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SUMMARY

In this paper we describe an aggregation-based algebraic multigrid method for the solution of discrete
k-form Laplacians. Our work generalizes Reitzinger and Schöberl’s algorithm to higher-dimensional
discrete forms. We provide conditions on the tentative prolongators under which the commutativity of
the coarse and fine de Rham complexes is maintained. Further, a practical algorithm that satisfies these
conditions is outlined, and smoothed prolongation operators and the associated finite element spaces are
highlighted. Numerical evidence of the efficiency and generality of the proposed method is presented in
the context of discrete Hodge decompositions. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Discrete differential k-forms arise in scientific disciplines ranging from computational electro-
magnetics to computer graphics. Examples include stable discretizations of the eddy-current
problem [1–3], topological methods for sensor network coverage [4], visualization of complex
flows [5, 6], and the design of vector fields on meshes [7].

In this paper we consider solving problems of the form

dd�k =�k (1)

where d denotes the exterior derivative and d the codifferential relating k-forms � and �. For
k=0,1,2, dd is also expressed as ∇ ·∇, ∇×∇×, and ∇∇·, respectively. We refer to operator dd
generically as a Laplacian, although it does not correspond to the Laplace–de Rham operator D=
dd+dd except for the case k=0. We assume that (1) is discretized with mimetic first-order elements
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166 N. BELL AND L. N. OLSON

such as Whitney forms [8, 9] on simplicial meshes or the analog on hexahedral [10] or polyhedral
elements [11]. In general, we use Ik to denote the map from discrete k-forms (cochains) to their
respective finite elements. Such discretizations give rise to a discrete exterior k-form derivative
Dk and discrete k-form innerproduct Mk(i, j)=〈Ikei ,Ike j〉, which allows implementation of (1)
in weak form as

DT
k Mk+1Dk x=b (2)

under the additional assumption that d commutes with I, i.e. Ik+1Dk =dkIk . This relationship is
depicted as

�k dk� �k+1

�k
d

Ik
�

Dk� �k+1
d

Ik+1

�

(3)

where �k and �k
d denote the spaces of differential k-forms and discrete k-forms, respectively. For

the remainder of the paper, we restrict our attention to solving (2) on structured or unstructured
meshes of arbitrary dimension and element type, provided the elements satisfy the aforementioned
commutativity property.

Figure 1. Enumeration of nodes (left), oriented edges (center), and oriented triangles (right) for a simple
triangle mesh. We say that vertices 2 and 3 are upper adjacent since they are joined by edge 4. Similarly,

edges 5 and 6 are both faces of triangle 2 and therefore upper adjacent.

Figure 2. Forms I0�0, I1D0�0, and I1�1 where I denotes Whitney interpolation. The left
and center figures illustrate property (3). Whether the derivative is applied before or after

interpolation, the result is the same.
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1.1. Example

Although our results hold more generally, it is instructive to examine a concrete example that
satisfies the assumptions set out in Section 1. To this end, consider the three-element simplicial
mesh depicted in Figure 1, with the enumeration and orientation of vertices, edges, and triangles
as shown. In this example, we choose Whitney forms [8] to define the interpolation operators
I0,I1,I2 which in turn determine the discrete innerproducts M0,M1,M2. Finally, sparse matrices

D−1 =

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

, D0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0

−1 0 0 1 0

0 −1 1 0 0

0 −1 0 1 0

0 0 −1 1 0

0 0 −1 0 1

0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

D1 =
⎡
⎢⎣
1 −1 0 1 0 0 0

0 0 1 −1 1 0 0

0 0 0 0 −1 1 −1

⎤
⎥⎦ , D2=[0 0 0] (5)

implement the discrete k-form derivative operators. A discrete k-form (cochain), denoted �k , is
represented by a column vector with entries corresponding to each of the k-simplices in the mesh.
For example, the Whitney-interpolated fields corresponding to �0=[0,1,2,1,2]T, the gradient
D0�0=[1,1,1,0,−1,0,1]T, and another 1-form �1=[1,0,1,0,0,1,0]T are shown in Figure 2.
By convention, D−1 and D2 are included to complete the exact sequence.

