
Modeling MPI Communication Performance on SMP
Nodes: Is it Time to Retire the Ping Pong Test

William Gropp
Department of Computer

Science
University of Illinois at
Urbana-Champaign

wgropp@illinois.edu

Luke N. Olson
Department of Computer

Science
University of Illinois at
Urbana-Champaign

lukeo@illinois.edu

Philipp Samfass
Department of Computer

Science
University of Illinois at
Urbana-Champaign

samfass2@illinois.edu

ABSTRACT
The “postal” model of communication [3, 8] T = α + βn,
for sending n bytes of data between two processes with la-
tency α and bandwidth 1/β, is perhaps the most commonly
used communication performance model in parallel comput-
ing. This performance model is often used in developing and
evaluating parallel algorithms in high-performance comput-
ing, and was an effective model when it was first proposed.
Consequently, numerous tests of “ping pong” communica-
tion have been developed in order to measure these param-
eters in the model. However, with the advent of multicore
nodes connected to a single (or a few) network interfaces,
the model has become a poor match to modern hardware.
In this paper, we show a simple three-parameter model that
better captures the behavior of current parallel computing
systems, and demonstrate its accuracy on several systems.
In support of this model, which we call the max-rate model,
we have developed an open source benchmark1 that can be
used to determine the model parameters.

CCS Concepts
•Theory of computation→ Parallel computing mod-
els; Parallel algorithms; •Computer systems organiza-
tion → Multicore architectures;

Keywords
bandwidth saturation, benchmark, communication, multi-
core, parallel computing, performance model, symmetric mul-
tiprocessor cluster, ping pong

1. INTRODUCTION
One of the advantages of the message-passing program-

ming model is that there are relatively simple performance
models that can (and are) used to design algorithms and

1https://bitbucket.org/william gropp/baseenv

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroMPI ’16, September 25-28, 2016, Edinburgh, United Kingdom
c© 2016 ACM. ISBN 978-1-4503-4234-6/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2966884.2966919

understand performance issues in applications. One of the
earliest, sometimes called the postal model [3, 8]2, represents
the communication time to send n bytes as

T = α+ βn, (1)

where the term α denotes the total latency and β the in-
verse of the asymptotic bandwidth (for arbitrarily large n,
measured in seconds per byte). While numerous other per-
formance models have been proposed [16] and have found
some use, the postal model remains the most common per-
formance model used to analyze message-passing programs.

Consequently, many benchmarks measure α and β by send-
ing a message to another process, followed by sending the
message back. This is called a ping pong benchmark, and is
widely used to evaluate MPI implementation performance.
For many years, these benchmarks, and the postal model,
have been effective ways to model and predict performance
of MPI applications.

However, with the advent of multicore processors and
nodes, the postal model and the ping pong benchmarks are
no longer useful without some modification, as we show in
this paper. Instead, additional information is needed to take
into account the fact that all systems that we study do not
provide the full bandwidth to all processes in a multicore
node.

This paper describes the limitations of the postal model in
Section 2. In Section 3 we propose a simple alternative and
show measurements on several systems in Section 4, each
with a different node and/or network architecture, high-
lighting the superiority of our new model. We close with
our recommendations and conclusions in Section 5.

1.1 Related Work
There are a number of alternative performance models to

the postal model. The LogP [5] model separates hardware
latency from software overhead and is useful in modeling
short messages in an effort to measure the impact of soft-
ware overhead. The LogGP [2] model addresses the issue
of long messages that is not handled in the LogP model.
Hop bytes or hop count [1] includes an additional term that
models the number of links (hops) over which a message
travels. Other models address specific network capabilities,
while simulation is sometimes used for the more difficult is-

2The term “postal model” was first introduced in [3] but the
notion of modeling operation time in this way for vector and
parallel computers was described in detail in [8]; see, e.g.,
equation 1.4b.

