral radius estimate used in the weighted Jacobi method
[39]. This estimate is calculated with an Arnoldi/Lanczos process and costs roughly
15 matrix-vector multiplies on each level. However, alternative methods [4] use `1-
Jacobi relaxation to provide an inexpensive local rowwise weight. This alternative is
explored here for the evolution SOC measure.

Table 3 depicts detailed SC results for using the modified `1-Jacobi evolution
measure (cf. Table 2). This change results in similar operator and cycle complexities,
and nearly identical convergence rates, as for the original evolution measure. When
comparing Tables 2 and 3, it is apparent that the aggregation phase has been signifi-
cantly reduced in cost. Additionally, when examining the most efficient solvers, where
prefiltering uses θ = 0.2, the overall savings in the setup complexity are roughly 20%.

Table 3
Break-down of setup cost in WUs for 3D-anisotropic diffusion.

Prefilter θ Postfilter θ Aggregation Candidates P RAP Total SC

– – 449.1 24.4 473.0 249.5 1195.9
0.2 – 25.5 10.4 53.6 7.6 97.1
– 0.2 43.2 11.7 326.7 16.9 398.6

0.2 0.2 22.7 10.2 63.3 6.9 103.1

5.2. Totally anisotropic diffusion. Diffusion-like operators are prototypical
AMG problems, as they are elliptic and SPD. However, with strong anisotropy,
these problems still pose a challenge to multilevel solvers. A 3D example is used in
section 5.1 to demonstrate filtering. In this example, consider a 2D rotated anisotropic
diffusion problem on the domain Ω of the form

−∇ ·QTDQ∇u = f for Ω = [0, 1]2,
u = 0 on ∂Ω,

where

Q =
[
cosψ − sinψ
sinψ cosψ

]
, D =

[
1 0
0 ε

]
.

Here, ε represents anisotropy, and ψ the angle of rotation from the coordinate axis,
both of which contribute to the difficulty of this problem [9, 10, 12, 13, 15, 21, 22, 23,
27, 33, 36, 39, 41, 45]. To see this, consider the nonrotated case of ψ = 0, which has
a spectrum of the form

−∇ ·D∇ujk = λjkujk, where
ujk = sin(jπx) sin(kπy),

λjk = π2(j2 + εk2),

for j, k ∈ Z+. If ε = 1, then the lowest energy mode is the lowest Fourier mode, u11 =
sin(πx) sin(πy), which is locally representative of all low-energy modes. However, if

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S746 MANTEUFFEL, OLSON, SCHRODER, AND SOUTHWORTH

ε ≈ 0, for small j there are high-frequency eigenfunctions in the y-direction (k � 0)
with relatively small eigenvalues that are no longer represented locally by the lowest
Fourier mode. As a result, relaxation schemes are unable to capture these modes,
while coarse-grid correction is not equipped to handle such hidden high-frequency
error.

For angles ψ aligned with the mesh, line relaxation or semicoarsening along the
direction of anisotropy can be used [44]. However, for strong anisotropies, ε ≈ 0, with
angles that are not aligned with the mesh, efficient and effective multigrid solvers
remain elusive. This section considers a finite element discretization of strongly and
totally anisotropic diffusion, ε = 0.001 and ε = 0, respectively, on a unit square with
Dirichlet boundary conditions. Totally anisotropic diffusion is particularly challenging
as the problem is effectively reduced to a sequence of 1D problems on a 2D domain.
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(a) Unstructured mesh: n = 5 × 106.

0 π/12 π/6 π/4 π/3 5π/12 π/2
Angle of anisotropy

0.0

0.2

0.4

0.6

0.8

1.0
C

on
ve

rg
en

ce
fa

ct
or

(ρ
)

0

8

16

24

32

40

C
yc

le
co

m
pl

ex
ity

(χ
C
C

)
in

W
U

s
(b) Structured mesh: n = 8 × 106.

