
Journal of Computational Physics 229 (2010) 3726–3744
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A spectral boundary integral method for flowing blood cells

Hong Zhao a, Amir H.G. Isfahani a, Luke N. Olson c, Jonathan B. Freund a,b,*

a University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, IL 61801, United States
b University of Illinois at Urbana-Champaign, Department of Aerospace Engineering, Urbana, IL 61801, United States
c University of Illinois at Urbana-Champaign, Department of Computer Science, Urbana, IL 61801, United States
a r t i c l e i n f o

Article history:
Received 2 July 2009
Received in revised form 12 January 2010
Accepted 18 January 2010
Available online 28 January 2010

Keywords:
Stokes flow
Particle-mesh Ewald
Red blood cells
Spherical harmonics
Boundary element methods
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.01.024

* Corresponding author. Address: University of I
United States. Tel.: +1 (217) 244 7729; fax: +1 (217

E-mail addresses: hongzhao@stanford.edu (H.
(J.B. Freund).
a b s t r a c t

A spectral boundary integral method for simulating large numbers of blood cells flowing in
complex geometries is developed and demonstrated. The blood cells are modeled as finite-
deformation elastic membranes containing a higher viscosity fluid than the surrounding
plasma, but the solver itself is independent of the particular constitutive model employed
for the cell membranes. The surface integrals developed for solving the viscous flow, and
thereby the motion of the massless membrane, are evaluated using an OðN log NÞ parti-
cle-mesh Ewald (PME) approach. The cell shapes, which can become highly distorted under
physiologic conditions, are discretized with spherical harmonics. The resolution of these
global basis functions is, of course, excellent, but more importantly they facilitate an
approximate de-aliasing procedure that stabilizes the simulations without adding any
numerical dissipation or further restricting the permissible numerical time step. Complex
geometry no-slip boundaries are included using a constraint method that is coupled into an
implicit system that is solved as part of the time advancement routine. The implementa-
tion is verified against solutions for axisymmetric flows reported in the literature, and
its accuracy is demonstrated by comparison against exact solutions for relaxing surface
deformations. It is also used to simulate flow of blood cells at 30% volume fraction in tubes
between 4.9 and 16.9 lm in diameter. For these, it is shown to reproduce the well-known
non-monotonic dependence of the effective viscosity on the tube diameter.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We develop an algorithm to efficiently simulate the detailed interactions of large numbers of blood cells flowing in com-
plex geometry blood vessels. The nature of blood makes this inherently challenging. The red blood cells (erythrocytes) are
densely packed, making up around 30% of the overall volume of the blood in the smallest blood vessels, so the cells interact
continuously and strongly. Moreover, the cells are highly deformable under physiologic conditions. Unstressed red cells are
well known to have a distinctive biconcave shape of around 8 lm in diameter and 2 lm in thickness, but deform easily from
this minimum-energy shape. Fortunately for developing simulation models, the structure of each cell is fundamentally sim-
ple: a flexible membrane encloses a hemoglobin solution. The membrane itself has finite elastic shear modulus and bending
moment but strongly resists changes in surface area. The hemoglobin within and the plasma surrounding the cells are both
Newtonian, but the overall behavior of blood in small vessels is non-Newtonian due to its particulate character. Cell–cell and
the cell–wall interactions lead to phenomena such as the non-monotonic change of the apparent blood viscosity with blood
. All rights reserved.
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vessel diameters [12] and the separation of red cells at vessel bifurcations [35]. The particulate character is also believed to
be an important mechanical mechanism for the migration of leukocytes (white cells) towards the walls of small blood ves-
sels [1,13].

At the low Reynolds number of flows in the microcirculation, the flow of plasma outside the cell membranes and the
hemoglobin solution inside are both Stokesian. Although Stokes flows have relatively simple linear governing equations, di-
rect numerical simulation of the cellular flow system is nevertheless challenging because of its continuously changing geom-
etry, the deformations of the cells, and their close-range interactions. For simulation methods requiring boundary-fitted
meshes, such as arbitrary Lagrangian–Eulerian methods, the mesh movement and regeneration for the complicated flow
geometry is challenging and computationally expensive. Immersed boundary or immersed interface methods can avoid this
by representing the changing geometry on a fixed mesh. These methods account for the cell–fluid interactions by diffusing
the membrane force to the nearby fluid domain mesh points [28] or by modifying the local discrete differential operators
when their stencils cross the cell membrane [21]. Both cell–cell interactions and cellular flow in small blood vessels have
been simulated by the immersed boundary method in two dimensions [4,3]. The immersed finite-element method [23]
and the lattice-Boltzmann method [24] similarly model the cell membranes as added body forces and have been used for
studying cell aggregation and blood rheology. These fixed-mesh methods avoid re-meshing, but still require either a fine vol-
umetric mesh or adaptive meshing to resolve close interactions between cells [39].

The mesh-based Lagrangian–Eulerian and immersed boundary or interface methods start with discretizing the differen-
tial form of the flow equations. Another approach is to use the linearity of Stokes flow to express solutions as surface inte-
grals over interfaces and boundaries [18,32]. Such a boundary integral approach requires only discretization of the cell and
vessel-wall surfaces, and the difficulties in volumetric meshing of the complex-shaped flow domain are avoided. Such an
approach can not be extended to include any inertia effects as immersed boundary [3] or lattice-Boltzmann [24] schemes,
but this is not restrictive since microcirculatory flows are indeed very low Reynolds number. Boundary integral formulations
have been used in simulating the motion of a single unconfined red cell in shear flow [33], axisymmetric cell motion in cylin-
drical tubes [34], and multiple cells in two dimensions [14], but considerable development has been required to do this effi-
ciently for large numbers of cells in general three-dimensional configurations. Our efforts to do this are the subject of this
paper.

A particular challenge in simulating red cells arises from the nonlinear dependence of the membrane residual force on its
deformation. As discussed in detail in Section 10, the nonlinearities stem from the membrane stress–strain relation as well as
the intrinsic geometrical nonlinearities due to the finite membrane deformation. In numerical simulations, these nonlinear-
ities can cause unphysical growth of modes of high wavenumber by an aliasing mechanism. As in any physical system, non-
linearity can move energy to smaller scales. For finite resolution, most numerical schemes will alias the unresolvable portion
of this energy into the resolved solution [6]. In red-cell simulations, the aliasing errors can lead to the slow growth of surface
features such as sharp corners and cusps. When the system does not have strong enough physical or numerical dissipation,
the growth of these high wavenumber modes results in numerical instability of the kind that has been reported [33]. Avoid-
ing this through some manner of numerical damping reduces the effective resolution of the scheme.

In a two-dimensional simulations of leukocyte transport, Freund [14] represented the shape of each cell with typically 16
Fourier modes, but to avoid significant aliasing errors all nonlinear operations were done with 64 collocation points inter-
polated by these 16 modes. The algorithm was straightforward and stable without any artificial dissipation and the time step
was not limited beyond the typical restriction imposed by the 16 resolved modes. Here, we generalize this approach to de-
velop and demonstrate the correspondingly more intricate algorithm for solving general three-dimensional cellular flows in
complex geometries. Each cell surface is represented by spherical harmonics, the natural counterpart of the Fourier series for
the two-dimensional cells. This spectral surface representation, in addition to its high accuracy, similarly enables de-aliasing.