sue of contention between messages in a network.
There are also many benchmarks that measure ping pong

performance. Some of the best known include mpptest [6],
SkaMPI [17], Netgauge [9], the Intel IMB [11], OSU Micro-
Benchmarks [15], and the Phloem MPI Benchmarks [12]. A
ping pong test is also included in the HPC Challenge [13]
benchmarks. In addition, a discussion of MPI performance
on ccNUMA nodes appears in [14]. A comparison of some of
the MPI benchmarks [7], most of which target single proces-
sor (or core) nodes, shows a mismatch between the design
of these benchmarks and the behavior measured on SMP
nodes. An excellent discussion of the complexities in mea-
suring parallel performance is in [10].

2. WHAT’S WRONG WITH PING PONG
The ping pong benchmark and the communication per-

formance parameters that it measures are widely used to
compare MPI implementations and, perhaps more impor-
tantly, to predict the performance of an MPI application,
including giving insight into the design of algorithms that
use MPI. The associated performance model, sometimes
called the postal model [8], is a simple two-parameter model
often written in (1). In this section, we explain why this
performance model no longer matches the behavior of many
systems.

As an example, consider a halo exchange, which is a com-
mon communication pattern that occurs in both the explicit
and implicit discretization of partial differential equations.
A typical implementation has each MPI process commu-
nicating with multiple processes on different nodes, sends
n bytes to each of E processes. Using the postal model
to estimate the time that the exchange takes yields3 T =
E(α+ βn). But measurement on many systems show much
lower performance. For example, on a Cray system with
XE6 nodes, the sustained halo exchange rate on 1024 pro-
cesses with 2048 double floating point numbers is approxi-
mately 380 MB/sec. Yet, using a ping pong test (mpptest
from [6]), we measure α = 1.6e−6 and β = 1.7e−10, which
corresponds to a sustained bandwidth of 5.9 GB/sec using
the postal model. Why is the postal model so inaccurate?

As we show in the following sections, the key problem with
the postal model is that it does not account for the interface
between the node. In addition, the network cannot sustain
communication at a rate of a single process node (which is
the case in the ping pong measurement).

Another well-known, but often unconsidered issue, is that
MPI implementations typically use different methods de-
pending on the message length. It is common for short mes-
sages to be sent “eagerly” while longer messages depend on
a rendezvous. Consequently, the resulting bandwidth may
be different; in addition, the rendezvous approach requires
more control messages, adding to the latency (the α term
in (1)). When designing algorithms and implementations,
understanding the different regimes is important; indeed,
many MPI implementations allow user control (within lim-
its) of the size of messages that are sent eagerly.

There are other effects that are also important that we
do not consider in the proposed model. These include net-
work distance — e.g., multiple hops over the network, some-

3On systems such as the IBM Blue Gene, there are multiple
independent links, so if all links are used, the time estimate
divides this by the number of links used.

times modeled by adding a“hop-count” [1], different network
bandwidths in some high-radix, switched networks such as a
mix of electrical and optical links depending on the distance
and route [4], differences between inter-node and intra-node
communication, and network contention caused by messages
sharing the same links. All of these effects are usually much
smaller than the impact of multiple MPI processes on the
same node communicating at the same time, which can be
10× what the postal model predicts.

3. MODELING MPI ON SMPS
The problem with the ping pong benchmark is that it

assumes that the communication performance between two
MPI processes is independent of the execution of other MPI
processes. The utility of the model depends on the correct-
ness of this assumption, since in a typical MPI application,
communication often happens in phases during which most
if not all processes are communicating with another process.

Thus, we refine the model in two ways:

1. Recognize the eager/rendezvous threshold (potentially
including “short” threshold for very short messages),
and

2. Take into account the limits of bandwidth into and out
of a node.

The first means that there are essentially two models (three
in the case of a separate short protocol) and that each should
be measured separately. The second implies that these terms
establish a maximum communication rate for all processes
on a node.