Fig. 6. Results for totally anisotropic diffusion (ε = 0), with angles in (0, π/2). A structured
grid of size 2000 × 2000 and an unstructured mesh with resolution h ≈ 1/2000 are used. Legend
entries in (a) apply to (b) as well. RN AMG, shown in black, outperforms SA AMG and CF AMG
in all cases.

Figure 6 compares RN AMG, CF AMG, and SA AMG applied to totally anisotropic
diffusion for various angles. All solves use a symmetric V(1,1)-cycle with symmetric
Gauss–Seidel relaxation and CG acceleration. Grid-aligned anisotropies are gener-
ally easier to solve than non–grid-aligned; hence the excellent convergence factors at
θ = π/4 on the structured mesh. In the case of an unstructured mesh, all angles are
effectively non–grid-aligned, resulting in consistent performance across angles.

CF AMG uses a classical strength measure with drop tolerance of 0.5 and standard
CF-splitting and interpolation [42]. Smoothed aggregation uses a symmetric strength
measure (with a drop tolerance of 0.0—i.e., the strength matrix is given by A and
normalized as in (7)) and two iterations of weighted Jacobi interpolation smoothing
[48]. The root-node solver in this case uses two steps of an evolution strength measure
(with a drop tolerance of 4.0), along with six iterations of CG energy-minimization
smoothing of P . For the energy minimization, a degree d = 4 sparsity pattern is used
with filtering, θpre = θpost = 0.1. Two and three Jacobi smoothing iterations were
applied to the SA AMG solver in an attempt to mimic the expanded sparsity pattern
used in RN AMG, but the convergence with respect to CC did not improve.
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Figure 6 highlights the effectiveness of RN AMG over all angles with moderate
operator and cycle complexities. For time-to-solution with respect to floating point
operations and wall-clock time, RN AMG achieves 3–30× speed-up in comparison to
SA AMG and CF AMG on a structured or unstructured mesh, with moderate cycle
complexities in all cases. It should be noted that performance of SA AMG improves
when using the modified evolution SOC measure introduced in section 5.1.2, but
RN AMG still performs 2–3× faster with respect to time and complexity. This is a
notable achievement in performance for this problem, as anisotropic diffusion remains
a significant challenge to most solvers.
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(a) V(1, 1)-cycle.
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(b) W(1, 1)-cycle.

Fig. 7. Scaling results for RN AMG for anisotropic diffusion with ε = 0.001, ε = 0, and
θ = 3π/16. Cycle complexity, χCC, is shown and is constant for all problem sizes.

Figure 7 demonstrates the scaling of convergence factors as problem size increases
for V (1, 1)- and W (1, 1)-cycles. In the case of ε = 0.001, V-cycle convergence factors
asymptote and scale perfectly, independent of h, on structured and unstructured
meshes, up to 25 million unknowns; the SC and CC also scale but are not shown.
However, in the case of ε = 0 there is a slow growth in the convergence factor as the
problem size increases for both V- and W-cycles. To analyze, consider a convergence
factor, ρ(h), dependent on spatial step size h:

ρ = ρ̄(1− ahq),(25)

where q = 1 in the case of linear finite elements, a is some constant, and ρ̄ is the
asymptotic convergence factor, limh→0 ρ = ρ̄. A log of (25) and an expansion yields
log(1 − ah) = −ah + O(h2) or − log(ρ) = − log(c) + ah. A linear fit on the three
smallest step sizes in Figure 7 for ε = 0 leads to the following asymptotic convergence
factors:

structured: ρ→ 0.82, unstructured: ρ→ 0.88.

Although an asymptotic convergence factor of approximately 0.88 is relatively slow,
scalable convergence of totally anisotropic diffusion on unstructured meshes has not
been achieved by other AMG methods.

In practice, using W-cycles over V-cycles should increase the accuracy of the
coarse-grid correction. However, Figure 7 reveals that W-cycles offer only minor im-
provements. This indicates that the algebraically smooth error is not well represented
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by the coarse-grid, and that improved strength measures and coarsening routines
[9, 12, 13, 22, 36, 39] may improve the coarse-grid, thereby improving convergence for
this problem.