We briefly review the system considered in Section 2 and discuss the various aspects of the simulation algorithm in detail
in Sections 3–7. Special attention is given to the methods used for handling singular and nearly-singular integrands and for
our formulation of a constraint method that provides complex geometry no-slip boundaries using formulations based upon
the standard periodic-domain Green’s functions of the Stokes operator. In Section 8, the expected convergence with increas-
ing resolution is confirmed and means of controlling the accuracy with the numerical parameters are discussed. Numerical
solutions are compared with exact solutions for the relaxation of small surface deformations to in Section 9 to confirm the
time accuracy of the algorithm and the excellent spatial resolution of the spherical harmonics. The de-aliasing procedure is
discussed and demonstrated in Section 10. Several simulations of blood cells flowing in tubes are included in Section 11. The
first of these is used to verify our implementation by direct comparison of our three-dimensional algorithm with a reported
axisymmetric result calculated using the same physical model. This is followed by demonstration simulations of three-
dimensional flows in tubes with various diameters. These are shown to reproduce the experimentally measured non-mono-
tonic dependence of effective blood viscosity on vessel diameter.
2. Flow solver formulation

A generic three-dimensional cellular flow domain is depicted schematically in Fig. 1. The cells Di and vessel walls W are
embedded in a rectangular domain X ¼ ½0; L1� � ½0; L2� � ½0; L3�. The Newtonian viscosity l is that of blood plasma in X0,
everywhere outside of the cells. The region outside of the vessel is included in X0 since it facilitates the use of periodic



Fig. 1. A model microcirculatory vessel. The shaded area ðX1;2;...Þ is occupied by the cells, and the rest (X0) by plasma.

3728 H. Zhao et al. / Journal of Computational Physics 229 (2010) 3726–3744
Green’s function kernels, but the no-slip boundary condition on the vessel walls prevents this exterior flow from influencing
the flow in the vessel. The hemoglobin solution within the cells has Newtonian viscosity kl. Indirect experimental measure-
ments suggest that this interior viscosity is higher than the plasma viscosity but of the same order of magnitude [10]. A vis-
cosity ratio that has been used in past simulations of red cells is k ¼ 5 [33], which we also use. The flow is driven by a
pressure gradient, so despite the periodic boundary conditions on the velocity, pressure has both a periodic and a linearly
varying component. The periodic part can be expressed as x � hrpi, where hrpi is the mean pressure gradient, which neces-
sarily balances the net effect of any wall friction.

The theory of the boundary integral formulation for Stokes flow is well established [18,31,32,37]. We briefly outline the
general formulation for completeness and concentrate on the details central to the cellular flow system and our algorithm.
The formulation is built upon the solutions of the Stokes equation with a point force inhomogeneity,
0 ¼ �rpþ lr2uþ gdðx� x0Þ; 0 ¼ r � u; ð1Þ
where p is the pressure and u is the velocity. The solutions for the fluid velocity and stress are
uiðxÞ ¼
1

8pl
Gijðx; x0Þgj and rikðxÞ ¼

1
8p

Tijkðx;x0Þgj: ð2Þ
Here, the so-called Stokeslet Gðx;x0Þ is periodic in X on both x and x0 and satisfies the zero mean flow conditionR
X Gðx;x0Þdx ¼ 0. The so-called Stresslet Tðx;x0Þ can be spatially decomposed into linear and periodic parts,
Tijkðx; x0Þ ¼ �
8p
V

xjdik þ �Tijkðx; x0Þ; ð3Þ
where V ¼ L1L2L3 is the volume of the domain, and the periodic part �Tijkðx;x0Þ satisfies the constraint
R

X
�Tðx;x0Þdx ¼ 0. The

single-layer potential operator N and the double-layer potential operator K are integral operators on a surface D that involve
these Green’s functions as kernels. They map any surface vector distribution w into
ðNDwÞjðx0Þ ¼
Z

D
wiðxÞGijðx;x0ÞdSðxÞ; ð4Þ
and
ðKDwÞjðx0Þ ¼
Z

D
wiðxÞTijkðx;x0ÞnkðxÞdSðxÞ: ð5Þ
If the surface D is Lyapunov smooth, then both operators are weakly-singular and hence compact [20,30].
Taking D ¼ [iDi to be the set of cell membranes, the surface velocity at any point x0 2 D solves
ujðx0Þ ¼ �
1

4plð1þ kÞ ðND[W fÞjðx0Þ þ
1� k

4pð1þ kÞ ðKDuÞjðx0Þ þ
2

1þ k
huji; ð6Þ
where the surface normal n in KD points into the plasma region X0 (see Fig. 1), the force density f is the sum of hydrodynamic
forces acting on D and W, and hui is the volume average of the velocity in X. Since it appears explicitly as a parameter, hui is
convenient for setting the strength of the flow, but this average includes flow outside the vessel. The no-slip condition on the
vessel wall W is
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0 ¼ � 1
8pl

ðND[W fÞjðx0Þ þ
1� k

8p
ðKDuÞjðx0Þ þ huji; ð7Þ
which applies for any x0 2W and prevents the exterior flow from influencing the flow in the interior of the vessel.
Since the inertia of cell membranes is negligible, the hydrodynamic traction f in (6) acting on the membrane balances the

residual force from the membrane’s internal stress. Hence fjD is explicitly calculated from the cell membrane deformation
and the stress–strain relation. As a result, ujD and fjW are solved by inverting (6) and (7) for any given hui.

The volume average velocity hui is related to the mean pressure gradient hrpi, which is also an important parameter for
studying microcirculatory flows. The average velocity implicitly determines the net wall friction force and thus the mean
pressure gradient,
hrpi ¼ � 1
V

Z
W

fðx; tÞdSðxÞ; ð8Þ
through the no-slip condition (7). The functional relation between hui and hrpi thus depends on the size of the domain X
and is therefore not generic. The explicit functional form of the dependence is not easily realized even for relatively simple
geometries. Thus, unlike mesh-based methods, it is not convenient a priori to set either the pressure gradient or mean veloc-
ity in the vessel. However, this is not a significant limitation since a specific hui corresponds to a specific time average of hrpi
and mean flow in the vessel. It is thus straightforward to set either of these iteratively or more simply study a range of flow
conditions by varying hui as we did previously in two dimensions [14]. Furthermore, for the kind of flow shown in Fig. 1, the
time variation of domain average pressure hrpi is typically small (less than 2% for the cylindrical tubes in Section 11.2) with
fixed hui. If a specific mean pressure gradient is indeed required, then unknowns ujD; fjW and hrpi can be solved from (6)–
(8), although this increases the number of unknowns by three.

Through collocation, (6) and (7) are discretized into the linear system
A11 A12

A21 A22

� �
U
F

� �
¼

b1

b2

� �
; ð9Þ
where U is all the velocity vectors for all discrete mesh points on cells and F is all the friction forces on the discrete mesh
points on the walls. The sub-matrices in (9) clearly correspond to cell–cell, cell–wall and wall–wall interactions.