To model the maximum communication rate we modify
the two-parameter postal model, which is given as

T = α+ nβ. (2)

We consider the maximum rate at which k processes can
send data out of a node. If the processes do not limit each
other, the aggregate rate is just kRC , where RC is the rate
that each process can achieve in sending or receiving a mes-
sage. Now, if we also take into account that the maximum
rate that data can leave (or enter) the node and enter (re-
spectively exit) the network (the injection bandwidth) is RN ,
then the maximum bandwidth for k simultaneously commu-
nicating processes on a node is min(RN , kRC). Using this as
the maximum asymptotic bandwidth, we modify the postal
model to be

T = α+ kn/min(RN , kRC), (3)

since kn bytes are being sent.
A refinement of this model,

T = α+ kn/min (RN , RCb + (k − 1)RCi) , (4)

recognizes that the additional bandwidth achievable by pro-
cesses after the first may be different (typically lower) than
the bandwidth that a single process can sustain. However,
as we show, this refinement offers at best a minor improve-
ment in accuracy. As a result, we recommend the use of the
simpler three-parameter model given in (3).

It is important to note that for largeRN , each of (3) and (4)
reduces to T = α+ n/Rc, or β = 1/Rc, which is the typical
postal model or ping pong test. Conversely, if RN = Rc,
that is, the rate that any one process is able to send data is

the speed at which data can be injected into the network,
then T = α+kn/Rn. That is, the time for large messages is
(asymptotically) proportional to the number of concurrent
sending processes on each node.

An improved model recognizes the impact of the message
overhead on the peak rate, and can be formulated as follows:
The sustained rate is the minimum of RN , the peak rate
of the NIC, and the rate that is sustained by having each
process send at a rate of Rc, but including the latency term.
That is,

R =
kn

T
= min

(
RN ,

kn

α+ n/Rc

)
.

Solving for T , this performance model is

T =
kn

min
(
RN ,

kn
α+n/Rc

) . (5)

For n large, the α term becomes negligible and

T ≈ kn

min
(
RN ,

kn
n/Rc

) =
kn

min(RN , kRc)
.

Similarly, for n small and α� n/Rc, we have

T ≈ kn
kn

α+n/Rc

= α+ n/Rc.

While Equation (5) can be a more accurate model (as we
show in Figure 5 for the IBM Blue Gene/Q), the three-
parameter model in (3) is nearly as effective and is easier to
work with. As a result, we use this simpler equation in our
comparisons.

3.1 Consequences
Our new model suggests several changes in how algorithms

are designed. Under the postal model in (1), it often makes
sense to implement a halo exchange as

MPI_Isend for each edge

MPI_Irecv for each edge

MPI_Waitall

However, the new model identifies the inefficiencies. Specif-
ically, in the postal two-parameter model, for E edges of
length n, T = E(α + βN). In contrast, in the new model,
T = E(α+kN/min(RN , kRc)) for k MPI processes on each
node, where β = 1/Rc as shown above. If we assume N
is large enough to ignore the latency (α) term and that
k is large enough that the injection bandwidth dominates
(RN < kRc), then the ratio of the time estimates for the
postal model (2) and the new max-rate model (3) is

Tpingpong
Tnew

≈ β

k/RN
. (6)

For RN similar to Rc, this implies that the communication
time is approximately k times the predicted postal model
time. This matches what we observe in practice, for example
on Cray systems (cf. Section 4).

This modeling motivates a different approach to the halo
exchange. A relatively simple change is to overlap commu-
nication with computation, as in

MPI_Isend for each edge

MPI_Irecv for each edge

compute on interior

MPI_Waitall

compute on edges

This requires that the communication time exceeds the time
in the “compute on interior” step, and that communication
time is given by the new model. An alternative is to use a
smaller number of processes to communicate; this strategy
also requires a more sophisticated load balancing strategy,
since different processes will have varying amounts of work.