1.2. Related work

There is significant interest in efficient solution methods for Maxwell’s eddy-current problem

∇×∇×E+�E= f (6)

In particular, recent approaches focus on multilevel methods for both structured and unstructured
meshes [12–15]. Scalar multigrid performs poorly on edge element discretizations of (6) since
error modes that lie in the kernel of ∇×∇× are not effectively damped by standard relaxation
methods. Fortunately, the problematic modes are easily identified by the range of the discrete
gradient operator D0, and an appropriate hybrid smoother [12, 13] can be constructed. An important
property of these multigrid methods is commutativity between coarse and fine finite element spaces.
The relationship is described as

�0
d

D0 � �1
d

�̂
0
d

P0

�

D̂0 � �̂
1
d

P1

�

(7)
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where �̂
k
d is the space of coarse discrete k-forms, D̂0 the coarse gradient operator, and P0 and

P1 are the nodal and edge prolongation operators, respectively. Combining (7) with (3) yields the
same result for the corresponding fine and coarse finite element spaces.

In [14], Reitzinger and Schöberl describe an algebraic multigrid method for solving (6) on
unstructured meshes. In their method, property (7) is maintained by choosing nodal aggregates
and using these aggregates to obtain compatible edge aggregates. The nodal and edge aggregates
then give rise to piecewise-constant prolongators P0 and P1, which can be smoothed to achieve
better multigrid convergence rates [15] while retaining property (7).

The method we present can be viewed as a natural extension of Reitzinger and Schöberl’s work
from 1-forms to general k-forms. Commutativity of the coarse and fine de Rham complexes is
maintained for all k-forms, and their associated finite element spaces Ik�k

d ⊂�k . The relationship
is described by

�0
d

D0 � �1
d

D1 � �2
d . . . �k

d
Dk� �k+1

d

�̂
0
d

P0

�

D̂0 � �̂
1
d

P1

�

D̂1 � �̂
2
d

P2

�

. . . �̂
k
d

Pk

�

D̂k� �̂
k+1
d

Pk+1

�

(8)

where Pk denotes either the tentative prolongator Pk or smoothed prolongator Sk Pk .

1.3. Focus and applications

While our work is largely inspired by multigrid solvers for (6), our intended applications do not
focus specifically on the eddy-current problem. Indeed, recent work suggests that the emphasis on
multilevel commutativity, a property further developed in this paper, is at odds with developing
efficient solvers for (6) in the presence of highly variable coefficients [16]. Although our method
generalizes the work of Reitzinger and Schöberl [14] and Hu et al. [15], this additional generality
does not specifically address the aforementioned eddy-current issues.

In Section 3, we discuss computing Hodge decompositions of discrete k-forms with the proposed
method. The Hodge decomposition is a fundamental tool in both pure and applied mathematics that

Figure 3. The two harmonic 1-forms of a rocker arm surface mesh.
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exposes topological information through differential forms. For example, the two harmonic 1-forms
shown in Figure 3 exist because the manifold has genus 1. The efficient solution of discrete k-form
Laplacians has substantial utility in computational topology. For instance, sufficient conditions on
the coverage of sensor networks reduce to the discovery of harmonic forms on the simplicial Rips
complex [4]. In such applications, we do not encounter variable coefficients and often take the
identity matrix for Mk .

2. PROPOSED METHOD

2.1. Complex coarsening

In this section we describe the construction of tentative prolongators Pk and coarse operators D̂k ,
which satisfy (8). In practice, the two-level commutativity depicted in (8) is extended recursively
for use in a multilevel method. Also, it is important to note that when solving (2) for a specific k,
it is not necessary to coarsen the entire complex.

As in [14], we presume the existence of a nodal aggregation algorithm that produces a piecewise-
constant tentative prolongator P0. This procedure, called aggregate nodes in Algorithm 1,

is fulfilled by either smoothed aggregation [17] or a graph partitioner on matrices DT
0M1D0 or

DT
0D0. Ideally, the nodal aggregates are contiguous and have a small number of interfaces with

other aggregates.

Algorithm 1. coarsen complex(D−1,D0, . . . ,DN )

1 P0⇐ a g g r e g a t e n o d e s (D0, . . .)

2 f o r k=0 t o N−1
3 Pk+1⇐ i n d u c e d a g g r e g a t e s (Pk,Dk,Dk+1)

4 D̂k ⇐(PT
k+1Pk+1)

−1PT
k+1Dk Pk

5 end
6 D̂−1⇐ PT

0 D−1

7 D̂N ⇐DN PN
8 re turn P0, P1, . . . , PN and D̂−1,D̂0, . . . ,D̂N

2.2. Induced aggregates

The key concept in [14], which we apply and extend here, is that nodal aggregates induce edge
aggregates; we denote P1 as the resulting edge aggregation operator. As depicted in Figure 4, a
coarse edge exists between two coarse nodal aggregates when any fine edge joins them. Multiple
fine edges between the same two coarse nodal aggregates interpolate from a common coarse edge
with weight 1 or −1 depending on their orientation relative to the coarse edge. The coarse nodes
and coarse edges define a coarse derivative operator D̂0, which satisfies diagram (7).

