
Components of a more robust multilevel solver for emerging ar-
chitectures and complex applications

Luke N. Olson*
Department of Computer Science, University of Illinois at Urbana-Champaign,
Email: lukeo@illinois.edu,
URL: http://www.cs.illinois.edu/homes/lukeo

Jacob B. Schroder
Department of Applied Mathematics, University of Colorado at Boulder,
Email: jacob.schroder@colorado.edu,
URL: http://grandmaster.colorado.edu/˜jacob/

Abstract. Computational simulation in the physical and information sciences contin-
ues to place demands on the underlying linear solvers used in the process. Algebraic-
based multigrid methods offer a flexible medium for adapting to a wide range of prob-
lems, yet traditional approaches have designed the multigrid components for basic,
isotropic, and well-behaved phenomenon. As a result, out-of-the-box multilevel precon-
ditioners do not handle a wide range of problems. In this article, we highlight several
components of the process that are redefined in order to generalize the approach to
more variable, anisotropic, asymmetric, and unexpected behavior.

1 Introduction
The solution to large, sparse linear systems represents a major portion of the computation

time in many simulations. This solve may be in the form of a final static solution, a solution step
within a Newton iteration of a nonlinear problem, a central component of a fully or partially
implicit time stepping scheme, as part of an eigenspectrum calculation, etc. Not surprisingly, as
computing power continues to increase, we also see a growth in complexity for both applications
and ultimately the underlying numerical methods used to simulate the process. As a result,
increased demands are placed on the linear solvers, requiring theoretical developments that lead
to more robust methods, and more flexible algorithms to handle the emerging architectures and
complex physics present in cutting edge scientific simulations.

New simulations insist on solvers that are designed to handle the challenging attributes of
new problems and new discretizations. Wave problems, highly variable and anisotropic flows,
and non-uniform material properties in solid mechanics or electromagnetics are commonplace
in simulations, yet many of the paradigms used in designing solution methods cannot handle
these situations. Applications are pushing the size of the sparse linear systems to unprecedented
levels, necessitating careful design, but flexible solvers.

The continual growth in application complexity naturally results in more advanced dis-
cretization techniques. High-order discretizations for example have shown broad applicability
and value in recent years, while at the same time placing higher demands on the solver. Mimetic
discretizations, such as curl-conforming Whitney elements; non-conforming discretizations, for
example as used in discontinuous Galerkin finite element methods; and hybrid discretizations,
such as multiscale methods, all similarly present new challenges to the underlying solvers. How-
ever, in order for these highly effective discretization techniques to be useful, they must be
designed concurrently with a competitive solver.

1

Emerging architectures are also redefining the role and impact of solvers in the simulation
toolchain. High-performance computing now extends beyond the traditional supercomputing
environment and encompasses highly heterogenous settings such as smaller scale GPU acceler-
ated workstations and clusters, as well distributed cloud-based systems. Applications in these
settings rely heavily on linear solvers, and it is evident that, as solvers develop, they should take
advantage of the computational context.

As applications, mathematics, and hardware converge in solver and linear algebra kernel de-
velopment, the software is also becoming increasingly more critical and important. Development
time is becoming more complex; usability by a wider audience is a necessity; and portability is
turning into a large asset. There is a need for solver development to become more accessible,
extensible, and flexible as the methodology progresses.

In this paper, we outline several current directions being pursued to rethink and abstract
the methods, algorithms, and implementations of linear solvers. What we seek is a more robust,
efficient, and principled solver, which points toward an algebraic-based multigrid approach that
is compatible with existing Krylov iterative methods. However, traditional algebraic multigrid
(AMG) methods [10, 12] are designed for basic problems, do not scale well, and often have no
sense of optimality despite having a strong theoretical basis.

We outline strategies for handling basic structural qualities, such as complex or non-symmetric
systems. We also review some fundamental elements of the multigrid process such as strength-
of-connection in the matrix graph and interpretation of interpolation that help build a more
competitive multigrid cycle. Finally, we also highlight several directions where multigrid is suc-
cessfully adapted to the computing environment, such as the GPU, and adapted to atypical
application areas through accessible software.

The future is that the mathematical design and theoretical development of solvers is neces-
sarily tightly coupled to the underlying platform and the intended application scope. The best
approach in large scale scientific and information applications requires consideration of the total
computational cost, and linear solver development continues to play a critical role.

