
Optimizing Sparse Matrix Operations on GPUs using Merge Path

Steven Dalton, Luke Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL, 61821
{dalton6, lukeo}@illinois.edu

Sean Baxter, Duane Merrill, Michael Garland

Nvidia Research
Santa Clara, CA, 95050

{sbaxter, dmerrill, mgarland}@nvidia.com

Abstract—Irregular computations on large workloads are a
necessity in many areas of computational science. Mapping
these computations to modern parallel architectures, such as
GPUs, is particularly challenging because the performance
often depends critically on the choice of data-structure and
algorithm. In this paper, we develop a parallel processing
scheme, based on Merge Path partitioning, to compute seg-
mented row-wise operations on sparse matrices that exposes
parallelism at the granularity of individual nonzeros entries.
Our decomposition achieves competitive performance across
many diverse problems while maintaining predictable behavior
dependent only on the computational work and ameliorates
the impact of irregularity. We evaluate the performance of
three sparse kernels: SpMV, SpAdd and SpGEMM. We show
that our processing scheme for each kernel yields comparable
performance to other schemes in many cases and our perfor-
mance is highly correlated, nearly 1, to the computational work
irrespective of the underlying structure of the matrices.

Keywords-parallel; gpu; sparse matrix-matrix; sorting;

I. INTRODUCTION

Operations that are naturally decomposed into a fixed

number of equally sized components are inherently

amenable to parallel processing. However, processing op-

erations in which the workload is highly irregular and

data-dependent is substantially more challenging. For fine-
grained parallel processing environments, such as GPUs,

the issues of effectively decomposing and mapping irregular

work to computational units is amplified due to the hier-

archical structure of the threads in the architecture and the

relatively small working set size of each individual thread.

In this work we study the performance of three opera-

tions on sparse matrices, sparse matrix-vector multiplication

(SpMV), sparse matrix-sparse matrix addition (SpAdd), and

sparse matrix-sparse matrix multiplication (SpGEMM) and

propose several strategies to achieve predictable perfor-

mance, meaning the processing time is highly correlated

with the total work and independent of the underlying

structure of the input matrices.

The primary challenge of computations involving sparse

matrices originates from workload imbalances induced by

data segmentation. To address irregularity many methods

have been introduced that structure memory accesses to

improve the performance of sparse matrix operations. Ar-

guably the most studied and optimized, in terms of data-

structures and algorithms, is SpMV. Peak SpMV perfor-

mance is achieved by coupling sparsity pattern analysis

with specialized, and in some cases exotic, storage schemes

tuned for a particular class of matrices. The drawbacks of

this approach are the need to perform analysis of the input

matrix and the use of storage formats that are not amenable

for use in other operations. For a particular set of matri-

ces a specialized algorithm-storage pair may yield optimal

performance on a given architecture but a highly tuned

pair may be invalid or exhibit unpredictable behavior when

applied to general matrices. We consider these approaches as

sparsity or segmentation aware since they incorporate matrix

structure into the implementation.

In this work we avoid the use of segmentation aware

algorithms or specialized data structures. Our approach

places load-balancing first and performs segmented row-

wise operations progressively by introducing intermediate

work. To achieve this we study balanced decompositions

of each sparse matrix workload and perform processing

at the granularity of nonzero entries during all phases. In

the case of SpAdd and SpGEMM our processing scheme

builds on highly regular merge-based sorting routines to

partition work into smaller units of roughly equal size for

parallel processing. In contrast with traditional metrics of

interest, such as giga-floating point operations per second

(GFLOPs/s), our method is not designed to achieve the

best absolute performance compared to other segmentation

aware algorithms. Indeed we show the performance of our

approach may be notably lower than other methods in some

cases. However, we also show that our method is easily

predictable for a wide diversity of inputs. The contributions

of this work are as follows:

• Balanced decompositions of three sparse matrix ker-

nels: SpMV, SpAdd, and SpGEMM.

• Extension of merge-path partitioning to perform set

unions.

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.98

407

II. BACKGROUND

Modern GPUs are representative of a class of processors

that seek to maximize the performance of massively data

parallel workloads by employing hundreds of hardware-

scheduled threads organized into tens of processor cores.

Such architectures are considered throughput-oriented in

contrast to traditional, latency-oriented, CPU cores which

seek to minimize the time to complete individual tasks [1].

GPUs organize processors into a hierarchy of computational

blocks starting from a fixed size group of threads, known as

warp, executing in a SIMD fashion. Warps are aggregated

into large blocks sharing a fast local memory buffer, shared

memory, executing within a thread block or concurrent

thread array (CTA). CTAs are further grouped into a larger

set, known as a grid, executing a single program. This hierar-

chical execution model exhibits the highest utilization when

computations are regularly-structured and evenly distributed

among CTAs within a grid.

Sorting is a important class of computational algorithms

and efficient GPU implementations of radix and merge sort

have been presented [2], [3]. Though radix sorting an array

of N elements, with an average key-length k, may achieve

lower complexity bounds, O(kN), than comparison based

methods, O(N logN), it has limited applicability and fails

to exploit approximate sorted-ness of the input sequence.

Recently merge path has been introduced as a efficient

means of improving the performance of merge based sorting

algorithms [4], [5]. Merge path, illustrated in Figure 1a,

operates by partitioning the inputs, A and B, among parallel

threads in a way that provides:

1) Equal amounts of work for all threads.