4. EXPERIMENTAL RESULTS
In this section we develop a benchmark and derive mea-

surements of internode communication for several, current
architectures. The measurements are used to determine the
parameters in our proposed model. The results also high-
light the discussion presented in Section 2 on the limitations
of the traditional two-parameter model.

In the following, we first describe the experimental setup
and present data obtained on Blue Waters4, which uses a
Cray Gemini interconnect. We fit our proposed model to the
data, using least-squares, and highlight the value in using
an extended set of parameters in the model in the case of
multicore nodes. We then summarize the experiments on
Mira5, a Blue Gene/Q system, and two clusters, one using
a Cisco UCS Fabric Interconnect and one with InfiniBand
networking.

4.1 Experimental Setup
Based on the hardware topology for each system in our

benchmark, pairs of communicating MPI ranks on separate
nodes are determined to communicate according to a block-
ing ping pong exchange pattern. We measure a loop over
multiple ping pong exchanges using MPI_Wtime(). In the
following figures, we use the max-reduce time over all partic-
ipating MPI processes to determine the aggregate effective
bandwidth defined as R = kn

T
. In order to test the hypothe-

sis of this paper, we vary both the number of communicating
pairs of processes and the message sizes.

To determine the model parameters in the two, three, and
four parameter models (equations (2), (3), (4), respectively)
we use a non-linear least squares method6. Because of the
wide range in message sizes and hence communication times
in our experiments, instead of the standard error function,
we minimize the weighted variant

∑
i (yi − f(~p, ki, ni))

2/ni,
where f is the model function, ~p are the model parameters,
ki is the number of communicating pairs and ni the message
size for the ith data point. In the following experiments we
compute the relative error in the model fit as a function of
the message size and the number of communicating pairs
(cf. Figure 2).

In all except for one of the tested systems (Taub Clus-
ter with InfiniBand) different communication phases (short,
eager and rendezvous) were apparent, so we fitted them sep-
arately7 since a single fit over all message sizes would not

4https://bluewaters.ncsa.illinois.edu/blue-waters
5https://www.alcf.anl.gov/mira
6A variant of the Levenberg-Marquardt algorithm
is used, as implemented in the Python library
scipy.optimize.leastsq
7The buflimit routine from mpptest is used
to compute thresholds: http://www.mcs.anl.gov/
research/projects/mpi/mpptest/; also included in

adequately handle the bandwidths for the different proto-
cols. Both the postal model, (2), and the max-rate mod-
els, (3) and (4), effectively capture the eager and short phases.
However, in the case of large message sizes (rendezvous),
the postal model does not fit the trends observed in the
measured data. As we will show in detail for Blue Wa-
ters, a two-parameter ping pong fit will either significantly
over- or underestimate the actual aggregate bandwidth due
to its assumption of a fixed bandwidth independent of the
number of communicating pairs. In contrast, we also ob-
serve that the max-rate three-parameter and four-parameter
models succeed to identify the upper limit in the available
aggregate bandwidth, correctly scaling in the case of con-
current communication. In the following section we show
that both max-rate models yield similar results, although
the four-parameter model is more accurate in the case of two
communicating pairs since it assumes a base bandwidth.

4.1.1 Blue Waters Cray XE6
In this first test, the benchmark is compiled with the Cray

C compiler, v 8.4.6, with optimization flag -O3. The tests
are executed on 8 Cray XE6 nodes with 16 MPI processes
mapped round robin by socket. We present the communica-
tion results for two neighboring nodes (in the z-direction, re-
sulting in different Gemini hubs) in the 3-dimensional torus
topology. In addition, we set the short-eager threshold at
32 bytes and the eager-rendezvous threshold at 1024 bytes.
In order to test whether the postal model is capable of pre-
dicting the available bandwidth for our data, we estimate
α and β by computing fits for three different data sets: a
single pair of communicating processes, all 16 communicat-
ing pairs, and the complete set of observed data (1 up to 16
communicating pairs).