1.1 Basic Algorithms
The efficiency of algebraic multigrid as a scalable solver relies on the complementary re-

lationship between relaxation and coarse-grid correction. Relaxation quickly attenuates high
energy error (i.e., error with a large A-norm) on the fine grid, leaving behind low-energy error.
This lower dimensional space of low energy functions is then captured by interpolation, which
maps (i.e., restricts) the residual equation to a coarse-grid composed of this low energy space.
The coarse-grid correction is then interpolated (i.e., prolongated) to the fine grid, where the
current fine-grid solution guess is updated.

The complementary nature of relaxation and coarse-grid correction are summarized through
the setup and solve phases in Algorithms 1 and 2, respectively. We refer to these algorithms in
the following sections, noting the important changes as we extend the robustness of algebraic
multigrid. In particular, we extend the applicability to a broader class of problems by refining
how the low-energy modes of the problem are formed (Line 1, Algorithm 1), how we determine
if certain nodes are influential in the matrix graph (Line 2, Algorithm 1), and how the accuracy
of interpolation is optimized (Line 4, Algorithm 1). Moreover, these extensions more naturally
allow for complex or non-symmetric preconditioning by accounting for the impact on interpola-
tion (Line 5, Algorithm 1) and relaxation (Lines 1 and 3, Algorithm 2). Furthermore, we also
customize our methods to more general problem domains and discretizations by considering our
cycle (Line 2, Algorithm 1) and accelerating components in the architectures such as aggregation
(Line 3, Algorithm 1) or the triple-matrix product (Line 6, Algorithm 1).

2

Algorithm 1: AMG Setup
1 input: Sparse matrix: A, Low-energy modes: B

return: Hierarchy: A0, . . . , Ak, P0, . . . , Pk−1, R0, . . . , Rk−1

A0 = A, B0 = B, k = 0
while k > maxlev and size(Ak) < maxcoarse

2 Ck = strength(Ak) {strength-of-connection}
3 Aggk = aggregate(Ck) {construct aggregates}

Tk, Bk+1 = tentative(Ck, Bk) {form tentative}
4 Pk = prolongator(Ak, Tk) {smoothed prolongator}
5 Rk = P Tk
6 Ak+1 = RkAkPk {coarse matrix, triple-matrix product}
7 k = k + 1

Algorithm 2: AMG Solve
input: Hierarchy: Ak, Rk, Pk, Gk, uk, fk
return: Solution: uk

if k = maxlev
solve Akuk = fk {coarsest-grid solve}

else
1 uk ← Gµ1k (uk) {smooth µ1 times on Akuk = fk}

rk = fk −Akuk {compute residual}
rk+1 = Rkrr {restrict residual}

2 ek+1 ← solve(Ak+1, Rk+1, Pk+1, Gk+1, rk+1) {recursive call}
ek = Pkek+1 {interpolate error correction}
uk ← uk + ek {correct solution}

3 uk ← Gµ2k (uk) {smooth µ2 times on Akuk = fk}

2 Building Blocks
2.1 Low-energy

Central to the compatibility of relaxation and coarse-grid correction in Algorithm 2 is the
ability of interpolation to capture the low-energy modes not annihilated by relaxation. The basic
smoothed aggregation setup algorithm in Algorithm 1 requires knowledge of the near null-space
or lowest energy modes, B, for the system Ax = b. Often these are known a priori through
information about the problem.

However, in many instances the a priori description of the near null-space is inadequate, by
not capturing the character near the boundary or not reflecting the inaccuracy of the discrete
problem. To this end, a simple, yet effective, correction is to execute several passes of relaxation
prior to the setup phase on each level in order to reduce the energy of B. If the matrix
does not define a norm — e.g. in the case of indefinite problems — then we define energy in
the A∗A-norm, which is defined below [4]. The prerelaxation to improve the near null-space
modes then reduces the A-norm or the A∗A-norm of each column B(j) of B using a relaxation
method such as Gauss-Seidel on AB(j) = 0 or on the normal equations A∗AB(j) = 0, which
is accomplished without forming the matrix product. An example is given in Figure 1 for an

3

Figure 1: Prerelaxing user-provided con-
stant vector for an anisotropic problem.

anisotropic diffusion problem rotated away from
the coordinate axis. A constant vector B = 1 is
provided, which is naturally isotropic, however af-
ter relaxation, we see that the low-energy modes
incorporate the problem data of anisotropy, yield-
ing a more accurate representation of the near
null-space. We incorporate this refinement of low-
energy modes in Line 1 of Algorithm 3, a modified
version of a more robust algebraic setup phase.