2) Minimal communication and synchronization between

parallel threads.

SpMV operations are at the core of many sparse iterative

solvers and as such have been the focus of a large body of

research to optimize performance [6], [7]. Bell et al. give

a comprehensive overview of SpMV considerations on the

GPU and propose a novel hybrid format to balance the trade-

off of performance and generality [8]. Subsequent research

on GPU SpMV have considered sparsity aware adaptive

processing and various algorithmic enhancements to reduce

memory traffic [9]–[11].

Sequential SpGEMM algorithms [12], rely on a large

amount, O(n), of temporary storage to efficiently store and

reduce unique entries on any row of the output matrix

C ∈ R
m×n. Although techniques have been developed

to expand the scalability and generality of such paral-

lel decompositions [13], the level of parallelism remains

too coarse-grained for GPU acceleration. One novel GPU

SpGEMM algorithm decomposes the operation into expan-

sion, sorting, and compression (ESC) [14]. The ESC algo-

rithm was improved by processing C row-wise according

to the distribution of work, which is a measure of the

number of products, computed during analysis of the input

matrices [15]. Though highly efficient for sparse-matrix pairs

generating intermediate products readily processed in shared

memory their approach did not impact the performance of

long intermediate rows processed in global memory. To

address long intermediate rows Liu et al. presented a merge-

based processing scheme that distributed entries on long

intermediate rows evenly for parallel processing in shared

memory which achieved notable performance improvement

for certain matrices [16].

In this work we explore segmentation oblivious methods

to process general reductions on sparse matrices in order

to reduce the impact of irregularity while maintaining per-

formance. For complicated decompositions involving sparse

matrix pairs, SpAdd and SpGEMM, we leverage the merge

path strategy to exploit the partial ordering of the input and

perfectly balance processing of the intermediate work across

CTAs.

III. SPARSE MATRIX OPERATIONS

Given two matrices A ∈ R
m×p, B ∈ R

p×n, and a vector

x ∈ R
p×1 then SpMV, SpAdd, and SpGEMM compute

Ax, A + B, A × B, respectively. In contrast with general

(dense) matrix-matrix operations, A and B are assumed to be

sparse. Typical storage formats include coordinate (COO),

where each nonzero is represented as a (row, column,
value) tuple, and compressed sparse formats that sort and

compress the COO format along either the row (CSR) or

column (CSC) axis and provides offsets to the first entry

in each segment. We consider the following sparse matrices

in our algorithmic descriptions for Sections III-A, III-B and

III-C,

A =

⎡
⎢⎢⎣
10 0 0 0
0 20 30 40
0 0 0 50
0 60 0 0

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣
1 0 0 0
0 2 0 3
4 5 0 0
0 6 0 7

⎤
⎥⎥⎦ ,

with tuple form given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

(0, 0, 10)
(1, 1, 20)
(1, 2, 30)
(1, 3, 40)
(2, 3, 50)
(3, 1, 60)

⎤
⎥⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, 1)
(1, 1, 2)
(1, 3, 3)
(2, 0, 4)
(2, 1, 5)
(3, 1, 6)
(3, 3, 7)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A. SpMV

For SpMV we consider Ax = y, where A is in CSR

format and y ∈ R
m×1, and the total work is two times

the number of nonzeros in A, denoted |A|. The obvious

parallelization, known as scalar CSR, is to assign one thread

408

to each row of A and process each row independently.

Unfortunately this work decomposition may exhibit a large

amount of imbalance between threads if the number of

nonzeros per rows of A vary significantly. One solution is to

vectorize the row-wise processing scheme and enlist a fixed

number of threads within a warp or CTA to process each row

of the A. This scheme is advantageous when: the average

number of entries per row does not vary significantly, each

row contains a relatively large number of entries relative

to the number of threads, and there are enough rows to

fully saturate the device. However, it may be impossible

to globally select a static number of threads appropriate for

every row of A.

We avoid possible irregularities associated of row-wise

processing by assigning a fixed number of nonzeros, Nprods,

per CTA. To implement this strategy we decompose the

SpMV kernel into three phases: partition, reduction, and

update. Although a flat nonzero based decomposition is

perfectly balanced row-wise segmentation is required to

enact the reduction correctly. Processing the matrices in

COO format is one alternative but requires the additional

storage and movement of one row entry per nonzero. We

address this issue, for sparse matrices in CSR format, during

the partitioning phase which computes the row-wise limits of

the entries processed per CTA. For |A| entries we process

the products using m = �|A|/Nprods� CTAs. During the

partitioning phase we enlist m threads to cooperatively

perform one binary search per CTA segment to locate the last

offset in the row offsets array processed by each CTA and

storing these offsets in an auxiliary global memory buffer,

S.

After partitioning the rows the reduction phase launches

m CTAs to reduce products within each segment of A.