We now restate the previous process in an algebraic manner that generalizes to arbitrary k-forms.
Given P0 as before, form the product D=D0P0 that relates coarse nodes to fine edges. Observe
that each row of D corresponds to a fine edge and each column to a coarse node. Notice that
the i th row of D is zero when the end points of fine edge i lie within the same nodal aggregate.
Conversely, the i th row of D is nonzero when the end points of fine edge i lie in different nodal

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:165–185
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Figure 4. Nodal aggregates (left) determine coarse edges (center) through the algorithm
induced aggregates. Fine edges crossing between node aggregates interpolate from
the corresponding coarse edge with weight 1 or −1 depending on their relative orientation.
Edges contained within an aggregate do not correspond to any coarse edge and receive
weight 0. These weights are determined by lines 10–13 of induced aggregates.

aggregates. Furthermore, when two nonzero rows are equal up to a sign (i.e. linearly dependent),
they interpolate from a common coarse edge.

Therefore, the procedure of aggregating edges reduces to computing sets of linearly dependent
rows in D. Each set of dependent rows yields a coarse edge and thus a column of P1. In the
general case, sets of dependent rows in D=Dk Pk are identified and used to produce Pk+1. The
process can be repeated to coarsen the entire de Rham complex. Alternatively, the coarsening
can be stopped at a specific k<N . In Section 2.5, we discuss the coarse derivative operator
D̂k ⇐(PT

k+1Pk+1)
−1PT

k+1Dk Pk and show that it satisfies diagram (8).

Algorithm 2. induced aggregates(Pk,Dk,Dk+1)

1 D⇐Dk Pk
2 G⇐DT

k+1Dk+1
3 V ⇐{}
4 n⇐0
5
6 f o r i i n rows(D) such t h a t D(i, :) �=0
7 i f i �∈V
8 An ⇐ dependen t r ows (G,D, i)
9 f o r j ∈ An

10 i f D(i, :)=D( j, :)
11 Pk+1( j,n)⇐1
12 e l s e
13 Pk+1( j,n)⇐−1
14 end
15 end
16 n⇐n+1
17 V ⇐V ∪An
18 end
19 end
20 re turn Pk+1
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Intuitively, linear dependence between rows in D=Dk Pk indicates redundancy created by
operator Pk . Aggregating dependent rows together removes redundancy from the output of D and
compresses the remaining degrees of freedom into a smaller set of variables. By construction, the
tentative prolongators have full column rank and satisfy

R(Dk Pk)⊂R(Pk+1) (9)

where R(A) denotes the range of matrix A. Note that property (9) is clearly necessary to satisfy
diagram (8).

Using disjoint sets of dependent rows A0, A1, . . ., the function induced aggregates
constructs the aggregation operator Pk+1 described above. Nonzero entry Pk+1(i, j) indicates
membership of the i th row of D—i.e. the i th k+1-dimensional element—to the j th aggregate A j .

2.3. Computing aggregates

For a given row index i , the function dependent rows constructs a set of rows that are linearly
dependent to D(i, :). In the matrix graph of G, a nonzero entry G(i, j) indicates that the k+
1-dimensional elements with indices i and j are upper adjacent [18]. In other words, i and j are
both faces of some k+2-dimensional element. For example, two edges in a simplicial mesh are
upper adjacent if they belong to the same triangle. All linearly dependent rows that are adjacent
in the matrix graph of G are aggregated together. This construction ensures that the aggregates
produced by dependent rows are contiguous. As shown in Figure 5, such aggregates are more

natural than those that result from aggregating all dependent rows together (i.e. using G=D D
T
).