5.3. Recirculating flow (nonsymmetric). One of the benefits of the root-
node approach is the ability to handle a variety of problems, including nonsymmetric
problems and systems, without redesign of methodology and implementation. In this
section, a standard recirculating flow example known as the double-glazing problem
is used [24], which models temperature distribution over a domain when an external
wall is hot. The governing PDE is given by

(26) − ε∇ · ∇u+ b(x) · ∇u = f,

where ε = 0.005, and wind is given by b(x) = [2x1(1 − x2
0),−2x0(1 − x2

1)]. Dirichlet
boundaries are imposed on the domain [0, 1]× [0, 1], where u = 0 on the north, south,
and west sides of the domain, and u = 1 on the east, leading to boundary layers near
corners with discontinuities.

A standard Galerkin finite element method (GFEM) based on a regular triangular
mesh is used, resulting in a nonsymmetric discrete linear system. Multigrid theory
for nonsymmetric problems is less developed in comparison to the symmetric case;
however, SA AMG has been extended to nonsymmetric problems [43] and is used in
this section (see Algorithm 3).

Each example uses a V(1, 1)-cycle of weighted-Jacobi relaxation with GMRES ac-
celeration. While Jacobi relaxation is not guaranteed to converge for a nonsymmetric
problem, it remains around half the cost of using relaxation on the normal equations.
In section 5.4 an upwind discretization is considered which requires relaxation on the
normal equations for effective convergence. For SA AMG, a classical strength measure
(with drop tolerance 0.25) is used along with one and three steps of Jacobi smooth-
ing applied to P , labeled SA1 and SA3, respectively. The symmetric traditional SA
strength measure is not used, due to the nonsymmetry of the problem. Two steps of
the evolution measure (with drop tolerance 3.0) is used for RN AMG along with two
iterations of GMRES energy minimization for P with d = 1 (labeled RN1), and five
iterations of GMRES energy minimization for P with d = 3 (labeled RN3).

Table 4
Nonsymmetric SA AMG and RN AMG for the recirculating flow problem.

2000× 2000 3000× 3000 4000× 4000
θ d SC OC CC ρ SC OC CC ρ SC OC CC ρ

– SA1 72 1.4 5.2 0.74 71 1.4 5.2 0.82 71 1.4 5.2 0.88
SA3 229 2.3 11.2 0.96 230 2.3 11.2 0.96 227 2.3 11.2 0.93

– RN1 98 1.4 5.1 0.46 96 1.4 5.0 0.50 95 1.4 4.9 0.45
RN3 403 2.5 9.7 0.68 407 2.4 9.4 0.63 405 2.3 9.2 0.76

0.1 RN1 126 1.4 5.1 0.52 125 1.4 5.0 0.56 124 1.4 4.9 0.56
RN3 284 1.8 6.7 0.53 287 1.8 6.7 0.52 285 1.8 6.6 0.63

Table 4 demonstrates that optimal results are achieved for this example with no
filtering and a small sparsity pattern (d = 1). This agrees with practical experience:
generally it is effective to increase the filtering tolerance as the degree of the sparsity
pattern for P increases, or as the connectivity of matrix A increases. This is observed
in the 3D-anisotropic diffusion problem, where high connectivity and a d = 4 sparsity
pattern allow for a large θ = 0.2. If the sparsity pattern increases in distance from
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Fig. 8. RN AMG convergence factor as a function of h for fixed half-grid Reynolds numbers,
Rh ∈ {0.05, 0.5, 1.25, 2.5}.

the root-node, or if the matrix is highly connected, then it is likely there are entries
that are not critical to performance and are candidates for removal.

Classical CF AMG is not designed for nonsymmetric problems, making RN AMG
the clear choice for a problem such as this. RN AMG achieves more than a 6× speed-
up over SA AMG for the largest problem size considered, with a lower CC and only
slightly larger SC. Furthermore, RN AMG convergence factors with degree d = 1
appear to have reached an asymptote, while SA AMG is still demonstrating a steady
increase with problem size.

