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Abstract. We describe a GPU-based algorithmic framework for optimizing the
shape of elements in a simplicial volume. Optimization is done on a per-vertex
basis using only local neighborhood information in order to exploit the massive
fine-grained parallelism on modern GPU hardware. We propose and apply three
optimization methods which have potential to be suited for local optimization of
element shape and present a framework which may be generalized to other meth-
ods. Experiments which compare our method to state-of-the-art algorithms show a
more than ten-fold performance increase for a similar final quality in both test and
practical real-world meshes.
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Introduction

Mesh quality is a key concern in engineering and scientific computing applications. The
shape of mesh elements can significantly impact the efficiency and accuracy of simula-
tion codes. In this paper, we consider the problem of improving element quality in un-
structured tetrahedral meshes by adjusting the positions of the mesh vertices as an op-
timization problem. Specifically, we seek to reduce the maximum and average inverse
mean ratio, which detects irregular and inverted simplex elements [1,2,3]. The results of
our novel algorithm can be compared to existing software for volume mesh optimization
such as Mesquite [4]

The wide availability of massively multi-threaded graphics processing units (GPUs)
offers a new direction for the acceleration of mesh smoothing algorithms. We show how
optimization can effectively be accomplished on a per-vertex basis on the GPU, exposing
fine-grained parallelism in the same manner as Freitag et al. [5] did for more traditional
parallel architectures. The framework of the algorithm can accommodate essentially any
underlying numerical optimization method to compute the new vertex positions. In our
experiments, we implemented three different optimization algorithms on the GPU: the
gradient descent method, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, and
the derivative-free Nelder-Mead simplex method. We will present our performance com-
parison and analysis of the three methods, with the perhaps surprising result that Nelder-
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Figure 1. Optimization of the Max Inv. Mean Ratio Metric on the Small Sphere

Mead converged fastest. In addition to discussing raw performance numbers, we also ex-
amine the register usage and memory access patterns of the three methods and discuss a
performance optimization strategy that, counter-intuitively, improves performance while
reducing GPU occupancy.

In addition to possessing generality, the algorithmic framework we describe is sim-
ple to implement and fast. In our experiments, the GPU-based algorithm was shown
to converge to a high-quality solution up to 59 times faster than the serial version of
the algorithm based on local optimization. When compared to a state-of-the-art serial
method for global mesh optimization, our GPU-based algorithm exhibited up to a 12-fold
speedup while producing a solution of comparable quality. These results demonstrate the
scalability and effectiveness of the GPU as a platform for volume mesh optimization.

1. Volume Mesh Optimization

Consider an unstructured mesh of N elements and M vertices. Let en be the nth element,
vm the mth vertex, where n = 1,2, · · · ,N and m = 1,2, · · · ,M. For a tetrahedral volume
mesh, the dimension of a mesh vertex is d = 3 and the number of vertices referenced by
an element is |en|= 4.



1.1. The Optimization Problem

We choose to measure the quality of a tetrahedron by the inverse mean ratio metric [6].
This metric computes the deviation of the element from an ideal element, which we
choose to be an equilateral tetrahedron. A graphical example generated using the output
produced by our system is shown in Figure 1. It is clear that the inverse mean ratio detects
poorly formed elements. The metric is formulated as follows: given that the element has
vertices (a,b,c,d), we form matrix A as a square matrix of the edges eminating from
vertex a and W as square matrix representing the ideal element.

A = [b−a c−a d−a] W =
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The inverse mean ratio is then given by:

||AW−1||2F
3|det(AW−1)| 23

.

The values generated by the inverse mean ratio metric range from 1 to ∞ with 1
being the optimal value which is achieved when the element is an equilateral tetrahedron.
In addition, the inverse mean ratio is invariant to rotation, reflection, and uniform scaling
of the element; the choice of a determines the sign of the determinant.

We combine the quality metric evaluations for all the elements including a vertex
into the objective function for that vertex, which is the basis for optimization. We define
this as the maximum of the inverse mean ratios of all neighboring elements, which is
a non-smooth function since discontinuities can occur at points where the maximum
inverse mean ratio value shifts from one element to another.