A staggered time integrator updates the cell deformations from each time step tn to the next tnþ1 ¼ tn þ Dt with the fol-
lowing steps:

(i) Solve the surface velocity Un from
An
11Un ¼ bn

1 � An
12Fn: ð10Þ
(ii) Advance the cell surface coordinates by the forward Euler scheme:
Xnþ1 ¼ Xn þ DtUn: ð11Þ
(iii) Update the wall drag force by solving
Anþ1
22 Fnþ1 ¼ bnþ1

2 � Anþ1
21 Un: ð12Þ
Euler forward time stepping is shown here for simplicity and used in our example simulations; multi-step time integra-
tion schemes such as Adams–Bashforth can be used without difficulty. Runge–Kutta schemes are also straightforward in
some cases, but become more difficult to apply when a cell–cell collision removal procedure is added between sub-time-
steps as seems necessary in cases (see Section 11.2). The two linear systems for U and F are solved with GMRES [40]. The
submatrix A11 represents the operator I� ð1� kÞ=½4pð1þ kÞ�KD, and its condition number is bounded by the viscosity ratio
k. For matched viscosity k ¼ 1; A11 ¼ I, and the equation for U is explicit; when k ¼ 5, as for most of the demonstration sim-
ulations, the system is well conditioned and no more than 10 iterations are needed to reduce the L2-norm of the relative
residual error to about 10�6. The determination of F, on the other hand, requires solving a single-layer potential system
whose condition number grows with wall mesh refinement. For the cylindrical tubes of Section 11.1, the maximum wall
residual velocity is reduced to less than Oð10�4Þ of khuik by 20 GMRES iterations. For a particular flow or geometry, it is likely
that the matrix condition can be improved through effective preconditioning [45,47] or by applying the no-slip condition
through an indirect formulation [16,42,48]. While it is in principle possible to solve (9) directly, the scheme we use is sim-
pler, has been consistently stable, and is demonstrated to be accurate in the example simulations we discuss.

3. Cell surface representation and residual force calculation

The surface of each cell Di is mapped from a unit sphere S
2 that is parameterized by the colatitude angle h 2 ½0;p� and the

longitude angle / 2 ½0;2pÞ. Any function f on S2 is represented by a truncated series of spherical harmonic functions,
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f ðh;/Þ ¼
XN�1

n¼0

Xn

m¼0

Pm
n ðcos hÞðanm cos m/þ bnm sin m/Þ; ð13Þ
yielding N2 total number of spherical harmonic modes. The normalized associated Legendre polynomials,
Pm
n ðxÞ ¼

1
2nn!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn�mÞ!

2ðnþmÞ!

s
ð1� x2Þ

m
2

dnþm

dxnþm ðx2 � 1Þn; ð14Þ
satisfy
Z 1

�1
Pm

n ðxÞPm
n0ðxÞdx ¼ dnn0 : ð15Þ
The mesh coordinates are uniform in / and the roots of PNðcos hÞ in h. Both forward and backward transforms are computed
using the SPHEREPACK library [2,44].

Besides spectral accuracy, there are two main advantages to the spherical harmonic representation. First, the differenti-
ation of each modal function on the right-hand side of (13) is well defined, without the ambiguous behavior or singularities
at the poles ðh ¼ 0;pÞ that are encountered when using, say, standard finite differences on S2. Secondly, the spherical har-
monic representation has a uniform resolution over S

2 in that the truncated series (13) minimizes the L2-norm of the
approximation error on S2. We note that the number of modes is exactly half of the number of mesh points. For an arbitrary
function with values defined on the 2N2 mesh points, a forward and backward discrete spherical harmonic transform does
not recover the original point values. Instead, it yields a distribution in which the highly oscillatory modes near the poles are
removed. This also removes any time step limitation associated with the close spacing of the collocation points near the
poles: the eigenvalue of the Laplacian of each spherical harmonic mode is nðnþ 1Þ, which is far less than the inverse square
of the mesh spacing near the poles.

On the cell surface, local coordinates are defined by the two tangents a1;2 and the surface normal a3,
a1 ¼
@x
@h
; a2 ¼

@x
@/

; a3 ¼ n ¼ a1 � a2

ja1 � a2j
: ð16Þ
The first and second fundamental forms, which are used in subsequent manipulations, have components
aij ¼ ai � aj and bij ¼ ai;j � n ði; j ¼ 1;2Þ: ð17Þ
Each cell we model here has a stress-free biconcave reference shape set with a standard functional form [33,34]. The local
deformation of the membrane is described by the surface deformation tensor F that maps the two reference tangents aR

k to ak

and has the tensor form F ¼
P2

a¼1aa � aaR.
For an isotropic membrane, the Piola–Kirchhoff stress only depends on the two strain invariants [43],
I1 ¼ k2
1 þ k2

2 � 2 and I2 ¼ k2
1k

2
2 � 1; ð18Þ
where k1;2 are the eigenvalues of the left Cauchy–Green tensor V2 ¼ F � FT . The elastic strain energy based on a neo-Hookean
model [34] is
W ¼ ES

4
1
2

I2
1 þ I1 � I2

� �
þ ED

8
I2
2; ð19Þ
where ES is the elastic shear modulus and ED is the dilatation modulus, which acts as a penalty parameter so that the surface
dilatation is nearly unity. The in-plane Cauchy stress tensor is
s ¼ ES

2JS
ðI1 þ 1ÞV2 þ JS

2
ðEDI2 � ESÞP; ð20Þ
where P ¼ I� n� n is the surface projection tensor and JS ¼ k1k2 is the dilatation. The linear isotropic model used for the
bending moment is
Ma
b ¼ �EBðba

b � baR
b Þ; ð21Þ
where EB is the bending modulus. For a sphere of radius r, b ¼ �P=r, hence a compression of a sphere results in a positive
bending momentum according to (21) as it should.

By applying the Stokes theorem to the local torque balance, the surface transverse tensor Q and the in-plane tension ten-
sor N are defined by
Mab
ja � Qb ¼ 0; ð22aÞ

eabðNab � ba
cMcbÞ ¼ 0; ð22bÞ
where the subscript ‘ja’ denotes the covariant derivative to ha. Eq. (22b) determines the antisymmetric part of N, and the
symmetric part is set by the constitutive law (20). Nevertheless, because of the constitutive model (21) used for the bending
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moment M, the term ba
cMcb in (22b) is symmetric about a and c, and so the antisymmetric part of N is always zero. By a local

force balance, the hydrodynamic surface traction f is determined via
Nab
ja � bb

aQa þ f b ¼ 0; ð23aÞ
Qa
ja þ Nabbab þ f 3 ¼ 0 ð23bÞ
for b ¼ 1;2. Because of the global mapping on each cell surface, all derivatives are obtained from the spherical harmonic
expansion and tensor algebra.