In Figure 1 we present both the measured aggregate band-
width (Figure 1a) as well as the fit of this data to each of
the models presented in the previous section. The error in
the model fit is given in Figure 2, where it is important to
note that different scales are used in each figure in order to
identify the locations of the largest error.

In both the measured data and modeled data of Figure 1,
the short-eager and eager-rendezvous protocol thresholds are
clearly identified. We also note that the postal model does
not adequately capture the bandwidth, particularly at large
message sizes. Indeed, on closer inspection of the errors
in Figure 2, we note that the max-rate, three-parameter
and extended max-rate four-parameter models fit with a
maximum relative error of 0.24 and 0.18, respectively. In
contrast, the postal, two-parameter models given in Fig-
ures 2c, 2d, and 2e yields larger errors (0.88, 7.26, and
3.49), resulting in a misrepresentation of the bandwidth by
an order-of-magnitude in many cases.

The extended max-rate model yields small relative errors
for the bulk part of the data. Yet, the largest errors of our
model are observed for the case of one pair of communicating
processes in the short and eager regimes and for a large
number of active process pairs right at the eager-rendezvous
threshold. The eager-rendezvous threshold varies between
systems and can have a large impact on the interpretation
of the ping pong results. For example, Figure 7 shows a
large threshold of around 25Kb; identifying the threshold
is straightforward, but is an important aspect to obtaining
an accurate model. Furthermore, we see that the improved

https://bitbucket.org/william gropp/baseenv

four-parameter max-rate model (4) results in only modest
improvements for large message sizes. This suggests that
the simpler, three-parameter max-rate model is sufficient to
identify high-quality performance expectations in practice.

The model parameters for our extended max-rate model
are detailed in Table 1. For the short phase, the resultingRN
is large enough to not be a limiting factor in the model (we
thus label it∞). As a result, the performance model reduces
to a modified form of the extended max-rate model (4):

T = α+ kn/(RCb + (k − 1)RCi).

Likewise, since the negative parameters values are likely an
artifact, the model is further reduced in this situation to a
two-parameter model:

T = α+ knβ,

where β = 1/RCb . This resembles the standard postal
model (2), but assumes communication dependent on k, the
number of processing elements. For the eager phase, param-
eter RN is again determined large, thus not impacting the
model. In this case, the message size is not large enough
to saturate the NIC for 16 simultaneously communicating
pairs. However, for the rendezvous phase, when message
sizes are larger, saturation is visible in the data. Accord-
ingly, our max-rate model yields an RN which limits the
peak performance for large message sizes when more cores
communicate.

As a summary, the (total) relative errors in the model
fits are given in Table 2 for each communication protocol.
We see that uniformly the max-rate models more accurately
describe the aggregate bandwidth in the system.

4.2 Results on Other Systems
In this section we highlight the robustness of the new max-

rate model by executing the benchmark and fitting the data
on a series of machines with different network interconnects.

Illinois Taub Cluster with Infiniband
The Illinois Taub Cluster8 is a QDR InfiniBand based sys-
tem of dual socket nodes, each with Intel X5650 six-core pro-
cessors. The results of the benchmark and model are shown
in Figure 3, where we consider two network protocols: TCP
using MPICH and InfiniBand using MVAPICH2. It is im-
portant to note that these tests were run during heavy sys-
tem use, leading to noisy InfiniBand results; consequently
we present the highest performing data in these runs. In
the case of both TCP and InfiniBand we use a single fit of
the model to obtain the max-rate model parameters in (3).
The results in Figure 3 show that the max-rate performance
model captures the bandwidth trends in multicore commu-
nication across network protocols and in the presence of data
irregularity (e.g. in the case of TCP).

Mira IBM Blue Gene/Q
Mira, a 10-petaflop IBM Blue Gene/Q machine at Argonne
National Laboratory, yields two distinct communication pha-
ses, eager and rendezvous protocols, as shown in Figure 4a.
As a result, we fit the three-parameter model (3) to each of
these regions.