1.2. The Optimization Algorithms

As a result, the second derivative is not guaranteed to exist, which complicates the use
of gradient-type optimization methods, such as quasi-Newton methods. Because of these
difficulties, much of the recent research has focused on avoiding direct differentiation
of the objective function, either by using derivative-free optimization [7] or by various
methods to increase the smoothness of the quality function [8]. The approach taken here
resembles the latter, in that we approximate the gradient, which is equivalent to taking
the gradient of locally smooth interpolants of the non-smooth data (see below). With this,
we have implemented parallel versions of two derivative-based algorithms as well as a
derivative-free algorithm to test our GPU-based parallel optimization system.

For the derivative-based methods, we use a gradient descent and the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) methods. The first because of simplicity of imple-
mentation and commonality with more complex derivative-based line search methods,
and the second because it is faster in situations where computing the Hessian directly is
expensive and because current research suggests robustness in non-smooth situations [9],
which is consistent with the performance of Hessian-based methods in this domain [10].
For the derivative-free method, we have chosen to employ the Nelder-Mead Simplex
method [11] which has been used for mesh improvement in a serial setting[7].



1.2.1. Nelder-Mead Method

The Nelder-Mead method is widely used and is widely available in numerical software
libraries. Nelder-Mead searches a domain for a point p minimizing the objective func-
tion Q(p). The algorithm starts by sampling function values on the corners of a non-
degenerate simplex Sp in RN , which are not the simplices of the mesh. The simplices
Sp are constructed on-the-fly, enabling the algorithm to explore the function domain in
a structured way. Based on the relative values of the function at the sampled points, the
simplex is transformed using a combination of expansion, reflection, and contraction op-
erations. These operations move one or more corners of the simplex based on a step-size
parameter. This process iterates until the step-size falls below a specified threshold or
a given number of iterations have occurred. Ideally, the simplex flows to areas yielding
lower function values and contracts around a minimum.

The reasons for the popularity of the Nelder-Mead algorithm are mostly practical.
The method benefits from ease-of-implementation and the generality of the algorithm
as the method applicable to the most general objective functions. Additionally, although
there are no theoretical convergence guarantees in the general case, the approach is often
convergent in practice. However, one significant disadvantage of the algorithm is that it
requires a large number of objective function evaluations. In addition, optimizing a large
number of variables exacerbates this shortcoming.

1.2.2. Gradient Descent and BFGS

The gradient descent and BFGS methods are similar and rely on evaluating the derivative
of a function to find a search direction followed by a line search. In the gradient descent,
the direction is simply given by the negative of the gradient. In our scenario, in order to
circumvent the lack of a well-defined derivative, we use a central difference approxima-
tion to numerically estimate the gradient. For the BFGS method, we must also take into
account the second derivatives (specifically, a 3× 3 approximate Hessian matrix in our
case, which we denote Bk). The first step then is to solve for the corrected direction ~pk
given the gradient and the approximate Hessian using:

Bk~pk =−∇ f (~xk). (1)

A line search (also sampling based) is performed in the direction of ~pk and the approxi-
mate Hessian is updated for the next iteration by evaluating:

Bk+1 = Bk +
~yk~yT

k

~yT
k~sk
−

Bk~sk~sT
k Bk

~sT
k Bk~sk

(2)

where ~sk is a vector corresponding to the result of the line search in the direction of
~pk, and ~yk is the change in the gradient of the new point relative to the old point. More
precisely:

~sk =~xk−~xk−1 (3)

and

~yk = ∇ f (~xk+1)−∇ f (~xk) (4)

where~xk is the current best point of the kth iteration.