A given CTA, i, processes entries in the range [i ∗
Nprods,min(|A|, (i + 1) ∗ Nprods)] and row offsets corre-

sponding to S[i, i + 1] are loaded into shared memory to

generate the expanded row indices corresponding to each

nonzero. To compute the reduction we first load the column

indices and values of A, in strided order to reduce the

penalty of global memory operations, into register. Then

we dereference entries from x according to the column

indices and compute the scaled products. The products

are transposed from strided to blocked order using shared

memory and a CTA wide segmented scan is performed. On

encountering discontinuities in the row indices partial sums

are stored to y and the CTA remainder, corresponding to the

last row, is stored to a global memory buffer, r.

Lastly, during the update phase we accumulate the inter-

CTA updates by performing a segmented scan on r and

augmenting the first reduction for each CTA with the carry

out value from the previous CTA. This approach exposes

parallelism without regard for segment geometry allowing

it to scale over a wide range of sparsity patterns. We

statically tune the number of entries per thread empirically

Algorithm 1: Tuple Ordering

parameters: T1=(row1,col1), T2=(row2,col2)
return: MIN(T1,T2)

if row1 < row2

return T1

if row2 < row1

return T2

if col1 <= col2

return T1
return T2

to maximize throughput.

B. Addition

For SpAdd we consider the total work to form C as

the sum of the number of nonzero entries in A and B,

|A| + |B|. Two approaches for computing SpAdd are row-

wise segmented reductions and global sorting. In the row-

oriented scheme each row of C is processed by a thread

group. Though the decomposition of work is simple and

processing any output row i requires O(|Arowi |+ |Browi |)
work, it is challenging to choose the number of cooperative

threads per row. Conversely, with respect to the global sort-

ing scheme the total work to generate C is considered col-

lectively as a single monolithic unit by combining nonzero

entries from both A and B into a intermediate matrix T̂ .

By lexicographically sorting T̂ by (row,column) tuples

all duplicate entries are adjacent and performing a simple

tuple-wise reduction generates C. Though not susceptible

to penalties associated with row-wise irregularities of A or

B the complexity of globally sorting T̂ is O(k(|A| + |B|)
which is k times more expensive than the accumulated cost

of the row-wise approach, O(|A|+ |B|).
Ideally a method to construct C should mitigate the

impact of load imbalance while attaining near optimal work

complexity. To achieve this requires a decomposition of

work composed of non-overlapping ranges from A and B
such that each thread processes a unique set of entries in

C, thus corresponding to O(|A| + |B|) work complexity.

We observe that when both input matrices are sorted by row

and row-wise internally sorted by column then sparse matrix

addition may be formulated as a more general operation

requiring the union of sets. Considering the natural com-

parison of tuples outlined in Algorithm 1 and the ordering

of the input matrices then parallel merging using merge path

appears to be a natural fit for SpAdd.

We forgo a detailed description of the merge path al-

gorithm and provide only a short introduction but refer to

Green et al. for additional information [5]. Merge path de-

composes the work of merging two sorted list by performing

a binary search along the diagonals formed by orienting the

lists on the x and y axes as shown in Figure 1a. The ordering

409

0 1 2 3 4 5 6

0

1

2

3

4

5

6

c

c

c

c

d

f

B

a b c c c e A

a b c c c
c

c

c

c

d

e
f

t 0

t 1

t 2 t 3

(a) Merge path
0 1 2 3 4 5 6

0

1

2

3

4

5

6

c0

c1

c2

c3

d0

f0

B

a0 b0 c0 c1 c2 e0 A

a0 b0 c0 c0

c1 c1

c2 c2

c3

d0

e0 f0

t 0

t 1

t 2 t 3

(b) Balanced path

Figure 1: Comparison of decision paths for merge path

and balanced path given two sorted sets A and B having

six elements each. The paths, and thus the outputs, are

evenly partitioned among four threads. For balanced path,

the partition boundary between thread t0 and t1 is starred

so that zipped pairs are never split across threads.

of entries along diagonals prescribe a partition of both lists

into non-overlapping regions of uniform size that can be

processed in parallel by individual threads. Though SpAdd

appears merge-like, parallel merge path partitioning is inade-

quate. Each consecutive range of matching (row,column)
tuples must be available to the same thread and therefore al-

ways appear on the same side of any diagonal. We therefore

introduce balanced path partitioning, illustrated in Figure 1b,

to extend the merge path decomposition to partition the

inputs according to this additional constraint.

We describe the balanced path methodology by consider-

ing two sorted lists, A and B, consisting of duplicate keys

in place of sparse matrix tuples. The normal merge path

104 105 106 107

Number of inputs

1000

2000

3000

4000

5000

6000

7000

In
p
u
ts

p
ro
ce
ss
ed
/s

(1
0
6
)

keys-32

keys-64

pairs-32

pairs-64

Figure 2: Performance of union operation on sorted sets.

Entries per input array are divided evenly.

implementation consumes all duplicate keys in A before

matching entries in B therefore constructing a merged result

with duplicate entries. In contrast balanced path partitioning

assigns a rank to duplicate keys within each duplication

range of the input sequences. This enables the assignment

of keys with matching ranks to the same partition for serial

merging within individual threads therefore ensuring the

key-rank pairs emitted by each thread during construction of

the result is a unique non-duplicated member of the output

list. In Figure 1b the stair-step pattern of balanced path

snaking its way through keys for two sorted lists highlights

the unique differences between the decompositions where

we see a starred diagonal indicating a translation of thread

t1’s partition to include a matching key from B.