This model for the mechanics of the cell membranes is fairly general and has been used previously as a model for blood
cells [33,34], and it therefore seemed to be a good candidate for demonstrating our numerical methods. In Section 11.2, we
shall see that it provides a reasonable quantitative model for flowing cells. However, the overall algorithm we develop here is
only loosely tied to this particular model of the red-cell dynamics, so long as the cells remain intact. Topological changes,
such as in cell lysis, would require significant modification of the scheme because the spectral basis functions are restricted
to sphere-like topologies. Such cases aside, there are several other constitutive models and modeling approaches [7,22,29]
that are compatible with the overall proposed algorithm and which might have better predictive capabilities in certain
circumstances.

For any realistic constitutive model, the membrane will introduce nonlinearity to the linear flow system, thereby intro-
ducing the nonlinear mechanisms of numerical instability that appear to have hampered solution in the past [33]. The in-
plane Cauchy stress is in general a nonlinear function of the deformation tensor and the finite membrane deformation also
introduces a geometric nonlinearity. Furthermore, the covariant derivative involves projection of tensor derivatives along
the local surface tangents, which is also a nonlinear operation at finite deformation. All of these nonlinearities contribute
to what are called aliasing errors in the context of numerical solutions of the full nonlinear Navier–Stokes equations [6]. En-
ergy that is moved to unresolved scales (high mode numbers) by nonlinear effects is aliased back to resolved scales, where it
facilitate a spurious increase in the magnitudes of high-wavenumber energy. Our approximate de-aliasing technique, which
is discussed and demonstrated in Section 10, is essential for the overall efficiency of our algorithm.

4. Discretization of the no-slip wall boundaries

No-slip wall boundaries, such as the blood vessel walls, are discretized with a triangular surface mesh, on which the
surface force density is represented by second-order accurate linear boundary elements build upon 7-point Guass quadr-
atures [32]. This is implemented in a collocation scheme whereby the residuals of (9) at wall mesh points are con-
strained to be zero. The singular integrations on the wall are computed by the widely-used Duffy quadrature rule
[11]. For nearly-singular close-range interactions this same singular integration is used to improve accuracy, but a fine
wall mesh would be needed, of course, if the cells were to approach very close to the wall. We have not found this to be
restrictive in our computations because Stokesian lifting suppresses close approaches to the wall and tends to maintain
the well-known near-wall cell-free layer. The cell deformation and wall force density in all our simulations are insen-
sitive to wall mesh refinement when the wall mesh size is smaller than the gap width. An example with a wall refine-
ment is included in Section 10 showing that our typical resolution is more than sufficient. The focus of this paper is the
discretization of the cells, which as can be seen from the block matrix structure of the cell–wall system is independent
of the wall discretization. If resolving close cell–wall interaction were to become a challenge in some application, it
would be possible to incorporate any higher-resolution scheme for the wall [26], either locally or globally, without
changing the cell discretization.

5. Smooth particle-mesh Ewald sum (SPME)

5.1. Green’s function splitting

The Stokes-flow Green’s functions for periodic boundary conditions are calculated as an Ewald sum [15]. To do this, both
Green’s functions are decomposed into short-range singular (sr) and smooth (sm) parts,
G ¼ Gsr þ Gsm and T ¼ Tsr þ Tsm:
The short-range part of the single-layer Green’s function G is
Gsr
ij ðx; yÞ ¼

X
a

erfcð~rÞ dij

r
þ rirj

r3

� �
þ 2ffiffiffi

a
p

X
a

e�~r2 rirj

r2 � dij

� �
; ð24Þ
where a ¼ ðn1L1; n2L2;n3L3Þ for integer n1;2;3; r ¼ x� y þ a is the vector of separation, and ~r ¼
ffiffiffiffiffiffiffiffiffi
p=a

p
r is non-dimensional.

The corresponding smooth part of G is
Gsm
ij ðx; yÞ ¼

2a
V

X
k–0

U1ð~k2Þð~k2dij � ~ki
~kjÞei2pk�ðx�yÞ; ð25Þ
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where k ¼ ðN1=L1;N2=L2;N3=L3Þ is the wave number and ~k ¼
ffiffiffiffiffiffiffi
pa
p

k is non-dimensional. The function U1 in (25) is an incom-
plete c-function defined
UcðzÞ ¼
Z 1

1
e�zttc dt: ð26Þ
The periodic part of the Green’s function T has a similar decomposition:
�Tsr
ijlðx; yÞ ¼ �

8
ffiffiffiffi
p
p

a
X

a

U3
2
ð~r2Þ~ri~rj~rl ð27Þ
and
�Tsm
ijl ðx; yÞ ¼

2a
V

X
k–0

ði2pÞðkidjl þ kjdil þ kldijÞU0ð~k2Þei2pk�ðx�yÞ þ a2

pV

X
k–0

ði2pÞ3kikjklU1ð~k2Þei2pk�ðx�yÞ: ð28Þ
The Ewald parameter a determines the length scale of the decomposition. The short-range part of the Green’s function de-
cays exponentially with separation distance when ~r � 1, so it is truncated at short distance without introducing significant
error. The smooth part is represented by Fourier coefficients that decay exponentially fast with increasing wave numbers for
~k� 1.

5.2. Smooth component

The smooth part of the Ewald sum is calculated by the smooth particle-mesh Ewald sum (SPME) method [8,9,41]. The
central idea of SPME is to calculate the smooth Fourier Ewald sum on a uniform Cartesian mesh using fast Fourier transforms.
B-splines are used to distribute the source singularities from their locations on the cells and walls to this regular mesh as
well as to interpolate velocities computed on the mesh back to the surfaces. That this mesh extends beyond the vessel as
in Fig. 1 might appear wasteful because it amounts to discretizing regions of space where the flow is not of interest. However,
where there are no cells there is little expense associated with this portion of the calculation. There are no short-range inter-
action to evaluate and no interpolation from the collocation points on the cells to the mesh and back. Profiling shows that the
entire forward and reverse FFT portion of the solver accounts for less than 20% of the calculation for the flows in tubes dis-
cussed in Section 11.2. This will increase for more complex geometry vessels, for which more of the volume of the periodic
domain would fall outside the vessel, but can be also be significantly reduced by selecting a values that further reduce the
work on the FFT mesh.

5.3. Short-range component

The short-range part of the sum is computed directly to the desired accuracy, using a small but sufficient number of close
interactions. Convergence is rapid with increasing the range of included interactions because of the exponential decay for
r � a1=2. However, the singularity at r ¼ 0 requires additional attention. The boundary integral of this singular kernel over
a cell surface D has a general form
Iðx0Þ ¼
Z

D
Kðx;x0Þf ðxÞdSðxÞ ¼

Z
S2

Kðxðh;/Þ;x0Þf ðxðh;/ÞÞJðh;/Þ sin hdhd/; ð29Þ
where K is any Cartesian component of the short-range part of the Green’s function and f ðxÞ is any smooth function over D.