2.2 Interpreting Connections
The first two steps of the setup phase in Algorithm 1, namely identifying the strength-

of-connection between nodes in the matrix graph (Line 2) and grouping like-minded nodes
between which low energy error is strongly correlated in the matrix graph (Line 3) have a
tremendous impact on the remaining components and ultimate performance of the multigrid
method. Misclassifying strength leads to unnecessary complexity and often limits the potential
accuracy of interpolation by allowing the aggregation of poorly collaborating nodes.

0 50 100 150 200 250 300
iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

re
si

d
u
a
l

Standard Strength
Evolution Strength

Figure 2: Impact of correct strength-of-
connection.

The traditional approach to identifying the fit-
ness of a node for aggregation is to simply view
the weights in the matrix graph: nodes i and j are
strongly connected (and are allowed to collapse to
one node on the coarse grid) if |Aij | ≥ θ

√
AiiAjj ,

where θ ∈ [0, 1]. As identified in [7], a more gen-
eral approach is to consider the effect of relaxation
around a node and to relate this process to the ex-
pectations governed by the low-energy modes B:

Step 1: Evolve a point source (i.e., δ-function)
centered at node i with relaxation on the ma-
trix graph.

Step 2: Determine the flow of the point source
from i to neighbors j in comparison to the
low energy modes B.

Step 1 is executed globally with efficient operations such as a restricted matrix product. If
we consider e to be the result of relaxing a point source at i across the graph, then we assess
the ability of interpolation to interpolate e in the neighborhood of i, given that the span of B
approximates the range of interpolation. That is, we locally let

Sij =

∣∣∣∣∣ej − eBjej

∣∣∣∣∣ , (1)

where ej is the value of the point source spread to node j and eBj is the value at node j of
the projection of e into span{B}. This measures potential ability of interpolation to effectively
interpolate between nodes i and j for general low-energy modes, a critical component in ex-
tending multigrid to more complicated matrix problems. Moreover, as a drop-in replacement
the “Evolution” measure is straightforward to incorporate into current multigrid codes — e.g.
in Line 2 of a modified setup phase in Algorithm 3.

4

As an example of the impact of correctly identifying these decisions early in the process,
consider the case of diffusion rotated away from the coordinate access by π/8 and weighted by
four orders of magnitude in the x-direction. A convergence history of residual norms for the
solver is shown in Figure 2, which highlights a common behavior: a correct identification of
strength leads to significant improvement for non-isotropic or non-elliptic problems.

2.3 Optimality
Given a reliable description of strongly connected components in the matrix graph and an

accurate representation of the low energy modes B, an interpolation operator with a range
consistent with the low-energy modes is immediately available by injecting B onto the sparsity
pattern formed by the aggregates (from the list of strongly connected nodes). However, accurate
interpolation requires additional information, leading to overlap in the interpolation stencil, thus
increasing the complexity [12].

Improving interpolation while maintaining complexity has long been a goal in multigrid
methods and there have been a number of successes such as post relaxation and direct energy
minimization. The approach taken in [9] attempts to force accurate interpolation for low-energy
modes over a preset sparsity pattern, again using a general energy concept in either the A-
norm or the A∗A-norm. The main heuristic is that interpolation P should have low-energy
column-wise, such that a sparsity pattern is fixed for P . That is we find P such that

APj = 0 for each column j. (2)

Thus, by using a Krylov method such as conjugate gradient (CG) for symmetric positive definite
A or generalized minimum residual (GMRES) for general A to solve (2), we naturally find P
with

‖Pj‖A → min and ‖Pj‖A∗A → min, (3)

respectively. In order to guarantee a non-trivial solution, however we constraint the process
so that interpolation is consistent with the near null-space. That is, (3) is constrained with
PBcoarse = B.

Figure 3: Streamline driven-cavity with
Re = 1000.

Additionally, with a general strength matrix, S,
the sparsity pattern is allowed to effectively grow
along directions of strong connection through

Pnew = SjP for j ∈ {1, 2, . . . }. (4)

This allows control of two critical portions of the
interpolation process: the complexity of the inter-
polation operator and the accuracy of the interpo-
lation operator. As a result, the multigrid process
is much more robust because we force accuracy on

interpolation, while intelligently controlling the sparsity pattern, leading to a more effective, yet
richer multigrid hierarchy. Moreover, the process relies on fast, basic linear kernels such as the
matrix-vector multiply and several graph methods.