As in merge path the balanced path diagonals begin at

fixed intervals. However, the intervals may shift to consume

one additional or fewer elements than the prescribed number

processed per thread to ensure both elements of a matched

key-rank pair are found on the same side of a diagonal

partition. Diagonals, mapping to entries (i, diag − i) in A
and B, that need to be extended to include an additional

element from B, corresponding to a matched pair, are starred.

The starred balanced path diagonal now maps to matched

entries (i, diag − i + diag�) in A and B therefore stealing

one entry from the right partition and depositing it into the

left partition.

Note that performing this key-rank decomposition allows

the implementation of not only unions but many other set

operations, such as intersection, difference and symmetric

difference [4]. For SpAdd we focus on the union of sets

therefore the output list is comprised of only zeroth ranked

entries from A and B. In Figure 2 we illustrate the per-

formance of our set oriented union operation on various

array sizes and data types. Using our balanced path approach

we perfectly decompose the work required to identify and

410

reduce duplicates.

With respect to SpAdd we reduce the global memory

overhead by computing the union of the matrices in two

phases. During the first phase the unique tuples in the union

of A and B are counted and space for C is allocated. In

the second balanced path invocation the entries from each

matrix are loaded into shared memory and duplicate values

are reduced within the CTA. Note that although for well-

formed sparse matrices A and B there are at most two

duplicates that must be reduced to form each unique entry of

C our implementation is general enough to process a much

wider range of input sets consisting of an arbitrary number

of duplicates.

C. Multiplication

SpGEMM is substantially more challenging than SpMV

and SpAdd because of the added irregularity of the workload

to dynamically expand, during formation of the products,

and contract, during reduction of duplicates. If we consider

the row-wise products expanded for our simple example

matrices we see the following intermediate representation:

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, 10)
(1, 3, 60)
(1, 1, 40)
(1, 1, 150)
(1, 0, 120)
(1, 3, 280)
(1, 1, 240)
(2, 3, 350)
(2, 1, 300)
(3, 3, 180)
(3, 1, 120)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, 10)
(1, 0, 120)
(1, 1, 40)
(1, 1, 150)
(1, 1, 240)
(1, 3, 60)
(1, 3, 280)
(2, 1, 300)
(2, 3, 350)
(3, 1, 120)
(3, 3, 180)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, 10)
(1, 0, 120)
(1, 1, 430)
(1, 3, 340)
(2, 1, 300)
(2, 3, 350)
(3, 1, 120)
(3, 3, 180)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which reduces to the sparse matrix

C = A×B =

⎡
⎢⎢⎣
10 0 0 0
120 430 0 340
0 300 0 350
0 120 0 180

⎤
⎥⎥⎦ .

This depiction of SpGEMM decomposes the FLOPs into

two phases, expansion and contraction. We consider the total

work as a function of the number of products, Nprods, in the

expansion phase since it is a measure of the total number

of global memory operations required to fetch data from

the input matrices and it also describes the number of inser-

tions/reductions required to form C. By far the identification

and reduction of duplicates during the contraction phase is

the most challenging phase of the computation and forms

the primary performance limiting routine in many SpGEMM

implementations.

To combat the irregularity of contracting the intermediate

matrix we propose a balanced approach based on merge

path partitioning of the total number products and split

2P
-P
ai
rs

1P
-P
ai
rs

1P
-K
ey
s

1P
(2
8-
bi
ts
)

1P
(2
4-
bi
ts
)

1P
(2
0-
bi
ts
)

1P
(1
6-
bi
ts
)

1P
(1
2-
bi
ts
)

Sorting method

1

2

3

4

5

C
lo
ck

cy
cl
es

(1
04
)

Figure 4: Clock cycles per CTA radix sorting operations

for two-pass (2P) key-value pairs (red), one-pass (1P) key-

value pairs, and one-pass keys-only routines as the number

of sorting bits are decreased (blue).

the processing into separate but performance stable sorting

phases, the first phase performed in shared memory and

a second phase performed in global memory. To partition

the products we first specify the number of products that

may be processed per CTA, NCTA, then we compute the

segmented prefix-sum, S, of the size of each row of B,

|Browi |, referenced by the column indices of A. Following

this preprocessing phase
⌈
Nprods

NCTA

⌉
CTAs are launched to

independently expand and process NCTA products. Each

CTA locates the range of products it is assigned by perform-

ing a binary search on S to locate the first corresponding

entry nonzero entry from A greater than or equal to its CTA

number times NCTA. By decomposing A at the granularity

of products our approach balances the work perfectly across

CTAs irrespective of the row-wise reductions dictated by the

input matrices.

The first sorting phase reduces duplicates within each

CTA using radix sort. Our key observation is that because

we expand entries in order according to column entries of A
then contiguous entries within a CTA remain ordered by row

and duplicates are in adjacent locations following a single

radix sort on the column indices as illustrated in Figure 3,

this is in contrast to two phase sorting approaches [14].

Figure 4 illustrates the performance improvement achieved

by reducing the total number of radix-sort operations within

a CTA. We benchmark the performance using the radix-

sort routine in the open-source CUB programming frame-

work [17] for 32-bit data types with 128 threads per CTA and

11 entries per thread. For key-value pairs we observe that

performing a single radix-sort pass reduces the number clock

cycles by approximately a factor of two yielding notable

performance improvement.