With the reference sphere S
2 discretized by a N � 2N mesh as discussed in Section 3, the average mesh spacing is h ¼

ffiffiffiffiffiffiffiffiffiffiffi
A=N2

q
where A is the cell surface area. When the distance d between point x0 and surface D is much bigger than h, the kernel

Kðx;x0Þ is smooth over D and is well resolved by the surface mesh. We take the threshold distance to be h1=2, so any x0 whose

distance to D is greater than h1=2 is considered well separated from the surface. The surface integral (29) is thus computed by
I �
XN

i¼1

X2N

j¼1

Kðxij;x0Þf ðxijÞJijwij; ð30Þ
where xij ¼ xðhi;/jÞ is the coordinate of the quadrature point at ðhi;/jÞ, and wij is the quadrature weight. Using the Gauss
points in h and uniform points in /, the quadrature (30) converges exponentially with mesh size h.

5.4. Singular and nearly-singular points

If x0 in (29) lies on or is close to D (i.e. 0 6 d < h1=2), then the Green’s function kernel is singular or considered to be nearly
singular, for which the quadrature (30) will have poor accuracy and in general will not converge with h ? 0. Doing this in the
nearly-singular case amounts in essence to local mesh refinement for accurate evaluation of the integrals in the ‘lubrication
limit’ of close inter-cell spacing. In both cases, the singular surface integrals are computed by the method of floating partition
of unity [5,46]. When x0 2 D, a local polar patch centered on x0 is defined on the reference sphere. For any other point



H. Zhao et al. / Journal of Computational Physics 229 (2010) 3726–3744 3733
x 2 D; qðx;x0Þ is defined to be the distance along the great circle that connects x and x0 on S2. This coordinate is used in the
mask function
gðqÞ ¼
exp 2e�1=t

t�1

� �
for t ¼ q=q1 < 1;

0 for q P q1;

(
ð31Þ
where q1 is a cut-off radius. Since gðqÞ is smooth it is amenable to accurate quadrature calculations. With gðqÞ, the surface
integral is split into two parts
I ¼ I1 þ I2 ¼
Z

D
Kðx;x0Þgðqðx;x0ÞÞf ðxÞdSðxÞ þ

Z
D

Kðx;x0Þ½1� gðqðx;x0ÞÞ�f ðxÞdSðxÞ: ð32Þ
The integrand of I1 has support only in the patch. To evaluate it, we first transform to the local polar coordinate system,
which yields
I1 ¼
Z 2p

0

Z q1

0
Kðx; x0ÞgðqÞf ðq;uÞ sin qdqdu: ð33Þ
For each fixed u 2 ½0;2pÞ, the integrand is finite, though in general it is discontinuous across the pole. The integral can nev-
ertheless be calculated accurately by first using Gauss quadrature along each radial line for q from zero to q1 and then sum-
ming over u, in which direction the integrand is periodic and thus evaluated on a uniform mesh. The integral I2 in (32) is
smooth over D since its integrand vanishes at x ¼ x0, and hence is accurately computed by the quadrature rule (30). Since
the mask function changes from unity at the center of the patch to zero on the patch boundary, the radius of the patch must
be chosen so that the integrand of I2 is well resolved by the surface mesh. In our calculations, we choose the patch radius on
the reference sphere to be q1 ¼ p=

ffiffiffiffi
N
p

so that the patch radius in R3 is Oðh1=2Þ. Inside the patch,
ffiffiffiffi
N
p

quadrature points are
used in the q direction and 2

ffiffiffiffi
N
p

in the u direction, giving a point density that is thus comparable to that of the surface mesh.
The singular integration error is Oðh3Þ by this choice of patch size [46]. Higher-order accuracy is achieved with larger polar
patch sizes such that q1 / N�b and b < 1=2, albeit with more computational cost.

The quadrature points for I1 are defined on the local polar coordinate patch, and do not coincide with the surface mesh
points. Interpolation is needed to evaluate the surface coordinates and other function values on those quadrature points, for
which we use bi-cubic splines. Interpolating with the global spherical harmonics would be more accurate, but spectral con-
vergence would not be preserved because of the Oðh3Þ limitation above, so the expense is not justified. The overall scheme is
more efficient for the same formal convergence rate using a spline interpolation. To construct the bi-cubic spline approxi-
mation for a function f ðh;/Þ, we take advantage of the periodicity of functions on the unit sphere, without assuming any
of the additional restrictions of this particular geometry. We first compute the function values of f on a surface mesh that
is uniform in both h 2 ½0;p� and / 2 ½0;2pÞ from the spherical harmonic coefficients of f. The domain of definition of f is then
extended to h 2 ½0;2pÞ by using the symmetry f ð2p� h;pþ /Þ ¼ f ðh;/Þ. The extended function is periodic in both directions,
hence the function derivatives at nodes, needed to develop the spline, are computed by fast Fourier transform.

For nearly-singular integration, the projection point of x0 on surface D is found first as xp, and the integral is split by the
same partition of unity (32) with the polar coordinate patch centering around xp. In all cases, to resolve the rapidly varying
Green’s function kernel near xp in the polar patch, we use a sinh transformation in radial direction to cluster the quadrature
points near its center [17].
6. Physical parameters

Following [34], all quantities are non-dimensionalized by

	 The equivalent cell radius a
 � 2:82 lm, where a red cell has the same volume as a sphere of radius a
.
	 A reference shear rate k
 ¼ 100 s�1, which gives a reference velocity U
 ¼ k
a
 ¼ 282 lm=s.
	 The plasma viscosity l
 ¼ 1:2� 10�3 kg m�1 s�1.

The following values are used for cell membrane shear and bending modulus,
E
S ¼ 4:2� 10�6N=m and E
B ¼ 1:8� 10�19N=m ð34Þ
and their non-dimensional values are
ES ¼
E
S

l
k
a

¼ 12:4 and EB ¼

E
B
l
k
a
3

¼ 0:0669: ð35Þ
The membrane dilatational modulus is set as a penalty parameter ED ¼ 200. With this value, the local area change stays be-
low 2% in all our simulations.
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7. Numerical time step limitation

To estimate the maximum allowed time step for the explicit time integration, we consider the following linearized time
evolution equation for the cell membrane coordinates X,
ddX
dt
¼ HRdX; ð36Þ
where RdX is the response of the membrane residual force to a position perturbation dX, and H is the inverse of the boundary
integral operator. The maximum allowable time step is inversely proportional to the spectral radius of the discretized right-
hand side operator HR. Since ED � ES, the spectral radius of the force matrix R is determined primarily by the dilatation and
bending. Let the effective surface mesh spacing be heff ¼

ffiffiffi
A
p

=N, where A is the membrane area and N is the number of lat-
itudinal modes in (13). Then the dilatation and bending parts of the R operator have spectral radii that scale as EDh�2

eff and
EBh�4

eff , respectively. The scaling of the spectral radius of the discrete operator H with heff is however difficult to estimate, even
more so for the combined HR operator.

The empirical time step stability limit for the simulations in Section 10 is found to be
Dt < min
2:5h1:2

eff

ED
;
0:19h3:2

eff

EB

 !
; ð37Þ
where heff is computed using the estimated cell surface area A � 16.8. Therefore, the spectral radius of HR scales as
EDh�1:2

eff for dilatation and EBh�3:2
eff for bending. The spectral radius of R alone results in Dt < Oðh2

eff=EDÞ and Dt < Oðh4
eff=EBÞ.

The Stokes flow, which provides H, is dissipative, so a less restrictive stability criterion than the R-only case is as
expected.