As an example, consider the non-Hermitian lid-driven cavity with Re = 1000 given by the
streamline solution in Figure 3. We see in Table 1 that alone results in an improved solver,
yet the performance is limited since either interpolation is inaccurate due to the definition
of interpolation, or because interpolation is inaccurate due to an inadequate sparsity pattern
induced by the coarse nodes chosen through the strength routine. The improved interpolation
strategy is highlighted in Line 4 of a modified setup phase in Algorithm 3.

5

Standard with improved
strength

with improved
interpolation

with improved
strength and
interpolation

75 42 41 18

Table 1: Preconditioned GMRES iterations for a lid-driven cavity with h = 1/256.

2.4 Non-symmetric and complex
A fundamental concept in the traditional approach to multigrid methods is that of the

Galerkin product Acoarse = RAP . If the coarse matrix is expected to be symmetric, then R = P ∗

is the natural choice. However, this is problematic for non-symmetric problems. Instead, since
the range of interpolation is expected to conform to the low-energy, right near null-space, the
range of R∗ is expected to represent the low-energy left near null-space — i.e. the near null-
spaces of A and A∗, respectively. This has been explored recently [4, 6, 11, 8], so that restriction
R is defined to be the adjoint of interpolation for the adjoint of the operator A. That is, the
interpolation strategies of the previous section are enforced on R∗ through A∗, so that A∗R∗ ≈ 0
is enforced with left, low-energy modes B∗.

It is also important to distinguish the concept of energy in the general case. We assume that
there are two spaces of low-energy functions, namely

B = {e : ‖Ae‖0 = ‖e‖A∗A ≈ 0} (5)
B∗ = {e : ‖A∗e‖0 = ‖e‖AA∗ ≈ 0}, (6)

which are the right and left singular vectors corresponding to small singular values, respectively,
and are used to define algebraically smooth error. Moreover, in combination with Gauss-Seidel
or other relaxation methods based on the normal equations A∗A or AA∗ — otherwise termed
Kazmarcz smoothing — these descriptions of the low-energy modes are compatible with the
multigrid process [4]. In the modified setup phase of Algorithm 3 we incorporate this notion
of dual low-energy in Line 1, by generating complementary left near-null space modes, and in
Lines 4 and 5 by considering energy minimization for the construction of both P and R∗.

3 Accelerating The Solver
While applications continue to demand more robust convergence of the linear solvers in

the simulation process, the advanced techniques discussed above need to conform to and take
advantage of the underlying computing architecture. This is particularly crucial as we anticipate
more everyday use of heterogeneous architectures, for example with acceleration units. GPU
enabled boxes are readily available and accessible to computational programming [2], and other
architectures are trending in this directions, including AMD Fusion accelerated processing units
(APUs).

The major difficulty in taking advantage of these highly parallel architectures, however is that
our sparse matrix computations with multigrid are inherently memory bound. However, if we
redesign the multigrid components and specializations to utilize efficient computing kernels on
these accelerated architectures, then tangible speed-ups are achieved. The key is to incorporate
the kernels, such as a sparse matrix-vector multiply, a fast sort-by-key, or an efficient reduction,
into the mathematics as we extend the robustness of multigrid.

Exposing fine-grained parallelism in many of the components of Algorithms 1 and 2 is not
straightforward, yet expressing the parallelism in terms of the highly-tuned primitives of the

6

0

2000

4000

6000

8000

0E+00 5.8E+05 1.2E+06 1.7E+06 2.3E+06

Setup

0E+00 5.8E+05 1.2E+06 1.7E+06 2.3E+06

Solve

Matrix Size Matrix Size

Ti
m

e
(m

se
c) GPU

Host

>2x >5x

Figure 4: Timings and speedup for algebraic multigrid on the GPU.

architecture leads to valuable acceleration of the multigrid method [3] and a sustained way in
which we approach multilevel solvers. Consider Algorithms 1 and 2 on an NVidia GPU. Central
to performance on the NVidia GPU is our ability to coalesce the memory access of the sparse
matrix computations [1] and to express the methods in terms of a gather, scan, sort, reduce,
and other tuned routines on the GPU. Figure 4 summarizes a typical timing and speedup for
the setup and solve (cycling) phases of algebraic multigrid. Typical speed-ups are in the area
of 2× for the setup phase, while 5× for the solve phase.