Remark 5.2. With the recirculating flow, as the grid-size (h) approaches zero,
there are two competing factors that contribute to the numerical difficulty of the
problem. As h→ 0, the diffusive part of the problem, −ε∇ ·∇, becomes increasingly
dominant, as the discretization scales like 1

h2 while b(x)·∇ scales like 1
h . The resulting

linear system is more symmetric and diffusion-like, which is preferable for AMG.
However, as h→ 0, convergence factors often increase to an asymptotic value (see (25)
and Figures 7(a) and 7(b)), due to smaller eigenvalues and an increasing number of
levels in the AMG hierarchy. Together, these factors correspond to the so-called
half-grid Reynolds number or cell Reynolds number, Rh = |b|h

2ε , where convergence
factors are expected to be consistent for a fixed Rh and degrade for Rh � 1. Figure 8
demonstrates this phenomenon. Convergence factors asymptote for each half-grid
Reynolds number as h→ 0. In this case, convergence degrades by a factor of 10 when
increasing from Rh = 1.25 to Rh = 2.5; thus it is faster to solve a refined problem with
Rh = 1.25 (and several times as many DOFs), rather than a system with Rh = 2.5.

Based on the scalability of RN AMG performance for fixed Rh, with the appropri-
ate grid-size, most convection-diffusion problems as in (26) should exhibit scalability
in convergence. Of course, this relies on the diffusion operator dominating the dis-
crete system. As a limiting case, RN AMG is applied to the steady-state transport
equation in the following section.

5.4. Upwind transport (nonsymmetric). In this section, a highly nonsym-
metric upwind discretization of the steady-state transport equation is considered.
Define the domain as Ω = (0, 1) × (0, 1), with constrained inflow boundaries Γin =
{(x, y) : x = 0 or y = 0} and free outflow boundaries Γout = {(x, y) : x = 1 or y =
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Fig. 9. Vector fields of flow functions, b(x, y) considered in (27), with inflow boundaries
Γin = {(x, y) : x = 0 or y = 0}.

1}. The steady-state transport equation is then given as

b(x, y) · ∇u+ c(x, y)u = f(x, y) Ω,
u = g(x, y) Γin.

(27)

RN AMG performance is demonstrated for variations in b(x, y) and c(x, y), using an
upwind lumped bilinear discontinuous (LBLD) finite element discretization [34]. A
discontinuous discretization is used to allow for discontinuities in material coefficient
c(x, y), and to account for the fronts that develop in hyperbolic-type PDEs. The
transport problem, (27), results in a highly nonsymmetric (nearly lower-triangular in
the proper ordering) matrix A, for which traditional relaxation schemes such as Jacobi
and Gauss–Seidel relaxations diverge, even for small problems. Thus two sweeps of
Gauss–Seidel relaxation on the normal equations are chosen as the relaxation scheme,
which contributes to a larger CC.

One anomalous feature of the LBLD discretization applied to (27) is that the
best convergence rates are obtained with aggressive filtering, θpre = θpost = 0.4− 0.5.
The rationale is that a large degree sparsity pattern with aggressive filtering results
in a sparsity pattern that is long and narrow, following the direction of flow. For
a hyperbolic PDE with the solution following characteristic curves, effective sparsity
patterns for a given column of P will align with the characteristic associated with
the root-node. However, in practice this requires either a priori knowledge of the
problem, to motivate aggressive filtering, or experimentation. For most problems,
filtering values of θpre = θpost ∈ [0.05, 0.15] are effective choices, increasing to θpre =
θpost ∈ [0.1, 0.25] for problems with high connectivity—e.g., 3D-diffusion, as discussed
in section 5.1. However, the LBLD results demonstrate that further work is needed to
algebraically determine the optimal interpolation sparsity pattern for a given problem.

RN AMG is applied to the LBLD discretization of (27) for three different material
coefficients c(x, y), as shown in (28), and three directional functions, as shown in
Figure 9:

Constant: c1(x, y) = 1,

Square in square (SnS): c2(x, y) =

{
104, x, y ∈ [0.25, 0.75],
10−4, x, y 6∈ [0.25, 0.75],

Split: c3(x, y) =

{
10−4, x < 0.5,
104, x ≥ 0.5.