Algorithm 3. dependent rows(G,D, i)

1 Q⇐{i}
2 A⇐{i}
3 whi le Q �={}
4 j ⇐ pop(Q)

5 Q⇐Q\{ j}
6 f o r k such t h a t G( j,k) �=0
7 i f k �∈ A and D(i, :)=±D(k, :)
8 A⇐ A∪{k}
9 Q⇐Q∪{k}
10 end
11 end
12 end
13 re turn A

2.4. Example

In this section, we describe the steps of our algorithm applied to the three-element simplicial mesh
depicted in Figure 1. Matrices D−1,D0,D1, and D2, shown in Section 1.1, are first computed

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:165–185
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Figure 5. Example where contiguous (center) and noncontiguous (right) aggregation differs.
Contiguous aggregates are reflected through our choice of G defined in induced aggregates

and later used in dependent rows.

and then passed to coarsen complex. The externally defined procedure aggregate nodes
is then called to produce the piecewise-constant nodal aggregation operator

P0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

0 1 0

1 0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

whose corresponding aggregates are shown in Figure 6. At this stage of the procedure, a
more general nodal problem DT

0M1D0 may be utilized in determining the coarse aggre-
gates. Next, induced aggregates is invoked with arguments P0,D0,D1 and the sparse
matrix

D=D0P0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

−1 1 0

0 0 0

1 −1 0

0 −1 1

−1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

is constructed. Recall from Section 2.2 that the rows of D are used to determine the induced
edge aggregates. The zero rows of D, namely rows 0, 1, and 3, correspond to interior edges,
which is confirmed by Figure 6. Linear dependence between rows 2 and 4 indicates that
edges 2 and 4 have common coarse endpoints, with the difference in sign indicating opposite
orientations.

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:165–185
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Figure 6. Original mesh with nodal aggregates (left), coarse nodes (center), and coarse edges (right).

For each nonzero and un-aggregated row of D, dependent rows traverses

G=DT
1D1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 1 0 0 0

−1 1 0 −1 0 0 0

0 0 1 −1 1 0 0

1 −1 −1 2 −1 0 0

0 0 1 −1 2 −1 1

0 0 0 0 −1 1 −1

0 0 0 0 1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

to find dependent rows among upper-adjacent edges. In this case, edges 3 and 4 are upper adjacent
to 2; however, only row 4 in D is linearly dependent to row 2 in D. Rows 5 and 6 of D are
not linearly dependent to any other rows, thus forming single aggregates for edges 5 and 6. The
resulting aggregation operator

P1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

1 0 0

0 0 0

−1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

is then used to produce the coarse discrete derivative operator

D̂0=(PT
1 P1)

−1PT
1 D0P0=

⎡
⎢⎣

−1 1 0

0 −1 1

−1 0 1

⎤
⎥⎦ (14)
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for the mesh in Figure 6. Subsequent iterations of the algorithm produce operators

P2=
⎡
⎢⎣
0

0

1

⎤
⎥⎦ , D̂1=(PT

2 P2)
−1PT

2 D1P1=[1 1 −1], D̂2=D2P2=[0] (15)

which complete the coarse de Rham complex.

2.5. Commutativity

We now prove tentative prolongators P0, P1, . . . , PK and coarse derivative operators D̂0,D̂1, . . . ,D̂K
produced by Algorithm 1 satisfy commutative diagram (8). The result is summarized by the
following theorem.

Theorem 1
Let Pk : �̂k

d →�k
d denote the discrete k-form prolongation operators with the following properties:

Pk+1 has full column rank (16a)

R(Dk Pk)⊂R(Pk+1) (16b)

D̂k ⇐(PT
k+1Pk+1)

−1PT
k+1Dk Pk (16c)

Then, diagram (8) holds. That is,

Dk Pk = Pk+1D̂k (17)

Proof
Since Pk+1 has full column rank, the pseudoinverse is given by

P+
k+1=(PT

k+1Pk+1)
−1PT

k+1 (18)

Recall that for an arbitrary matrix A, the pseudoinverse satisfies AA+A= A. Furthermore,
R(Dk Pk)⊂R(Pk+1) implies that Dk Pk = Pk+1X for some matrix X. Combining these observa-
tions,

Pk+1D̂k = Pk+1P
+
k+1Dk Pk

= Pk+1P
+
k+1Pk+1X

= Pk+1X

= Dk Pk �

Since Algorithm 1 meets assumptions (16a)–(16c) it follows that diagram (8) is satisfied. Also,
assuming disjoint aggregates, the matrix (PT

k+1Pk+1) appearing in (18) is a diagonal matrix; hence,
its inverse is easily computed.
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2.6. Exact sequences