Figure 4 underscores that our model is qualitatively accu-
rate, showing the saturation of the available bandwidth from

8https://campuscluster.illinois.edu/hardware/#taub

100 101 102 103 104 105 106

message length [bytes]

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(a) Measured data.

100 101 102 103 104 105 106

message length [bytes]

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(b) Max-rate, three-parameter model.

100 101 102 103 104 105 106

message length [bytes]

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(c) Extended max-rate, four-parameter
model.

100 101 102 103 104 105 106

message length [bytes]

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(d) Postal, two-parameter model (1 pair).

100 101 102 103 104 105 106

message length [bytes]

106

107

108

109

1010
a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(e) Postal, two-parameter model (16 pairs).

100 101 102 103 104 105 106

message length [bytes]

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(f) Postal, two-parameter model (1–16
pairs).

Figure 1: Aggregate effective bandwidth and fitted models on Blue Waters (Cray XE6) with 1 (bottom) to 16 (top) commu-
nicating pairs.

Table 1: Max-rate model parameters (4) for Blue Waters (Cray XE6).

Phase α RN RCb RCi

[sec] [bytes/sec] [bytes/sec] [bytes/sec]

short 4.0× 10−6 ∞ 6.3× 108 −1.8× 107

eager 1.1× 10−5 ∞ 1.7× 109 6.2× 107

rendezvous 2.0× 10−5 5.5× 109 3.6× 109 6.1× 108

the node into the network. However, the model is not able
to reproduce the sharp ridge demonstrated in the measured
data of Figure 4a. Instead, Figure 5 shows that the modified
model (5) gives a closer fit in this particular case. Never-
theless, we recommend using the max-rate model in general
due to its ease of use and the flexibility in generalizing to
other systems.

Arcetri Cisco Cluster
The Arcetri UCS Balanced Technical Computing Cluster at
Cisco Systems employs a Cisco Fabric Interconnect and dual
12-core Intel Haswell 2680 chips per node. This allows us
to scale the number of communicating pairs to 24. The re-
sults are consistent with the other machines: the max-rate,
three-parameter model effectively captures the behavior of
the bandwidth for multiple processing elements. In this run
in particular, the eager-rendezvous threshold is high (cf. Fig-
ure 7), yet fitting the model to each region identifies the
salient features of the performance.

5. CONCLUSIONS

We have shown that the postal model fails to capture the
communication behavior of multicore nodes and that a sim-
ple addition to the model provides a much more accurate
performance model. While the proposed model has its own
limitations (for example, it doesn’t include effects of shared
caches between cores or interactions between different chips
in a multi-chip node), it is successful in providing insight
into the performance of message-passing applications and to
guidance into the design of algorithms.

We believe that it is time to retire the postal model and
use the proposed three-parameter model,

T = α+ kn/min(RN , kRc)

instead. Further, vendors can easily provide this information—
they often already provide α and RC by using one of the
existing standard benchmarks; RN , the maximum rate that
can be sustained by the network interface is also often de-
scribed in the vendor literature, and as we have shown, can
be reliably measured by a simple benchmark, which we have
provided.

We also believe that eager/rendezvous thresholds should

1 3 5 7 9 11 13 15
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

(a) Max-rate, three-parameter model.

1 3 5 7 9 11 13 15
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) Extended max-rate, four-parameter
model.

1 3 5 7 9 11 13 15
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Postal, two-parameter model (1 pair).

1 3 5 7 9 11 13 15
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

(d) Postal, two-parameter model (16 pairs).

1 3 5 7 9 11 13 15
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

(e) Postal, two-parameter model (1–16
pairs).

Figure 2: Relative error in the least-squares fit of the models in Figure 1. note: The color scheme scales are different for each
figure.