(28)
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Table 5
Nonsymmetric RN AMG for variations on the 2D steady-state transport equation (27). Matri-

ces have 4, 000, 000 DOFs and 15, 986, 004 nonzeros.

b(x, y) [cos(2π/7), sin(2π/7)] [y, x] [y, cos(πx/2)]
c(x, y) 1 SnS Split 1 SnS Split 1 SnS Split

RN

SC 164 147 130 125 105 107 126 112 109
OC 1.88 1.76 1.66 1.92 1.83 1.78 1.91 1.83 1.77
CC 17.9 16.7 15.8 18.2 17.4 17.0 18.2 17.4 16.8
ρ 0.79 0.74 0.75 0.86 0.84 0.85 0.87 0.87 0.86

Results are shown in Table 5 for a discretization with 4,000,000 DOFs, sufficiently
large to observe asymptotic convergence factors. A classical SOC with drop tolerance
θ = 0.35 is used, and GMRES energy-minimization is applied to a degree four sparsity
pattern for interpolation and restriction operators in RN AMG, with filtering θpre =
θpost = 0.45. The multigrid solver is used as a preconditioner for GMRES, and
problems are solved to 10−8 residual tolerance. Candidate vectors are taken as the
constant and are not improved for this problem, as convergence tended to degrade.

Although convergence factors in the case of nonconstant flow are higher than de-
sired (worst case ρ ≈ 0.87 for RN AMG), it is encouraging that AMG methods are
able to solve upwind discretizations of a hyperbolic PDE with discontinuous and non-
constant coefficient functions. Convergence factors of SA AMG quickly approached
one, and did not converge in 500 iterations.

Often when considering transport-type problems, “sweeps” are performed, where
the problem is discretized in angle and a linear solve performed for each angle. Trans-
port sweeps are an important part of the DSA algorithm for models of neutral particle
transport [2]. For this reason, it is of interest to demonstrate RN AMG’s capability
on the entire spectrum of angles, similar to anisotropic diffusion as considered in sec-
tion 5.2. Figure 10 shows convergence factors of RN AMG as a function of direction
of flow, θ ∈ [0, π/2], as applied to the LBLD discretization of (27).

5.5. Elasticity example (systems problem). AMG for systems of PDEs is
an important topic due to the vast number of problems formulated this way. Although
there are some problem-specific extensions to CF AMG for systems such as elastic-
ity [5], where rigid body modes are incorporated into a modified method, CF AMG
is not applicable to systems in a general setting. In contrast, SA AMG specifically
targets systems-based problems such as elasticity and performs well in many cases.
Here, the suitability of RN AMG for systems is illustrated through a comparison with
SA AMG for a standard elasticity model problem, a problem for which SA AMG was
designed.

The test problem is isotropic linearized elasticity defined by

(29) − div
(
λ tr

((
∇u +∇uT

)
/2
)
I + µ

(
∇u +∇uT

))
= f,

where λ and µ are the Lamé parameters, I is the identity matrix, and tr() is the
trace function. Example two from the MFEM package [1] is used to discretize
(29) using a regular mesh of a beam that is eight times longer than it is wide
(data/beam-tri.mesh). Three material choices, of increasing difficulty for AMG,
are considered: a steel beam, with Young’s modulus and Poisson ratio of E = 180E9
and ν = 0.30; a rubber beam, with E = 0.1E9 and ν = 0.499; and a more difficult
rubber beam, where ν = 0.4999. In general, the closer ν is to 0.5, the more difficult
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Fig. 10. Convergence factors for GMRES-accelerated RN AMG applied to the steady-state
transport equation, as a function of the direction of flow b(x, y) = (cos(θ), sin(θ)). Results are shown
for the Gauss–Seidel on the normal equations (GSNE) relaxation as well as Jacobi relaxation, to
demonstrate why normal-equation relaxation is necessary for highly nonsymmetric problems. Other
solver parameters are fixed for all tests, with the exception of filtering, which is modified slightly for
improved convergence on angles close to π/4. Convergence with GSNE is in the range [0.75, 0.85]
for interior angles, with significant improvement close to the boundaries.

the system is for AMG to solve. The east side of the beam is fixed to a wall with u = 0
Dirichlet boundary conditions. Neumann conditions are applied on other boundaries,
with u ·n = f , where f = 0 for the north and south sides and f = −0.01 on the west
side, representing a downward force. Standard linear triangular finite elements are
used to produce an SPD system with two variables at each spatial location and the
corresponding block sparse row matrix with 2× 2 blocks.