The de Rham complex formed by the fine-level discrete derivative operators

0
D−1� �0

d
D0 � �1

d
D1 � · · · DN−1� �N

d
DN � 0 (19)

is an exact sequence, i.e. img(Dk)⊂ker(Dk+1) or equivalently Dk+1Dk =0. A natural question to
ask is whether the coarse complex retains this property. As argued in Section 2.5, Dk Pk = Pk+1X

for some matrix X; therefore, it follows

D̂k+1D̂k = P+
k+2Dk+1Pk+1P

+
k+1Dk Pk

= P+
k+2Dk+1Pk+1P

+
k+1Pk+1X

= P+
k+2Dk+1Pk+1X

= P+
k+2Dk+1Dk Pk

= 0

since Dk+1Dk =0 by assumption. From diagram (3), we infer the same result for the associated
finite element spaces.

2.7. Smoothed prolongators

While the tentative prolongators P0, P1, . . . produced by coarsen complex commute with Dk
and give rise to an coarse exact sequence, their piecewise-constant nature leads to suboptimal
multigrid scaling [14, 15]. In smoothed aggregation [17], the tentative prolongator P is smoothed
to produce another prolongator P=SP with superior approximation characteristics. We consider
prolongation smoothers of the form S=(I −SA). Possible implementations include Richardson
S=�I , Jacobi S=�diag(A)−1, and polynomial S= p(A) [19].

Smoothed prolongation operators are desirable, but straightforward application of smoothers
to each of P0, P1, . . . violates commutativity. The solution proposed in [15] smooths P0 and
P1 with compatible smoothers S0,S1 such that commutativity of the smoothed prolongators
P0,P1 is maintained, i.e. D0P0=P1D̂0. In the following theorem, we generalize this result to
arbitrary k.

Theorem 2
Given discrete k-form prolongation operators Pk satisfying (16a)–(16c), let Pk : �̂k

d →�k
d denote

the smoothed discrete k-form prolongation operators with the following properties:

Pk = Sk Pk (20a)

S0 = (I −S0DT
0M1D0) (20b)

Sk = (I −SkDT
k Mk+1Dk−Dk−1Sk−1DT

k−1Mk) for k>0 (20c)
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where Sk defines the type of prolongation smoother. Then, diagram (8) holds. That is,

DkPk =Pk+1D̂k (21)

Proof
First, if

DkSk =Sk+1Dk (22)

then

Pk+1D̂k = Sk+1Pk+1D̂k

= Sk+1Pk+1(P
T
k+1Pk+1)

−1PT
k+1Dk Pk

= Sk+1Dk Pk

= DkSk Pk
= DkPk

Therefore, it suffices to show that (22) holds for all k. For k=0, we have

S1D0 = (I −S1DT
1M2D1−D0S0DT

0M1)D0

= (D0−S1DT
1M2D1D0−D0S0DT

0M1D0)

= (D0−D0S0DT
0M1D0)

= D0(I −S0DT
0M1D0)

= D0S0
and for all k>1 we have

Sk+1Dk = (I −Sk+1DT
k+1Mk+2Dk+1−DkSkDT

k Mk+1)Dk

= (Dk−Sk+1DT
k+1Mk+2Dk+1Dk−DkSkDT

k Mk+1Dk)

= (Dk−DkSkDT
k Mk+1Dk)

= (Dk−DkSkDT
k Mk+1Dk−DkDk−1Sk−1DT

k−1Mk)

= Dk(I −SkDT
k Mk+1Dk−Dk−1Sk−1DT

k−1Mk)

= DkSk
which completes the proof of (21). �

On subsequent levels, the coarse innerproducts M̂k =PT
k MkPk and derivatives D̂k replace Mk

and Dk in the definition of Sk . As shown below, the Galerkin product Âk =PT
k AkPk can also be
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expressed in terms of the coarse operators

Âk =PT
k AkPk

=PT
k DT

k Mk+1DkPk

= D̂
T
kPT

k+1Mk+1Pk+1D̂k

= D̂
T
k M̂k+1D̂k

2.8. Extensions and applications

Note that condition (9) permits some freedom in our choice of aggregates. For instance, in restricting
ourselves to contiguous aggregates we have slightly enriched the range of Pk+1 beyond what
is necessary. Provided that Pk+1 already satisfies (9), additional coarse basis functions can be
introduced to better approximate low-energy modes. As in smoothed aggregation, these additional
columns of Pk+1 can be chosen to exactly interpolate given near-nullspace vectors [17].