Algorithm 1 GPU Mesh Optimization
for each vertex vi do

construct the set Ti of all neighboring tetrahedra
ci⇐ FirstFit(vi) // assign vi a color

end for
for each color k do

for each vertex vi do
if ci = k then

add vi and Ti to set Sk
// Sk is an independent set of vertices and their neighboring elements

end if
end for
Transfer Sk to the GPU
for each vi ∈ Sk do

vi⇐ Optimize(vi,Ti)
// Optimize(vi,Ti) performs Nelder-Mead, gradient descent, or BFGS

end for
Transfer all vi ∈ Sk back to the CPU

end for

1.3. GPU Implementation

The high-level steps in the GPU optimization algorithm can be summarized in Algo-
rithm 1. In our implementation, each vertex of the mesh is assigned to a thread, which is
mapped at runtime to execute in parallel on an available streaming processor (SP) on the
GPU. One issue that manifests immediately is that the calculation of the quality metric
for each vertex is not completely independent, as the objective function for a given vertex
depends on the positions of its neighbors being constant. To work around this issue, we
start by labeling all the vertices in such a way that no two neighbors have the same label
using a First Fit algorithm [12] on the CPU where each label denotes an independent
set of vertices. This allows us to optimize the set of vertices which have a given label
simultaneously with the guarantee that no neighbors of the current working set are also
being optimized. This also means that the overall optimization is not exactly the same
between the serial and parallel versions, as the order of the optimization is not the same.
This causes slight differences in final mesh quality between the CPU and GPU versions
of each algorithm, as we will see later.

A key metric often used to guide GPU optimization is the number of threads in use
divided by the total thread capability of the GPU, which is termed occupancy. This is
important because the GPU has the ability to dynamically swap groups of threads during
execution in order to avoid stalls due to high latency operations, such as I/O or main
memory accesses. Because there are finite amounts of GPU resources such as registers,
cache, and shared memory, the occupancy is typically a function of the program’s re-
quirements in each of these areas. Typically, having higher occupancy means the sched-
uler has more options to avoid a stall to maximize throughput and results in higher per-
formance in applications where main memory access is the bottleneck.

For the gradient based methods, the occupancy at 42 percent is fairly good in com-
parison to the number of global memory accesses (which only consist of reading the



initial vertex position, the neighborhood vertex positions, and writing the modified posi-
tion). Unfortunately this is not true with the Nelder Mead method, which uses many more
registers (63, with a spill store of 104 bytes), and hence has both lower occupancy (33
percent in our initial attempt), and causes some of the register accesses to convert to high
latency global memory operations. In order to improve the performance of the Nelder
Mead implementation, we use GPU shared memory as a manually managed cache space
to store the neighborhood of the vertex being optimized. In addition, to allow for more
shared memory to be used, we changed the cache configuration of the Fermi GPU to
allow for 48KB of shared memory (at the cost of a smaller L1 cache) in the cases when
this optimization is being used. Because this adds another constraint (shared memory),
this in fact decreases the occupancy down to a minuscule 4 percent. However, because
global memory access due to register spillage is eliminated, this counter-intuitively im-
proves performance by up to 25 percent compared to our initial implementation, in line
with performance gains seen by a similar optimization by Volkov et al in [13].

Unlike the Nelder-Mead GPU implementation, the derivative-based GPU algorithms
use fewer registers, and therefore did not benefit from the shared memory optimiza-
tion. Specifically, the gradient descent method uses 50 registers compared to the Nelder-
Mead’s 63, which is the maximum number of allowed registers per thread in CUDA and
does not account for register spilling into slow local memory. This increases the occu-
pancy to 42 percent for the gradient descent kernel. Interestingly, the BFGS GPU imple-
mentation also uses 63 registers like Nelder-Mead, but has a smaller stack frame, 88 bytes
as compared to 104 bytes for Nelder-Mead. This indicates that while both the Nelder-
Mead and the BFGS use the same number of registers, there is less register pressure in
the BFGS implementation. This reduces the spills to local memory, and will reduce the
impact of low occupancy even if the occupancy itself is not improved.

An observed performance bottleneck with the GPU version is the inefficient use of
terminated threads because the GPU scheduler cannot reuse a terminated thread unless
every thread within the block (in our case, 64 threads) has also terminated. This means
that in the case of a mesh that has widely varying initial quality, many of the threads
will be idle as they have already terminated. One possible solution is to reuse threads by
allowing each thread to work on multiple vertices. However, this requires that the vertex
assignment be dynamic, and therefore requires synchronization and communication be-
tween each thread, perhaps using shared memory to tally completed vertices. Effectively
dealing with early thread termination is direction for future work.