Each example uses a V(1, 1)-cycle of symmetric block Gauss–Seidel relaxation
with CG acceleration. Both RN AMG and SA AMG use the classical strength measure
with a drop tolerance of 0.5. RN AMG does not use the evolution measure here
because the classic measure performed well and lowered the setup complexity.6 The
terms SAk and RNk again refer to the degree of interpolation smoothing. For RN4,
six iterations of CG energy minimization are used, while for RN1, two iterations are
used. Experimentation indicates that only prefiltering is needed, so θ values refer
only to prefiltering. The candidate vectors B0 are the three rigid-body-modes in two
dimensions, two translations, and one rotation.

Table 6 gives the numerical results for three problem sizes, from 256k to 4M
DOFs. Various filtering values produce qualitatively similar results, so a single result
is reported. All methods converge well for the steel beam, with the 0.5 convergence
rate for RN1 being offset by the low operator complexity of 1.2. The rubber beams
are considerably harder, with the most difficult beam problem yielding convergence
rates well above 0.9.

Comparing the methods with each other, the results reveal that RN1 converges

6If the three elasticity test cases are rerun for RN4 using the evolution strength measure, then
the convergence rate degrades by about 0.01–0.02, and the operator complexities remain similar; i.e.,
RN AMG using the evolution measure converges similarly to SA using the classic measure. While
SOC for systems is an active topic of AMG research and not well understood, one possible reason for
this small difference between the two measures is that the “anisotropy” in the beam is grid-aligned,
and the classical measure is known to handle grid-aligned anisotropies well.
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Table 6
Application of SA AMG and RN AMG to three linearized elasticity problems. The tests are

progressively more difficult, with Test 1 being a steel bar with Poisson ratio ν = 0.30, Test 2 being
a rubber bar with ν = 0.499, and Test 3 being a rubber bar with ν = 0.4999.

Grid size: 1024× 128 2048× 256 4096× 512
Test θ d SC OC CC ρ SC OC CC ρ SC OC CC ρ

1
– SA1 105 1.6 9.8 0.23 106 1.7 9.8 0.26 105 1.7 9.8 0.26

0.1 RN1 84 1.2 6.9 0.50 84 1.2 6.9 0.49 85 1.2 6.9 0.51
RN4 226 1.4 8.2 0.19 226 1.4 8.2 0.21 225 1.4 8.2 0.19

2
– SA1 104 1.6 9.6 0.83 106 1.6 9.8 0.84 104 1.7 9.8 0.84

0.1 RN1 77 1.2 6.7 0.92 77 1.2 6.7 0.94 78 1.2 6.7 0.93
RN4 221 1.4 8.2 0.80 223 1.4 8.2 0.80 223 1.4 8.3 0.81

3
– SA1 104 1.6 9.7 0.93 105 1.6 9.8 0.94 105 1.7 9.8 0.93

0.1 RN1 82 1.2 6.7 0.97 82 1.2 6.7 0.97 81 1.2 6.7 0.97
RN4 228 1.4 8.2 0.92 229 1.4 8.3 0.92 229 1.4 8.3 0.92

slowly in comparison to SA1 or RN4. This is because the three candidate vectors
provided as interpolation constraints require a richer sparsity pattern than d = 1 in
order to satisfy the constraints.