In Figure 4 we also compare the performance of radix-

411

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, χ)
(1, 3, χ)
(1, 1, χ)
(1, 1, χ)
(1, 0, χ)
(1, 3, χ)
(1, 1, χ)
(2, 3, χ)
(2, 1, χ)
(3, 3, χ)
(3, 1, χ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(0, 0, χ)
(1, 3, χ)
(1, 1, χ)
(1, 1, χ)
(1, 0, χ)
(1, 3, χ)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(1, 1, χ)
(2, 3, χ)
(2, 1, χ)
(3, 3, χ)
(3, 1, χ)

⎤
⎥⎥⎥⎥⎦

(b)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(0, 0, χ)
(1, 0, χ)
(1, 1, χ)
(1, 1, χ)
(1, 3, χ)
(1, 3, χ)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(1, 1, χ)
(2, 1, χ)
(3, 1, χ)
(2, 3, χ)
(3, 3, χ)

⎤
⎥⎥⎥⎥⎦

(c)

=

⎡
⎢⎢⎣
(0, 0, χ)
(1, 0, χ)
(1, 1, χ)
(1, 3, χ)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(1, 1, χ)
(2, 1, χ)
(3, 1, χ)
(2, 3, χ)
(3, 3, χ)

⎤
⎥⎥⎥⎥⎦

(d)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, χ)
(1, 0, χ)
(1, 1, χ)
(1, 3, χ)
(1, 1, χ)
(2, 1, χ)
(3, 1, χ)
(2, 3, χ)
(3, 3, χ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(e)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, 10)
(1, 0, 120)
(1, 1, 190)
(1, 1, 240)
(1, 3, 340)
(2, 1, 300)
(2, 3, 350)
(3, 1, 120)
(3, 3, 180)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(f)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0, 10)
(1, 0, 120)
(1, 1, 430)
(2, 1, 300)
(3, 1, 120)
(1, 3, 340)
(2, 3, 350)
(3, 3, 180)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(g)

Figure 3: All of the intermediate indices are formed, (a), and partitioned into subsets of approximately equal size, (b). χ
represents unformed products corresponding to each intermediate entry. Each subset is sorted by column index independently,

(c), and duplicate entries are reduced, (d). All the subsets are aggregated into a intermediate matrix that contains duplicates

but is not sorted by row or column, (e). The reduced matrix is sorted, (f), the products of the reduced entries are computed

and the remaining duplicates are reduced to form C, (g).

sort when the number of sorted bits are reduced from 28 to

12 bits. Based on this observation we aggressively optimize

our sorting implementation to minimize the processing time

by exploiting the limited range of the column indices and

sorting the minimum number of bits required by computing

�log2(n)�, the number of columns in B. We further optimize

our performance by embedding the permutation bits in the

unused upper range of the column indices when possible.

Using this approach we reduce the number of shared mem-

ory operations and perform a keys-only CTA radix-sort. The

permutation computed by each block is then stored to global

memory using 16-bit integers to minimize the memory

traffic and storage overhead. The first phase concludes with

each CTA scanning the sorted entries to identify unique

entries and asynchronously storing the reduced set to global

memory.

Note that following the first phase no products have

been formed and the reduced intermediate entries in global

memory consist of possible duplicates that are completely

unordered. To compute the unique duplicates in C we

perform a two pass global radix-sort routine similar to the

method outline by the ESC algorithm. The notable difference

is that the global memory sorting routine computes only the

permutation that sorts the pairs and does not perform any

reordering of the, currently unformed, intermediate products.

In the third phase the reduced intermediate products are

formed by performing the expansion phase a second time.

In this version each CTA loads the permutation computed

during the first expansion and a segmented scan is performed

to reduce permuted products according to the precomputed

duplicate indicators. To reduce the number of global memory

load and store operations the reduced values are not stored

randomly back to global memory. The output location that

orders the reduced products according to global duplication,

computed during the second phase, is used to store entries in

sorted order. The final step consists of forming the values in

C by performing a global memory reduce-by-key operation

on the ordered products.
A key feature of this two-level decomposition is that both

the CTA-wide and global memory sorting operations are

oblivious to the irregularity of the underlying input matrices.

By preprocessing many of the duplicates in shared memory

prior to the global memory pass the total work required

to perform the expensive two-pass radix-sort operation is

significantly reduced in cases where each block yields only

a small number of unique pairs, i.e., a large number of

duplicate entries per CTA.

IV. NUMERICAL RESULTS

In this section we evaluate the performance of our parallel

processing strategy and compare our results with two pack-

ages for processing sparse matrix operations on GPUs, Cusp,

open-source, and Cusparse, closed source. Our evaluation is

performed on a set of SpMV matrices taken from the Uni-

versity of Florida (UFL) sparse matrix collection outlined

in Table II and the configuration of our testing environment

is described in Table I. All of the performance data was

collected using double precision arithmetic with the input

matrices resident in GPU memory.

CPU i7-3820 CPU 3.60GHz
GPU GTX Titan 0.88GHz
CUDA 6.5
GCC 4.8 -O3

Table I: System configuration settings. On the GPU error

checking and correction (ECC) is disabled.