2. Experimental Results

We performed preliminary experiments to evaluate the performance of our GPU imple-
mentation and compared it to both single-threaded serial versions of the same algorithm
and current state-of-the-art global optimization methods. The hardware system used in
our experiments contained an Intel Xeon X5650 CPU with 6 Cores supporting up to 12
threads clocked at 2.67GHz with 12MB of cache memory and 16GB of main memory.
The GPU was a Tesla C2050 (Fermi architecture) with 448 Cores and 2.6GB of memory
with ECC enabled. Experiments were done in Linux using code compiled by gcc 4.4.0
and the Nvidia CUDA toolkit version 4.2. Optimization was set to the highest level (for
speed) in both gcc and nvcc, no assembly optimizations or SIMD intrinsics were used in
the serial and parallel CPU versions (beyond those required to support OpenMP).



Table 1. Speedup of GPU Mesh Optimization over Serial Mesh Optimization

.

Mesh Vertices Method Quality Quality Time(s) Speedup
GPU CPU GPU

Small Nelder-Mead 3.71 3.26 15 12
Sphere 332,995 BFGS 3.65 3.52 16 33

Gradient 3.61 3.60 18 43

Big Nelder-Mead 4.23 3.79 56 12
Sphere 1,339,317 BFGS 4.27 3.60 59 37

Gradient 4.27 3.72 67 43

Nelder-Mead 2.28 2.22 446 17
Wing 4,881,071 BFGS 2.42 2.22 470 44

Gradient 2.48 2.22 540 59

Table 2. Performance of GPU Nelder-Mead and CPU Feasible Newton

Mesh
Number Number

Method
Converge

Speedup
Inv. Mean Ratio

of Vertices of Tets Time(s) max avg

Big Sphere 1,339,317 4,720,255
unopt. — 8.6 1.6

CPU-FN 527 5.5 1.47
GPU-NM 67 7.9 4.72 1.45

Big Rocket 2,202,793 14,992,367
unopt. — 15 1.35

CPU-FN 2336 10.5 1.20
GPU-NM 191 12 3.37 1.20

Wing 4,484,039 27,725,125
unopt. — 6.1 1.1

CPU-FN 3808 3.33 1.10
GPU-NM 442 8.6 2.55 1.10

Table 3. Speedup of OpenMP based CPU Nelder-Mead

.

Mesh Vertices Quality Quality Time(s) Speedup
Serial OpenMP OpenMP

Big Sphere 1,339,317 3.789 3.788 190 3.811
Big Rocket 2,779,481 2.833 2.833 931 3.306

Wing 4,881,071 2.259 2.261 2067 3.835

2.1. Comparison to local serial optimization

As shown in Table 1, computing on the GPU offers a significant speedup over the serial
implementation of the same algorithm for all three core numerical algorithms. The per-
formance improved by factor of up to 17 for Nelder-Mead, and up to a factor of 59 for



Table 4. Effect of Multiple GPU Passes on the Quality of the Small Sphere Mesh

Method Iterations per Pass Passes Time(s) Max Inv. Mean Ratio

Local Iteration Only 200 1 30 4.1
Multiple Passes 50 4 34 3.5

the derivative-based methods. There are multiple reasons for this discrepancy in GPU
versus CPU performance between Nelder-Mead and the derivative-based methods. First,
the derivative-based methods have significantly less branch divergence due to the lack of
control flow code. In Nelder-Mead, the manipulation of the optimization simplex based
on the results at the vertices makes branching unavoidable. Also, differences in register
usage contribute to differences in occupancy as well as stalls due to register spilling.

In terms of raw speed on the GPU, and the CPU as well, Nelder-Mead was the
fastest of the three core optimization methods. While all three methods produced similar
quality meshes, Nelder-Mead converged faster. This can be partially attributed to the
non-smooth nature of the optimization problem. Computing the gradients numerically
does not provide information as accurate as can be obtained from the analytical gradients
available for smooth functions. Whatever information the gradients provide does not
make up for the increased computational cost of the gradient-based methods. The line
search inherent in both gradient descent and BFGS requires more function evaluations
than Nelder-Mead, allowing the latter to win the performance competition.