Table 2: Relative error sums for the different fit variants.

max-rate max-rate postal postal postal
Phase four-parameter three-parameter two-parameter two-parameter two-parameter

(1 pair) (16 pairs) (complete set)

short 1.23 1.31 7.40 2.59 1.81
eager 1.71 1.85 10.97 3.54 2.37
rendezvous 7.60 8.37 58.78 109.39 46.87

100 101 102 103 104 105 106

message length [bytes]

104

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)

(a) Measured data (TCP).

100 101 102 103 104 105 106

message length [bytes]

104

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)

(b) Max-rate, three-parameter model (TCP). 1 3 5 7 9 11
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

(c) Relative error (TCP).

100 101 102 103 104 105 106

message length [bytes]

104

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)

(d) Measured data (IB).

100 101 102 103 104 105 106

message length [bytes]

104

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)

(e) Max-rate, three-parameter model (IB). 1 3 5 7 9 11
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

100 101 102 103 104 105 106

message length [bytes]

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(a) Measured data.

100 101 102 103 104 105 106

message length [bytes]

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(b) Max-rate, three-parameter model.

1 3 5 7 9 11 13 15
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

100 101 102 103 104 105 106

message length [bytes]

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(a) Measured data.

100 101 102 103 104 105 106

message length [bytes]

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

(b) Modified max-rate model.

1 3 5 7 9 11 13 15
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

100 101 102 103 104 105 106

message length [bytes]

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)
17 pair(s)
18 pair(s)
19 pair(s)
20 pair(s)
21 pair(s)
22 pair(s)
23 pair(s)
24 pair(s)

(a) Measured data.

100 101 102 103 104 105 106

message length [bytes]

105

106

107

108

109

1010

a
g
g
re

g
a
te

 e
ff
e
ct

iv
e
 b

a
n
d
w

id
th

 [
b
y
te

s/
se

co
n
d
]

1 pair(s)
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)
17 pair(s)
18 pair(s)
19 pair(s)
20 pair(s)
21 pair(s)
22 pair(s)
23 pair(s)
24 pair(s)

(b) Max-rate, three-parameter model.

1 3 5 7 9 11 13 15 17 19 21 23
number of pairs communicating

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

m
e
ss
a
g
e
 s
iz
e
 i
n
 b
y
te
s

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
message size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
ba

nd
w

id
th

[b
yt

es
/s

ec
]

×109

25548 Bytes

slope=7713 slope=17971

Figure 7: Bandwidth rates using mpptest on the Cisco clus-
ter. buflimit identifies the threshold at 25548 bytes.

be identified and different model parameters used in each
regime. While the decision to use eager, rendezvous, or an-
other protocol is up to the MPI implementation (and there
are other choices, such as a eager with a NACK to reject mes-
sages that are too long), most MPI implementations choose
among a few protocols depending on the message length,
and this should be taken into account in algorithm analysis
and design.

As an example of the use of this model in algorithm de-
sign, consider the question of how many processes on a node
should communication at the same time to minimize the
communication time. This requires achieving the maximum
bandwidth out of the node. Using the new model, the min-
imum time is achieved when the number of communication
MPI processes is k = RN/Rc, assuming no communica-
tion/computation overlap.

In summary, we hope the community adopts this model
for communication time as it gives a much more accurate ap-
proximation to the performance of MPI on multicore nodes
and is nearly as easy to use as the venerable postal model.

5.1 Acknowledgments
This research was supported in part by ExxonMobil Con-

tract EM08150.9. This research is part of the Blue Waters
sustained-petascale computing project, which is supported
by the National Science Foundation (award number OCI 07–
25070) and the state of Illinois. The authors are grateful for
the access to the Arcetri UCS Balanced Technical Comput-
ing Cluster at Cisco Systems.