The time step limits due to dilatation and bending in (37) are equal at heff � 3:6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EB=ED

p
¼ 0:066, which translates to

N ¼ 62 in (13). Though not an unreasonably high resolution, this surface resolution is higher than all our simulations per-
formed so far, so Dt is constrained primarily by the dilatational stiffness in our simulations.

8. Cell-surface quadrature convergence

The numerical errors include the truncation error of the spherical harmonic representations over the cell surface, the
truncation error in the Ewald sum, the error in the surface quadratures, and the time integration. The truncation error in
the spherical harmonic expansion is expected to decay exponentially with the number of latitudinal and longitudinal modes.
The short-range part of the Ewald sum should also converge exponentially with the increasing cut-off distance, and the
smooth part should converge algebraically with a rate equal to the order of the B-spline interpolation [41]. The error in
the time integration is independent of the spatial representation and is similarly well understood. We have confirmed that
small increases in cut-off distance, increasing B-spline order, or increasing the mesh for evaluation of the smooth part of the
Green’s function all reduce errors quickly and as expected, so we do not dwell on these errors here. For simulations with
reasonable surface resolution and high-order (e.g. sixth-order) B-spline interpolations, the most challenging to anticipate er-
rors are those incurred in the numerical integration, particularly the treatment of the singular term, which we consider
briefly here.

We calculate the singular integrand error versus mesh density for integrations over the strained ellipsoid shown in Fig. 2.
The functional form of the surface is given by
x2

a2sðzÞ2
þ y2

b2sðzÞ2
þ z2

c2 ¼ 1;

a ¼ 0:8; b ¼ 0:9; c ¼ 1:0
with a squeezing factor
sðzÞ ¼ 1� 0:7 cos
p
2

z
c
þ 0:2

� �h i
:

The north and south poles of the surface mesh are intentionally rotated away from that of the ellipsoid to avoid any sym-
metry in the azimuthal direction. The two analytical surface integrals we consider are the so-called single- and double-layer
integrals that would be encountered in rigid body translation:
0 ¼
Z

D
Gijðx; x0ÞnjðxÞdSðxÞ ð38Þ
and
�4pUi ¼
Z

D
UjTjikðx; x0ÞnkðxÞdSðxÞ; x0 2 D ð39Þ
for constant velocity vector U. These are representative of the integrals encountered in the full formulation.
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The L2-norm of the integration error is shown in Fig. 3 with the number of latitudinal mesh points increasing from n = 8 to
128. The error tolerance of the Ewald sum is 10�9 so that the measured error is entirely dominated by the surface discret-
ization and the surface integration. The asymptotic convergence order is seen to be between 3 and 4, which is a consequence
of the Oðh1=2Þ patch size for the singular integration [46].
9. Spatial and temporal resolution

For a spherical capsule undergoing small deformation in a quiescent fluid, its surface eigenmode evolution can be ob-
tained analytically from a perturbation theory [38]. Specifically, the displacement of the bending mode is
u ¼ ½AY
lmYlmðh;/Þ þ AZ

lmZlmðh;/Þ�e�xt; ð40Þ
where Ylm ¼ Ylmr̂ and Zlm ¼ r�1rYlm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
are normalized vector spherical harmonics. The coefficients AY

lm and AZ
lm can be

solved from the secular equation (24) in reference [38]. When surface inertia is ignored, x is real and positive in (40) and the
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surface mode represents a non-oscillatory exponential damping motion. It is noteworthy that x is independent of azimuthal
wave number m for bending modes.

As a validation test as well as testing the spatial and temporal resolution of the numerical scheme, we simulate the mo-
tion of a slightly deformed spherical capsule of unit radius and compare the results with theory. The elastic energy model,
W ¼ 1
2

ED½trð�Þ�2 þ EStrð�2Þ; ð41Þ
is used in the theoretical model, where � ¼ ðFT F� IÞ=2 is the strain tensor and ED and ES correspond to the dilatational and
shear moduli labeled as k and l in Ref. [38]. The values ED ¼ 2:5 and ES ¼ 1:0 are chosen here; the bending stiffness is set to
be zero. This results in the in-plane strain–stress relation
N ¼ J�1FFT ½EDtrð�ÞIþ ESðFFT � IÞ�: ð42Þ
For simulation, the capsule is inside a cubic periodic domain of size 20, and the initial perturbation is a bending surface
eigenmode whose L2 norm is 10�4. The spherical harmonic expansion (13) has N ¼ 12. For two viscosity ratios k ¼ 1 and
5, the damping coefficient x of deformation eigenmodes with 2 6 l 6 10 and m ¼ 2 are extracted from their exponentially
decaying amplitudes obtained from simulations with Dt ¼ 10�3. Since the Cartesian components of Ylm contain modes with
latitudinal wave number ðlþ 1Þ; l ¼ 10 is indeed the maximum wave number that is allowed by the expansion with N ¼ 12.
As shown in Fig. 4, all x values are in good agreement with the theory, even those at the limit of the resolution of the chosen
mesh. The maximum relative error is less than 0.2%, which is comparable to the numerical integration error.

The error in the forward Euler time integration can be accurately assessed using this model problem. For the linear damp-
ing system du=dt ¼ �xu, a simple analysis shows that the error in the damping coefficient x is
Dx
x
¼ � lnð1�xDtÞ

xDt
� 1 ¼ xDt

2
þ ðxDtÞ2

3
þ OðxDtÞ3: ð43Þ
The change of Dx=x with xDt is shown in Fig. 5, and the convergence is first order as expected.
10. Aliasing errors

10.1. Nonlinearity, aliasing, and de-aliasing

Aliasing arises from the finite resolution of any discretization, but is distinct from the truncation errors associated with,
say, differentiation schemes [6,19,27] As discussed in Section 3, the cell surface residual force depends nonlinearly on the
deformation, and the aliasing error introduced by this nonlinearity is a potential source of numerical instability. These non-
linearities tend to broaden the spectrum of the deformations of the cells. This is physically realistic; sharper features do form
on the cells. The turbulence energy cascade is a commonly cited example of this [6]. A consequence of this nonlinear spectral
broadening is that energy is moved to scales that can not be resolved by the discretization. It would be consistent with the
selected resolution for this energy to be removed from the solution, but instead it is aliased to the resolved scales [6,19,27],
which can in turn drive additional aliasing and potentially lead to numerical instability.
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Fig. 5. The relative error in damping coefficient x due to time integration error: � simulation and error estimation (43).
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Dissipative numerics or explicit filtering can suppress instability due to aliasing, but both degrade the accuracy of the
solution for fixed resolution. Increasing resolution also counters it, but at the cost of more points as well as a more restrictive
time step stability limits for explicit time integration. As seen in Section 7, the impact of the time step restriction is poten-
tially severe. So-called de-aliasing procedures are preferable since the resolved solution is not directly affected and more res-
olution is not required just for the sake of countering what is usually a slowly growing instability. For the quadratic
nonlinearity of the Navier–Stokes equations, the well-known 3/2-rule eliminates aliasing errors [6,27]. In that case, the non-
linear operations are performed with 50% more mesh points, followed by a filtering of the solution. The nonlinearities in the
present formulation are higher order and non-polynomial, the second of which precludes exact de-aliasing. Experimentation
shows that a factor-of-three sufficiently suppresses aliasing for all our test scenarios, though most are stable with factor-of-
two de-aliasing. We denote the larger mesh size M. For example, for factor-of-two de-aliasing, the nonlinear calculations are
done on an M � 2M ¼ 2N � 4N mesh for the truncated spherical harmonic representation (13).
10.2. De-aliasing example