0

0.3

0.5

0.8

1.0

Fine Level 0 Level 1 Level 2 Coarse Level 3

strength aggregation tentative
prolongator transpose product
spectral_radius conversion

Figure 5: Timings at each level of the setup
phase.

With strength decisions, aggregation, interpo-
lation, interpolation smoothing, and the triple ma-
trix product, the setup phase of Algorithm 1 has
several components that require adapting to a
more parallel environment. The cycling phase re-
lies almost exclusively on the sparse matrix-vector
product, resulting in a direct benefit given a multi-
grid hierarchy with modest complexity. The limi-
tation of a 2× speedup for a single GPU device is
largely due to the dominance of the triple matrix
produce in Line 5 of Algorithm 1, which is inher-
ently sequential. Figure 5 shows that most of the
time at each level of the setup phase is spent as-
sembling the triple matrix product, which is com-
mon for algebraic-based multigrid methods. While
we achieve up to 2× speedup for the matrix prod-
uct on the GPU, there is a need to develop more
mathematical tools to alleviate the setup phase of an exact triple matrix product RAP , by
considering either multiple, thinner coarsenings or by approximating the coarse level matrix
through another approach. We also observe that as the coarsening proceeds, the sparse matrix
operations become more dense, making them less suitable for the GPU. Indeed, the speedup at
finer (and larger) levels of the hierarchy is greater than exhibited at coarser levels, which points
to a need for a hybrid cycling and setup routine that can automatically handle CPUs and GPUs
more effectively for different components in the multigrid process.

7

3.1 Exposing Parallelism: An Example of Aggregation
The traditional approach to aggregation is straightforward: sequentially group ungrouped

nodes that are strongly connected. The process proceeds as follows:

Step 1: Select each node i. If node i that has not been placed in a group (aggregate) and the
strongly connected neighbors of i have not been placed in a group, then form a new group.

Step 2: For each node i not placed in a group from Step 1, either form a new group or add to
a neighboring group.

This aggregation technique has several limitation including sequentiality and the inability to
adjust the size of the aggregate in order to control complexity.

Figure 6: Example grouping of fine nodes
of the matrix graph.

A typical collection of aggregates or groups of
fine nodes is given in Figure 6. Here, we see that
the root nodes for the aggregates (shaded gray) are
more than two steps away from other root nodes in
the graph and that if an unaggregated node were
more than two steps away, it could safely be aggre-
gated with its neighboring nodes. This defines the
concept of a distance-2 maximal independent set
(MIS-2), and governs the independence and maxi-
mality of the covering respectively. Thus, with an
MIS-2 splitting of N root nodes, we generate an
aggregate based on the primitives of the architec-
tures, which we assume includes a sparse matrix-
vector multiply (SpMV). We first enumerate the
N root nodes in a list (giving an aggregate index)

and proceed as follows (Line 3 of Algorithm 3):

Step 1: Communicate the aggregate index to strongly connected neighbors: SpMV with S.

Step 2: Communicate the aggregate index to additional unaggregated neighbors: SpMV with
S.

The result is a highly efficient aggregation technique that mimics the standard approach up to
a permutation of the index list, relies on the fast SpMV optimized for the architectures, and it
extensible to larger aggregates as described in [3].

4 The Next Generation of Solvers
We have presented a more generalized setup phase in Algorithm 3 that attempts to produce

a more robust solver. Yet, we have certainly not uncovered the full potential of generalizing
the multigrid method. For example, consider the 23 test cases in Figure 7, where we have
applied a version of the modified setup phase in Algorithm 3 to a collection of matrices from
the University of Florida Sparse Matrix Collection [5]. We reduce the residual by 10−9 and
symmetric, positive definite (s.p.d.) systems are solved using the preconditioned CG framework
for interpolation above, while general systems use preconditioned GMRES. The results show a
consistent benefit as a preconditioner. All s.p.d. systems resulted in an effective preconditioner,
however the non-symmetric systems only benefited in 8 out of 40 cases, highlighting that general
systems require a much broader interpretation of the multigrid hierarchy.