6. REFERENCES
[1] T. Agarwal, A. Sharma, and L. V. Kalé.

Topology-aware task mapping for reducing
communication contention on large parallel machines.
In Proceedings of the 20th International Conference on
Parallel and Distributed Processing, IPDPS’06, pages
145–145, Washington, DC, USA, 2006. IEEE
Computer Society.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating long messages
into the LogP model—one step closer towards a
realistic model for parallel computation. In
Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’95,
pages 95–105, New York, NY, USA, 1995. ACM.

[3] A. Bar-Noy and S. Kipnis. Designing broadcasting
algorithms in the postal model for message-passing
systems. In Proceedings of the Fourth Annual ACM
Symposium on Parallel Algorithms and Architectures,
SPAA ’92, pages 13–22, New York, NY, USA, 1992.
ACM.

[4] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale.
Avoiding hot-spots on two-level direct networks. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 76:1–76:11, New York, NY,
USA, 2011. ACM.

[5] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay,
E. E. Santos, K. E. Schauser, R. Subramonian, and
T. von Eicken. LogP: A practical model of parallel
computation. Commun. ACM, 39(11):78–85, Nov.
1996.

[6] W. D. Gropp and E. Lusk. Reproducible
measurements of MPI performance characteristics. In
J. Dongarra, E. Luque, and T. Margalef, editors,
Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 1697 of Lecture
Notes in Computer Science, pages 11–18. Springer
Verlag, 1999. 6th European PVM/MPI Users’ Group
Meeting, Barcelona, Spain, September 1999.

[7] N. A. W. A. Hamid and P. D. Coddington.
Comparison of MPI benchmark programs on shared
memory and distributed memory machines
(point-to-point communication). IJHPCA,
24(4):469–483, 2010.

[8] R. Hockney and C. Jesshope. Parallel Computers:
Architecture, Programming and Algorithms. 1981.

[9] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm.
Netgauge: A network performance measurement
framework. In R. H. Perrott, B. M. Chapman,
J. Subhlok, R. F. de Mello, and L. T. Yang, editors,
HPCC, volume 4782 of Lecture Notes in Computer
Science, pages 659–671. Springer, 2007.

[10] S. Hunold, A. Carpen-Amarie, and J. L. Träff.
Reproducible MPI micro-benchmarking isn’t as easy
as you think. In J. Dongarra, Y. Ishikawa, and
A. Hori, editors, EuroMPI/ASIA, page 69. ACM,
2014.

[11] Intel Corporation. Getting started with Intel MPI
Benchmarks 4.1.

[12] Phloem MPI benchmarks.
https://asc.llnl.gov/sequoia/benchmarks/
PhloemMPIBenchmarks summary v1.0.pdf.

[13] P. Luszczek, J. J. Dongarra, D. Koester,
R. Rabenseifner, B. Lucas, J. Kepner, J. Mccalpin,
D. Bailey, and D. Takahashi. Introduction to the HPC
Challenge Benchmark Suite. Technical report, 2005.

[14] H. Mierendorff, K. Cassirer, and H. Schwamborn.
Working with MPI benchmarking suites on ccNUMA
architectures. In J. Dongarra, P. Kacsuk, and
N. Podhorszki, editors, Recent Advances in Parallel
Virutal Machine and Message Passing Interface,
number 1908 in Springer Lecture Notes in Computer
Science, pages 18–26, Sept. 2000.

[15] OSU Micro-Benchmarks 5.3.
http://mvapich.cse.ohio-state.edu/benchmarks/.

[16] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E.

Fagg, E. Gabriel, and J. J. Dongarra. Performance
analysis of mpi collective operations. Cluster
Computing, 10(2):127–143, 2007.

[17] R. Reussner, P. Sanders, L. Prechelt, and M. Müller.
SKaMPI: A detailed, accurate MPI benchmark. In
V. Alexandrov and J. Dongarra, editors, Recent
advances in Parallel Virtual Machine and Message
Passing Interface, volume 1497 of Lecture Notes in
Computer Science, pages 52–59. Springer, 1998.