To demonstrate these aliasing and de-aliasing issues, we simulate the flow of a three-dimensional cell through a tight
constriction: a tube of length L ¼ 10 and diameter D ¼ 3:5 with a constriction that necks this down to local diameter
dðzÞ ¼ 3:5� 2:2 exp½�1:2ðz� 5Þ2�. A U ¼ 2 mean velocity drives the flow. The cell is placed initially as seen in Fig. 6(a) at
z ¼ 3:25 and shifted Dx ¼ 0:25 off the symmetry axis of the tube. A matched viscosity k ¼ 1 was used because it is expected
to be less stable and the cell should also more quickly develop small-scale surface features which challenge the resolution of
the numerical method. The subsequent evolution of the cell is seen in Fig. 6. As it flows through the constriction, the mem-
brane appears to buckle, forming thin rib-like features.

This flow was simulated with N ranging from N = 8 to 64. Visually it is clear in Fig. 7 that though stable N ¼ 8 only cap-
tures the gross features of the deformation. Buckling with rib-like features is seen for N ¼ 12, but these ribs only achieve
their large N form for N P 16. Visually, there is no change for N P 24, and the difference between N = 16 and 24 are hard
to discern. The N ¼ 8 case required factor-of-three de-aliasing to be stable, but N P 12 cases required only factor-of-two
de-aliasing. The N ¼ 32 case (and a N ¼ 48 case not shown) ran with no de-aliasing up to when the rib features form at
t � 0:9. The N ¼ 64 case was the only one that was stable without de-aliasing (aside from the usual practice of zeroing
the highest mode number which yields ambiguous derivatives). Fig. 8 shows a quantitative measure of the resolution via
the energy spectra
En ¼
Xn

m¼0

jx̂m
n j

2
; n ¼ 0;1; . . . ;N � 1: ð44Þ
Clearly, cases stabilized via de-aliasing provide an excellent model for the behavior of the modes they represent. Even the
poor resolution of the N ¼ 8 case provides a good model for those small n modes. Indeed, for N ¼ 8 the peak increase in
the pressure drop is predicted within 10% of the N ¼ 64 case and to within less than a 1 percent for N ¼ 12 case. Thus, with
de-aliasing the accuracy can be set based upon the simulation and modeling objectives, without concern for stability.

For these simulations, the wall was discretized with 25,804 triangular elements. Increasing this to 50,996 elements for the
N ¼ 24 case yielded a spectrum that was indistinguishable to plotting accuracy. The net cell deformation energy

P
En dif-



Fig. 6. Evolution of a well resolved cell ðN ¼ 32; M ¼ 64Þ as it passes through a narrow neck as described in the text.
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fered by 0.012% for the coarser wall simulation. Likewise, for the N ¼ 16 case, halving the time step changed the net defor-
mation energy by 0.05%. This is comparable to the time step and resolution used in many of the other examples presented.

Because the cell is significantly distorted in this example, it also is useful for illustrating the basic volume conservation of
the scheme and how we enforce a constraint such that it can be exactly conserved. The boundary integral formulation is, of
course, predicated on a r � u ¼ 0 condition, but its enforcement depends upon the numerical accuracy of the calculation, so
volumes are not necessarily exactly preserved in the computation. The elastic reference configuration suppresses deviation
from the reference volume, so it is not expected that typical flow will show a continuous drift in cell volume. However, left
unconstrained the volume does vary as seen in Fig. 9 for the N ¼ 16 case of the constriction flow. The unconstrained volume
first increased slightly and then dropped to 99.5% of the initial volume. This is thus unlikely to be a significant factor in most
simulations. Nevertheless, a variational formulation of volume enforcement as a constraint yields a correction in which the
cell surface is adjusted in its normal direction. This is identical to our reported formulation for two-dimensional simulations
[14], which is not repeated here. Doing this provides the small (typically K 10�4) correction each time step to strictly main-
tain volume conservation, as also seen in Fig. 9.
11. Flow in cylindrical vessels

11.1. Axisymmetric flow

Pozrikidis [34] simulated axisymmetric cellular flow in a cylindrical tube by using the Green’s functions for axisymmetric
Stokes flows with the appropriate no-slip condition imposed on the tube wall. For comparison and validation purposes, we



Fig. 7. Cell visualized in Fig. 6(f) at t ¼ 1 for increasing resolutions.
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simulate systems of the same geometry with our general three-dimensional formulation. The system consists of two cells
which are evenly spaced along the center line of the tube whose non-dimensional diameter D ¼ 3:2 corresponds to a dimen-
sional diameter of 9.024 lm. With centers of cells separated by a distance 2, the tube hematocrit Ht (the volumetric fraction
of cells) is about 26%. At t ¼ 0, a nonzero background velocity hui along the tube axial z-direction is applied to induce the
flow inside the tube. The cells deform into umbrella-like shapes under the action of shear, and the deformation increases
with flow velocity. At steady state, each cell undergoes pure translation along the tube centerline without any relative mo-
tion of the membrane. Fig. 10 shows the increasingly deformed cell contours with flow rates.

To obtain the total tube flow rate, it is in general necessary to numerically integrate the axial velocities over a tube cross
section. However, for this simple geometry, it can be calculated from the total mean axial velocity huzi and the mean pressure



Fig. 10. The axisymmetric deformation of cells in a cylindrical tube at steady state. The straight solid line represents the tube wall boundary. The dashed
line is the unstressed cell, and the solid lines are increasingly deformed cells at mean tube flow velocity of 0.62, 1.25, 2.52, 5.09 and 7.66.
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Fig. 8. Spectra for the cases visualized in Fig. 7: N = 8, 12, 16, 24, 32, and 64.
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gradient h@zpi as follows. When the cross section of the computational domain is square ðL1 ¼ L2Þ, the volumetric flow rate
for fluid outside of the tube is [25],



Fig. 11.
simulat
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Q external ¼
L4

1hrzpi
4pl

ðln v�1 � 1:47644þ 2v� 0:5v2 � 0:0509713v4 þ 0:077465v8 � 0:109757v12

þ 0:122794v16 � 0:146135v20 þ 0:244536v24Þ þ Oðv28Þ; ð45Þ
where v ¼ pa2
tube=L2

1 is the volume fraction of the cylindrical tube in the whole computational domain. The flow rate inside
the tube is then given by Q tube ¼ L2

1huzi � Q external.
The effective viscosity leff describes the increase of the wall drag coefficient due to the addition of cells and is computed

from the total tube flow rate and the mean pressure gradient as
leff ¼
pa4

tubehrzpi
8Q tube

; ð46Þ
where l ¼ 1 is the non-dimensional plasma viscosity. A pure plasma flow has a parabolic Poiseuille profile with leff ¼ l ¼ 1.
The tube flow has leff > 1 because of the increased viscous dissipation from the presence of cells; leff decreases as flow rate
increases because the gap between the cell and the vessel wall widens as the cell deforms more. The shear-thinning behavior
is seen in Fig. 11, where our result is verified against the reported axisymmetric simulations.