This emphasizes the need for more theoretical development of multigrid methods for general
systems. A competitive framework will seamlessly incorporate

8

Algorithm 3: AMG Modified Setup
input: Sparse matrix: A, Low-energy modes: B
return: Hierarchy: A0, . . . , Am, P0, . . . , Pm−1

A0 = A, B0 = B, k = 0
while k > maxlev and size(Ak) < maxcoarse

1 Bk, B
∗
k ← improve_modes(Bk, B∗

k) {refine low-energy}
2 Ck = evolution_strength(Ak) {strength-of-connection}
3 Aggk = parallel_aggregates(Ck) {construct aggregates}

4 Pk, Bk+1 = optimize_interpolation(Ak, Aggk, Bk) {construct interpolation}
5 Rk, B

∗
k+1 = optimize_restriction(A∗

k, Aggk, B
∗
k) {construct restriction}

6 Ak+1 = RkAkPk {coarse matrix, triple-matrix product}
7 k = k + 1

Figure 7: Iterations to convergence for a sample of matrices from the University of Florida
Sparse Matrix Collection using Algorithm 3 as a blackbox preconditioner.

.

user-provided knowledge of the problem Many of the problems can benefit from user data
such as a description of the physics for low-energy modes, or the nature of the degrees-of-
freedom in high-order or discontinuous discretizations, or the topology of the problems,
such as dimension.

automatically coarsen For many problems, the coarse-grids are not rich enough to host ac-
curate interpolation, thus requiring a reassessment of the construction of coarse-grid con-
nections.

optimally construct a hierarchy An optimal interpolation strategy will seek an optimal
compatibility between left and right relaxation, left and right near null-space modes, and
interpolation and restriction.

multiple cycling For many problems, a single view of the hierarchy is not realistic, particularly
when the near null-space is rich or when the left and right energy of the problem provide
diverging views of the problem.

9

self-correction A multilevel process is inherently a global construction, requiring many passes
to fine-tune the method.

Moreover, this mathematical development requires careful integration with the intended
computing kernels in order to yield a competitive solver with respect to total computational
cost. Coarse-grid selection, interpolation strategies, correction methods, and cycling options
need to effectively harness the available computing power. Given the flexibility of the multigrid
framework it is poised to be a powerful solution method for many more applications as robustness
continues to progress.

References
[1] N. Bell and M. Garland, Efficient sparse matrix-vector multiplication on CUDA,

NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[2] , CUSP : Generic parallel algorithms for sparse matrix and graph computations. http:
//code.google.com/p/cusp-library/, 2009-.

[3] W. N. Bell, S. Dalton, and L. N. Olson, Amg on the gpu, in preparation, (2011). see
cusp.precond at http://code.google.com/p/cusp-library/.

[4] M. Brezina, T. Manteuffel, S. Mccormick, J. Ruge, and G. Sanders, Towards
adaptive smoothed aggregation (αSA) for nonsymmetric problems, SIAM J. Sci. Comput.,
(Submitted 2009).

[5] T. A. Davis, The University of Florida sparse matrix collection. http://www.cise.ufl.
edu/research/sparse/matrices. Submitted to ACM Transactions on Mathematical Soft-
ware.

[6] S. P. MacLachlan and C. W. Oosterlee, Algebraic multigrid solvers for complex-
valued matrices, SIAM J. Sci. Comput., 30 (2008), pp. 1548–1571.

[7] L. N. Olson, J. Schroder, and R. S. Tuminaro, A new perspective on strength
measures in algebraic multigrid, Numerical Linear Algebra with Applications, 17 (2010),
pp. 713–733.

[8] L. N. Olson and J. B. Schroder, Smoothed aggregation for Helmholtz problems, Numer.
Linear Algebra Appl., 17 (2010), pp. 361–386.

[9] L. N. Olson, J. B. Schroder, and R. S. Tuminaro, A general interpolation strategy
for algebraic multigrid using energy minimization, SIAM Journal on Scientific Computing,
33 (2011), pp. 966–991.

[10] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods, S. F.
McCormick, ed., Frontiers Appl. Math., SIAM, Philadelphia, 1987, pp. 73–130.

[11] M. Sala and R. S. Tuminaro, A new Petrov-Galerkin smoothed aggregation precondi-
tioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 31 (2008), pp. 143–166.

[12] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggre-
gation for second and fourth order problems, Computing, 56 (1996), pp. 179–196.

10