412

Matrix rows columns nonzeros avg/row std

Dense 2000 2000 4 000 000 2000.00 0.00
Protein 36 417 36 417 4 344 765 119.31 31.86
Spheres 83 334 83 334 6 010 480 72.13 19.08
Cantilever 62 451 62 451 4 007 383 64.17 14.06
Wind Tunnel 217 918 217 918 11 634 424 53.39 4.74
Harbor 46 835 46 835 2 374 001 50.69 27.78
QCD 49 152 49 152 1 916 928 39.00 0.00
Ship 140 874 140 874 7 813 404 55.46 11.07
Economics 206 500 206 500 1 273 389 6.17 4.44
Epidemiology 525 825 525 825 2 100 225 3.99 0.08
Accelerator 121 192 121 192 2 624 331 21.65 13.79
Circuit 170 998 170 998 958 936 5.61 4.39
Webbase 1 000 005 1 000 005 3 105 536 3.11 25.35
LP 4284 1 092 610 11 279 748 2632.99 4209.26

Table II: Unstructured matrices taken from the UFL sparse

matrix collection for performance testing.

D
en
se

Pr
ot
ein

Sp
he
re
s

Ca
nt
ile
ve
r

W
in
d

H
ar
bo
r

Q
CD Sh

ip

Ec
on
om
ics

Ep
id
em
io
lo
gy

A
cc
ele
ra
to
r

Ci
rc
ui
t

W
eb
ba
se LP

0

5

10

15

20

25

30

35

G
F
L
O
P
s/
s

Cusp Cusparse Merge

Figure 5: Sparse matrix-vector performance, measured in

GFLOPs/s, comparison for CSR format in double precision

for three implementation using Cusp, Cusparse, and Merge.

A. SpMV

In Figure 5 we compare the SpMV performance of

three different implementations operating on an input matrix

stored in CSR format. Although the performance for some

matrices is substantially higher using specialized storage

formats our goal is to compare the achieved performance

using a general and standard storage format. For each matrix

the performance reported is the average of 100 iterations.

The Cusp SpMV implementation uses the vectorized CSR

implementation discussed in Section III-A. In the Merge

implementation we detect the presence of empty rows in

the input matrices and adaptively switch between a faster

method that assumes there are no empty rows and a slightly

slower method that compacts the CSR row offsets prior to

performing each SpMV operation.

From Figure 5 we see that the relative performance be-

tween the three implementations varies with respect to each

matrix. We note that the performance of our Merge scheme

remains competitive with the best cases in all tests except

the Dense matrix. For challenging matrices that exhibit a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Nonzeros (106)

−0.5

0.0

0.5

1.0

1.5

T
im

e
(m

s)

ρMerge = 0.97

ρCusparse = 0.84

Merge Cusparse

Figure 6: Comparison of SpMV performance to |A|. We

use the correlation coefficient , ρ, as a measure of the

performance predictability as a function of |A|. For our

Merge scheme ρ is 0.97 indicating that predicting the

SpMV performance of untested matrices should be relatively

accurate.

large degree of irregularity in the number of entries per row,

Webbase and LP, we see that our flat decomposition achieves

markedly better performance compared to the other imple-

mentations. To illustrate the connection between the required

work, proportional to |A| for SpMV, and the performance

we plot the processing time versus |A| for each matrix in

Figure 6. From Figure 6 we see that the performance of

the Merge approach is highly correlated, with a correlation

coefficient of 0.97, with number the number of nonzeros in

each matrix and exhibiting only small perturbations from the

least-squares fit of the data points.

B. SpAdd

In Figure 7 we compare SpAdd, A + A, performance

for the previously mentioned packages. The performance

illustrated is the speedup with respect to the sequential

implementation using CSR format on the CPU. We note that

the storage format for these tests are different between the

packages. The Cusp and Merge approaches operate on the

input matrices stored in expanded COO format to facilitate

processing at the granularity of individual nonzero entries

while Cusparse operates on the matrices in CSR format.

The Cusp implementation uses the two-pass global sorting

approach described in Section III-B.

In contrast with SpMV we see that both Cusparse and

Merge perform significantly better than Cusp on all matrices

in the test suite. Another notable difference is the signifi-

cant performance improvement of Cusparse over the Merge

implementation for the Dense, Protein, and Wind matrices.

However, for the remaining matrices in the test suite the

performance of the two methods are comparable with the

exception of the Webbase and LP matrices.

413

D
en
se

Pr
ot
ein

Sp
he
re
s

Ca
nt
ile
ve
r

W
in
d

H
ar
bo
r

Q
CD Sh

ip

Ec
on
om
ics

Ep
id
em
io
lo
gy

A
cc
ele
ra
to
r

Ci
rc
ui
t

W
eb
ba
se LP

0

5

10

15

20

25

S
p
ee
d
u
p

Cusp Cusparse Merge

Figure 7: SpAdd performance, measured in speedup ver-

sus sequential CPU implementation, for Cusp(COO), Cus-

parse(CSR), and Merge(COO).

0.0 0.5 1.0 1.5 2.0 2.5

2 × Nonzeros (106)

0

5

10

15

20

25

30

35

T
im

e
(m

s)

ρMerge = 1.0

ρCusparse = 0.68

Merge Cusparse

Figure 8: Comparison of SpAdd performance to the number

of nonzeros. For the merge implementation our correlation

coefficient of 1 implies a nearly perfect match between the

work and processing time irrespective of the underlying

structure of the input matrices.