11.2. Three-dimensional flow

Three-dimensional simulations are presented here for six straight circular tubes of diameter ranging from
D ¼ 1:75ð4:9 lmÞ up to D ¼ 6:0ð16:9 lmÞ, all with Ht ¼ 0:30, which is a typical hematocrit in the microcirculation. The back-
ground velocities are set to be a constant huzi ¼ 5 except the D ¼ 1:75ð4:9 lmÞ and D ¼ 1:9ð5:4 lmÞ cases which had
huzi ¼ 10. This was increased in these cases because the smaller diameter and higher effective viscosity in these smaller
tubes tend to slow the flow below the shear rates considered in the corresponding experiments, which are discussed briefly
below. Resolution was N ¼ 32 for the D ¼ 1:75ð4:9 lmÞ and D ¼ 1:9ð5:4 lmÞ cases, N ¼ 24 for the D ¼ 2:0ð5:6 lmÞ and
D ¼ 2:5ð7:1 lmÞ cases, and N ¼ 16 for the D ¼ 3:5ð9:9 lmÞ and D ¼ 6:0ð16:9 lmÞ cases. All had a de-aliasing factor of three.

Typical cell configurations are visualized for all these cases in Fig. 12. It is seen that for the smaller tubes, the red cells
form the expected parachute shape seen in experiments. For the D ¼ 6:0 case, the cells appear to be randomly distributed,
with the D ¼ 3:5 seeming to be a switch-over point to this other behavior. All cases show a near-wall cell-depleted layer
which is a well-known feature of blood flow in small vessels or tubes. This is particularly thick relative to the diameter
for the D ¼ 3:5ð9:9 lmÞ case.

At the hematocrit simulated, the distance between neighboring cells can become small. Theoretically, the distance should
remain finite as predicted by lubrication theory, but without corrective measures contact and penetration can occur due to
the finite numerical errors in the surface velocity calculation and time integration. In two-dimensional simulations, short-
range repulsion forces have been designed that allow close approach but prevent surface overlaps [14]. Numerical experi-
ments with this approach also suggest that significantly larger forces are needed in three dimensions because the contact
region is initially point-like, rather than line-like in two dimensions. That is, larger local forces applied at ‘points’ are needed
to separate three-dimensional cells than the local forces applied on ‘lines’ in two dimensions. As the repulsion force should
decay rapidly from the contact points, the mesh resolution needed for resolving the repulsion force in the contact region will
be greater than that for accurate surface representation and boundary integrals. So, here a purely kinematic collision detec-
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Fig. 12. Three-dimensional cellular flow in cylindrical tubes. Flow is from left to right in the side views and toward the viewer in the end views. The flows
are streamwise periodic; only one periodic image of each cell is shown, but these in cases appear to extend beyond the tube.
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tion and removal procedure is used instead of a repulsion force. A small threshold hs separation is defined, which for our
demonstration simulations is set to be 2% of the equivalent cell spherical radius. Whenever the distance of a cell surface
mesh point, x, to another cell surface is less than hs, this point is moved in the ðxp � xÞ direction, where xp is the projection
of x on the other surface, until jx� xpj ¼ hs. A similar approach is used for emulsion flow simulation [48]. For some of the
results presented here, the time-averaged maximum correction is up to a displacement of 0:1hs per time step. This hs con-
straint is not activated in the smaller tubes since the cells do not come close. For the largest D ¼ 6 case, doubling and halving
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Fig. 13. Effective viscosity for simulations � compared with empirical fits — of Pries et al. [36]. The data comprising this fit is scattered by approximately
±10%.
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hs produced less than a 2% change in the apparent viscosity. For all the cases simulated, no constraint was needed for close
interactions between the cells and the vessel walls. The well-known near-wall cell-free layer is consistent with this.

The effective viscosities are calculated as described in the previous section, and they are compared in Fig. 13 with a stan-
dard empirical fit of experimental data [36]. A close agreement with this fit is not expected for two main reasons. The first
involves a lack of complete parameterization of the flow conditions. The data leading to this fit is significantly scattered
(greater than 20%), which suggests that the effective viscosity depends upon parameters other than just D and Ht . Our sim-
ulations match the criterion that the mean velocity divided by the tube diameter is greater than 50 s�1 as chosen by Pries
et al. [36] for developing their fit, but it is also known that blood becomes strongly dependent upon shear rate for lower
shear rates (e.g. the single-cell comparisons in Section 11.1), so strict independence is not to be expected for these moderate
values. In addition, our constitutive model for the red-cell membranes is crude and is therefore not expected to provide a
perfect match to actual red-cell behavior. It was selected for convenience for developing this flow solver, which itself is com-
patible with more general constitutive models. Nevertheless, it is clear in the figure that the simulations are indeed close in
value to the experimental fit and show the same behavior with increasing D. There is a rapid drop in effective viscosity for
small D, as the thickness of the near-wall cell-free layer increases, and then a slower increase for tubes of larger diameter
than the red-cell dimension. This level of agreement suggests that the key physical mechanisms have been captured. The
constitutive models can probably be improved or reparameterized to improve the apparent match, but it is not clear
how to do this since many the experimental data used in developing the fit fall further from the fit than our simulation re-
sults [36]. A detailed study of the flow rheology dependence on tube diameter, tube hematocrit, and shear rates is
underway.
12. Conclusions

We have presented a spectral boundary integral simulation method for Stokes flow and membrane interactions as
encountered in blood flows in the microcirculation. The cell surface discretization is by a spherical harmonic expansion,
which has excellent resolution and does not suffer from mesh point clustering near the two poles. However, the major
strength of this spectral representation is that it enables rigorous removal of spurious high-wavenumber surface modes
introduced by the nonlinearities in the flow–structure interaction system. We demonstrated excellent stability with this
de-aliasing procedure. With it, the user can set the resolution so that results are mesh independent for whatever observable
is of interest, and this can be set independently of any stability consideration because stability is due to de-aliasing which
does not degrade the resolved solution. Periodic Green’s functions are employed because they are relatively simple and fully
compatible with the smooth particle-mesh Ewald algorithm used. The use of these Green’s functions, however, is not lim-
iting: complex geometry solid-wall boundaries are included within the periodic domain as constraints within the linear sys-
tem that is solved as part of the time advancement algorithm. When cells approach closely, the integrands are considered to
be nearly singular and a locally refined mesh is used to evaluate them.

None of the simulations presented were intensive by current standards. The largest, the 27-cell flow in the D ¼ 6:0 vessel,
required less than two days running on the eight processor cores of a single computer workstation. The largest part of the
computational cost is from the numerical integration of the singular part of the Green’s function. This cost, in turn, is mostly
due to the interpolation of function values from the global cell surface mesh to the local polar coordinate patch.
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