In some cases, the performance improvement seems to exceed the raw performance
factor (in GFLOP/s) between the CPU and GPU. This is expected because our CPU
results were done with a single-threaded program, while the raw CPU performance is
quoted across all the constituent cores. In order to confirm that this is the case, we started
primary investigations into a multi-threaded CPU implementation. Using the same label-
ing method as the GPU implementation, our preliminary 32-thread OpenMP implemen-
tation resulted in a speedup factor of between 3.3 to 3.8 over the single-threaded imple-
mentation, which was largely independent of the size and initial quality of the mesh. This
is also consistent with our expectations, since unlike the GPU, the CPU has no concept
of a block and so the thread termination issue described previously does not exist. These
results are summarized in Table 3.

Mesh quality for the GPU and multi-threaded CPU based algorithms is slightly de-
graded from the serial version in essentially all cases. We attribute this to the different
order in which elements are optimized on the GPU as opposed to the CPU. The serial
algorithm has the advantage that more vertices are optimized with at least some portion
of their neighbors already having been optimized, giving the optimization algorithm bet-
ter information with which to work. This asynchronous convergence can be ameliorated
to some extent by making more passes over the entire mesh. Table 4 shows that notice-
able quality improvement can be achieved by making multiple passes over the mesh as
opposed to relying only on locally iterating the optimization method. The overhead for
making 3 extra passes over the mesh, in this case the Small Sphere, is only 4 seconds
which is surprisingly low. The results in Table 1 used 3 passes over the mesh, and it is
likely the additional passes would have yielded increased quality at the expense of more
compute time. However, the quality difference between the CPU and GPU results was
small enough that further passes did not seem justified.



2.2. Comparison to global serial optimization

In current practice, a production environment would most likely use the Mesquite toolkit
to perform mesh optimization. We performed a series of experiments, summarized in Ta-
ble 2, to compare the performance of the Nelder-Mead GPU code to that of Mesquite. We
attempted to configure Mesquite as we anticipated most users would. Freitag et. al [14]
performed a series of experiments showing that one of their custom algorithms, Feasible
Newton, exhibits super-linear convergence for most problems. We chose to use Feasible
Newton to minimize the average of the inverse mean ratio values of all the elements.
Using the average of the quality metrics was necessitated by Feasible Newton requiring
a smooth function. In an effort to determine the trade-offs between global and local opti-
mization, Feasible Newton was applied as a global algorithm, potentially moving every
vertex in the mesh each iteration. This is in contrast to the local optimization the GPU
algorithm, which operates on each vertex independently.

On the GPU side, we altered the objective function to also be the average of the
element qualities in order to make the optimization target mirror that used by Feasible
Newton as closely as possible. Of the three core optimization methods, Nelder-Mead ex-
hibited the best performance for this objective function as well, although the differences
among the three were slight. For the GPU runs, we performed 3 passes over the mesh
with Nelder-Mead using 10 iterations to locally optimize each vertex. The overhead of
performing the additional passes simply amounts to the time taken to perform the extra
transfers of data to and from the GPU, and this time is included in the overall run time
on our results. n measuring performance, we neglect the I/O time spent reading and writ-
ing files as being immaterial and measure only CPU time for Mesquite. For the GPU
algorithm we measure the wall-clock time to organize the data on the CPU, generating
independent sets and local neighborhoods, as well the GPU data transfer and compute
times.

As is shown in Table 2, the GPU-based algorithm and Feasible Newton produced
meshes of very similar quality. The GPU algorithm generated meshes of slightly higher
quality in terms of the maximum inverse mean ratio value, while Feasible Newton
slightly better meshes in terms of the average value. The main advantage of the GPU-
based optimization method is its speed and scalability. The GPU algorithm exhibited
speedups ranging from 8 to 12 as compared to global Feasible Newton for our test
meshes.

3. Conclusion

Our GPU-based framework offers a very promising platform for mesh optimization. Our
results have shown that GPU-based optimization can be significantly faster than state-of-
the-art serial global and local optimization while delivering high quality meshes. More-
over, we believe the local mesh optimization framework employed on the GPU will ul-
timately prove more scalable than global optimization techniques, which is a critical
consideration as computational simulation moves towards exascale-level problems.
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