In Figure 8 we again plot the performance versus the total

work to understand the correlation between the required

work and the total processing time. Not surprisingly the

Merge approach is perfectly correlated with the number

of nonzeros in the input matrices. This is expected since

the approach is based on parallel decompositions that yield

perfect balance irrespective of the segmentation of the under-

lying data. Note that for two of the largest SpAdd instances

Cusparse achieves speedup for one and dramatic slowdown

for the other compared to the Merge implementation.

C. SpGEMM

In Figure 9 we compare SpGEMM, A×A, performance

for all three implementations. In the special case of the

D
en
se

Pr
ot
ein

Sp
he
re
s

Ca
nt
ile
ve
r

W
in
d

H
ar
bo
r

Q
CD Sh

ip

Ec
on
om
ics

Ep
id
em
io
lo
gy

A
cc
ele
ra
to
r

Ci
rc
ui
t

W
eb
ba
se LP

0

1

2

3

4

5

6

7

8

S
p
ee
d
u
p

Cusp Cusparse Merge

Figure 9: SpGEMM performance, measured in speedup

versus sequential CPU implementation, for double precision

for Cusp(COO), Cusparse(CSR), and Merge(CSR).

nonsquare LP matrix we transpose the matrix and perform

A × AT . The performance is tabulated in terms of the

average speedup for 10 iterations versus the sequential CPU

implementation in CSR format. The Cusp implementation

uses a global memory ESC algorithm and although the

performance is inherently independent of the input matrices

the absolute time is high because of global operations

involving the total number of products, specifically radix

sort. For many of the matrices the Cusparse and Merge ap-

proaches outperform Cusp by a significant margin. However,

the performance of Cusparse degrades for the Economics,

Circuit, Webbase, and LP matrices. In contrast the Merge

approach sustains performance improvement compared to

Cusp in all instances.

The weakness of sort based SpGEMM methods operating

on intermediate products is also illustrated in Figure 9 where

both the Cusp and Merge approaches required more physical

memory than the resource constrained GPU could support.

For the Dense test case the duplicates per CTA is close to

zero therefore the global memory pass requires a significant

amount of temporary storage to order the expanded entries.

For matrices with a relatively dense number of entries per

row segmented processing presents a notable advantage.

Although both the Webbase and LP matrices also have rows

containing a relatively large number of entries the power-

law distribution of the row lengths in the case of Webbase

and the small number of rows in LP, since it is computing

A×AT , ensures that on average many of the CTAs contract

a substantially large number of intermediate entries during

the first sorting pass.

In Figure 10 we plot the performance of the Merge

and Cusparse implementations versus the total number of

products required to form C. Note that this analysis ignores

the FLOPs performed to reduce duplicate entries to form C.

From Figure 10 we see that the performance of the two-

414

0 10 20 30 40 50 60 70 80 90 100
Percent Time

Protein

Spheres

Cantilever

Wind

Harbor

QCD

Ship

Economics

Epidemiology

Accelerator

Circuit

Webbase

LP
M
at
ri
x
L
ab

el

Setup

Block Sort

Product Compute

Global Sort

Product Reduce

Other

449.36

393.97

215.28

467.49

125.26

74.29

351.87

25.23

24.00

99.64

21.59

184.47

96.26

T
ot
al

T
im

e
(m

s)

Figure 11: SpGEMM performance breakdown.

level sorting approach based on merge path decompositions

is highly correlated with the total number of products.

This regularity implies that the performance of the Merge

approach is easily predictable based on simple analysis of

the input matrices prior to execution of the operation. The

observed regularity in the Merge scheme performance is in

contrast with Cusparse which diverges considerably from the

anticipated performance in two cases. We do not claim the

Cusparse implementation is inherently unpredictable but that

the performance appears to be unrelated to our interpretation

of the required work, the number of products.

In Figure 11 we decompose the performance of the

merge SpGEMM performance into several phases. During

the Setup phase the number of entries on each row of B
referenced by each column of A is scanned to compute

the number of products required for each nonzero entry in

A. During Block Sort the products are decomposed into a

fixed number of entries and processed using a single radix-

sort pass within each CTA and the resulting permutation is

stored to global memory. The Global Sort phase organizes

the reduced number of entries identified by each CTA using

two-radix passes and the Product Compute phase combines

the local CTA permutation with the global duplicate per-

mutation to form the ordered reduced products in global

memory. In the last phase the final products are formed

by performing a reduce-by-key operation on duplicates in

global memory. Additional overheads in terms of allocation

and miscellaneous memory operations are aggregated into

Other. From Figure 11 it is clear that the two sorting passes

and the computation of the output products constitute the

bulk of the processing time for each matrix. Although there

are significant variations in the total relative time of each

operation based on the matrix it is important to consider

these variations with respect to the total processing time,

shown on the right axis.

V. CONCLUSION

Although the specific techniques employed to perform

each sparse matrix operation varied substantially the focus

of our study was the performance implications of using a

flat decomposition of the work irrespective of the underlying

segmentation dictated by the input operands. Note that our

method does not achieve the best performance in all cases

for any of our tests. Indeed, we expect when comparing any

two algorithms processing such irregular computations that

subtle data-dependent performance characteristics may have

a large impact on the overall processing time. Our primary

focus in this work is achieving predictable performance

across a vast landscape of input instances.