Another important point is that RN AMG with d = 4 achieves a better con-
vergence rate and smaller operator complexity than SA AMG but at the cost of a
larger SC. Taking the largest problem size for Test 2, with 4M DOFs (a grid size
of 4096× 512), the difference in convergence rate yields 87 iterations for RN4 versus
107 iterations for SA1. However, even with this faster convergence, SA AMG uses the
fewest overall WUs.7 SA AMG similarly provides slightly better overall work units for
setup and solve with Test 3. In conclusion, this section shows that RN AMG is a vi-
able approach to solving systems and is competitive with SA AMG for the considered
elasticity problem, for which SA AMG was originally designed. Applying RN AMG
to systems is still an active research topic, focusing on issues such as reducing the
setup cost and considering more complicated examples.

Remark 5.3. It is important to note that the ideal P in (20) is ideal only for the
specific two-grid setting outlined in [25]. This ideal P is not guaranteed to be ideal
for multilevel methods, or even for all two-grid methods. However, the ideal P is still
a useful target for interpolation, as evidenced by the experiments in this work and by
the fact this it is ideal under the assumptions in [25]. Along with approximating Pideal,
RN AMG combines other proven approaches to constructing quality interpolation op-
erators, interpolation smoothing, and guaranteed interpolation of known algebraically
smooth modes.

As an example of how this combination of strategies makes RN AMG more robust
than using Pideal, two-grid experiments for the three test cases from Table 6 are run
on a small mesh yielding 4.5k DOFs. For the steel beam (Test 1), the convergence
factors are 0.19, 0.17, and 0.18, for SA1, RN4, and ideal P , respectively. Moving to
the rubber beam (Test 2), the convergence factors are 0.80, 0.79, and 0.97. Finally,
for the harder rubber beam (Test 3), the convergence factors are 0.92, 0.91, and 0.98.
Experimentally, it appears that as the Poisson ratio approaches 0.5, convergence Pideal
degrades significantly faster than the interpolation operators produced by SA AMG
and RN AMG.

7It is possible, given the faster creep in convergence rate suffered by SA AMG, that RN AMG
could outperform overall as the problem size increases.
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6. Conclusions. The presented RN AMG methodology has proven successful
on a wide variety of problems. The proposed filtering of the interpolation sparsity
patterns before and after energy-minimization smoothing iterations greatly reduces
setup and cycle complexity, and at times improves convergence, making RN AMG a
robust solver for difficult SPD problems, nonsymmetric problems, and systems-related
problems. Total complexity remains reasonable for all of the examples tested, and
tends to scale with the size of the problem. Providing such total complexity estimates,
including the setup phase, is a specific contribution of this work.

One particularly difficult problem is strongly anisotropic diffusion, which RN
AMG is able to solve effectively, in contrast to other AMG methods. Because the
focus here is on a general root-node methodology, coupled with energy-minimization
smoothing of P , minimal testing is done in coupling RN AMG with other advance-
ments in AMG. In the case of strongly anisotropic diffusion, many other works con-
sider modified SOC and advanced coarsening schemes in order to better capture the
anisotropy [9, 12, 13, 22, 36, 39], thereby improving convergence rates. Future work
involves coupling RN AMG with a larger variety of SOC measures, aggregation rou-
tines, and sparsity patterns for P , to further improve convergence on anisotropic
problems. Root-node is also shown to be effective at solving convection-diffusion and
a discontinuous upwind discretization of a hyperbolic PDE (steady-state transport),
demonstrating that AMG need not be limited to elliptic problems.

Parallelization of RN AMG is straightforward. The basic computational kernels
are typically available in AMG codes (e.g., matrix-matrix multiply), are light-weight
(e.g., filtering entries), or purely local in computation (e.g., the rowwise projection
operation (8)).

New theoretical motivation for coupling energy minimization with RN AMG is
provided in the symmetric and nonsymmetric setting. Proving Conjecture 4.7 would
complete the two-grid convergence proof for ideal operators in the nonsymmetric
case. However, the stability constraint is of limited use in practice, as it is not
directly approximated like the weak and strong approximation properties. Further
work on developing energy-based, nonsymmetric convergence theory is important in
understanding how to construct AMG solvers for nonsymmetric systems.
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