In future work we plan to address the deficiencies of

sort based SpGEMM methods by adaptively introducing

segmented approaches when necessary. Detecting specific

cases like the Dense matrix is relatively simple but would

also require a more detailed model to accurately predict the

trade-off between the number of entries processed in the

segmented and unsegmented regions of the algorithm.

REFERENCES

[1] M. Garland and D. B. Kirk, “Understanding throughput-
oriented architectures,” Commun. ACM, vol. 53, pp. 58–66,
November 2010. [Online]. Available: http://doi.acm.org/10.
1145/1839676.1839694

[2] A. Davidson, D. Tarjan, M. Garland, and J. D. Owens,
“Efficient parallel merge sort for fixed and variable length
keys,” in Innovative Parallel Computing, May 2012, p. 9.

415

0 10 20 30 40 50 60 70

Number of products (106)

0

100

200

300

400

500

600
T
im

e
(m

s)

ρMerge = 0.98

(a) Merge

0 10 20 30 40 50 60 70

Number of products (106)

0

1000

2000

3000

4000

5000

T
im

e
(m

s)

ρCusparse = −0.02

(b) Cusparse

Figure 10: Comparison of SpGEMM performance to the

number of products. Flat two-level sorting results in per-

formance that is highly correlated, ρ = 0.98, with the

work expressed as a function of number of products in the

intermediate matrix.

[3] D. Merrill and A. Grimshaw, “High performance and
scalable radix sorting: A case study of implementing
dynamic parallelism for GPU computing,” Parallel
Processing Letters, vol. 21, no. 02, pp. 245–272,
2011. [Online]. Available: http://www.worldscinet.com/ppl/
21/2102/S0129626411000187.html

[4] “Mgpu : Design patterns for gpu computing,” http://nvlabs.
github.io/moderngpu/, version 1.1.

[5] O. Green, R. McColl, and D. A. Bader, “Gpu merge path:
A gpu merging algorithm,” in Proceedings of the 26th ACM
International Conference on Supercomputing, ser. ICS ’12.
New York, NY, USA: ACM, 2012, pp. 331–340. [Online].
Available: http://doi.acm.org/10.1145/2304576.2304621

[6] R. W. Vuduc, “Automatic performance tuning of sparse matrix
kernels,” Ph.D. dissertation, 2003, aAI3121741.

[7] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel, “Optimization of sparse matrix-vector
multiplication on emerging multicore platforms,” Parallel
Computing, vol. 35, no. 3, pp. 178 – 194, 2009,
revolutionary Technologies for Acceleration of Emerging
Petascale Applications. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167819108001403

[8] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in SC ’09:
Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis. New York, NY,
USA: ACM, 2009, pp. 1–11.

[9] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-
driven autotuning of sparse matrix-vector multiply on
gpus,” SIGPLAN Not., vol. 45, no. 5, pp. 115–126,
Jan. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1837853.1693471

[10] J. L. Greathouse and M. Daga, “Efficient sparse matrix-
vector multiplication on gpus using the csr storage format,”
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
769–780. [Online]. Available: http://dx.doi.org/10.1109/SC.
2014.68

[11] A. Monakov, A. Lokhmotov, and A. Avetisyan,
“Automatically tuning sparse matrix-vector multiplication
for gpu architectures,” in High Performance Embedded
Architectures and Compilers, ser. Lecture Notes in
Computer Science, Y. Patt, P. Foglia, E. Duesterwald,
P. Faraboschi, and X. Martorell, Eds. Springer Berlin
Heidelberg, 2010, vol. 5952, pp. 111–125. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-11515-8 10

[12] F. G. Gustavson, “Two fast algorithms for sparse matrices:
Multiplication and permuted transposition,” ACM Trans.
Math. Softw., vol. 4, pp. 250–269, September 1978. [Online].
Available: http://doi.acm.org/10.1145/355791.355796

[13] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-
matrix multiplication and indexing: Implementation and
experiments,” SIAM Journal of Scientific Computing (SISC),
vol. 34, no. 4, pp. 170 – 191, 2012. [Online]. Available:
http://gauss.cs.ucsb.edu/∼aydin/spgemm sisc12.pdf

[14] N. Bell, S. Dalton, and L. Olson, “Exposing fine-grained
parallelism in algebraic multigrid methods,” SIAM Journal
on Scientific Computing, vol. 34, no. 4, pp. C123–C152,
2012. [Online]. Available: http://epubs.siam.org/doi/abs/10.
1137/110838844

[15] S. Dalton, N. Bell, and L. Olson, “Optimizing sparse matrix-
matrix multiplication for the gpu,” Department of Computer
Science, University of Illinois at Urbana-Champaign, Cham-
paign, Illinois, Tech. Rep., February 2013.

[16] W. Liu and B. Vinter, “An efficient gpu general sparse
matrix-matrix multiplication for irregular data,” in Parallel
and Distributed Processing Symposium, 2014 IEEE 28th
International, May 2014, pp. 370–381.

[17] “Cub : Reusable software for cuda programming,” http://
nvlabs.github.io/cub/, version 1.3.2.

416