So far we have only discussed coarsening the cochain complex (8). It is worth noting that
coarsen complex works equally well on the chain complex formed by the mesh boundary
operators �k =DT

k−1,

0 �
DT−1 �0

d
� DT

0 · · · �
DT

N−2 �N−1
d

�
DT

N−1 �N
d

� DT
N 0 (23)

by simply reversing the order of the complex, i.e. (D−1,D,0 , . . . ,DN )⇒(DT
N ,DT

N−1, . . . ,D−1).
In this case, aggregate nodes will aggregate the top-level elements, for instance, the triangles
in Figure 1. Intuitively, �k acts like a derivative operator that maps k-cochains to (k+1)-cochains;
however, one typically refers to these as k-chains rather than cochains [20]. In Section 3, we
coarsen both complexes when computing Hodge decompositions.

3. HODGE DECOMPOSITION

The Hodge decomposition [21] states that the space of k-forms on a closed manifold can be
decomposed into three orthogonal subspaces

�k =dk−1�
k−1⊕dk+1�

k+1⊕Hk (24)

where Hk is the space of harmonic k-forms, Hk ={h∈�k |Dkh=0}. The analogous result holds
for the space of discrete k-forms �k

d , where the derived codifferential [22]
dk =M−1

k−1DT
k−1Mk (25)

is defined to be the adjoint of Dk−1 in the discrete innerproduct Mk . Convergence of the discrete
approximations to the Hodge decomposition is examined in [23].

In practice, for a discrete k-form �k we seek a decomposition

�k =Dk−1�
k−1+M−1

k DT
k Mk+1�

k+1+hk (26)

for some �k−1∈�k−1
d , �k+1∈�k+1

d , and hk ∈�k
d , where D

khk =0. Note that �k−1 and �k+1 are
generally not unique, since the kernels of Dk−1 and M−1

k DT
k Mk+1 are nonempty. However, the
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discrete k-forms (Dk−1�k−1) and (M−1
k DT

k Mk+1�
k+1) are uniquely determined. We decompose

�k into (26) by solving(
DT

k−1MkDk−1

)
�k−1 = DT

k−1Mk�
k (27)

(
DkM−1

k DT
k

)
Mk+1�

k+1 = Dk�
k (28)

hk = �k−Dk−1�
k−1−M−1

k DT
k Mk+1�

k+1 (29)

Note that (28) involves the explicit inverse M−1
k which is typically dense.‡ In the following

sections, we first consider the special case Mk = I and then show how (28) can be circumvented
in the general case. Equation (27) is obtained by left multiplying Mk−1DT

k−1Mk on both sides of
(26). Likewise, applying Dk to both sides of (26) yields (28). Equivalently, one may seek minima
of the following functionals:

‖Dk−1�
k−1−�k‖Mk , ‖M−1

k DT
k Mk+1�

k+1−�k‖Mk (30)

3.1. Special case

Taking the appropriate identity matrix for all discrete innerproducts Mk in (27)–(29) yields

DT
k−1Dk−1�

k−1 = DT
k−1�

k (31)

DkDT
k �k+1 = Dk�

k (32)

hk = �k−Dk−1�
k−1−DT

k �k+1 (33)

Although (31)–(33) are devoid of metric information, some fundamental topological properties of
the mesh are retained. For instance, the number of harmonic k-forms, which together form a coho-
mology basis, is independent of the choice of innerproduct.§ In applications where metric infor-
mation is either irrelevant or simply unavailable [4], these ‘nonphysical’ equations are sufficient.

Algorithm 4. construct solver(k,Mk,D−1,D0, . . . ,DN )

1 A0⇐DT
k−1MkDk−1

2 D0
−1, . . . ,D0

N ⇐D−1, . . . ,DN

3 f o r l=0 t o NUM LEVELS − 1
4 Pl

0, . . . , P
l
N ,Dl+1

−1 , . . . ,Dl+1
N ⇐ coa r s en comp l ex (Dl

−1, . . . ,Dl
N )

5 end
6 f o r l=0 t o NUM LEVELS − 1
7 Pl ⇐ smoo t h p r o l o n g a t o r ( Al , Pl

k−1 )
8 Al+1⇐PT

l AlPl
9 end
10 re turn MG solver ( A0, A1, . . . , ANUM LEVELS,P0,P1, . . . ,PNUM LEVELS−1)

‡The covolume Hodge star is a notable exception.
§ In the case of M= I , the cohomology basis is actually a homology basis also.
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Algorithm 5. decompose special(�k,D−1,D0, . . . ,DN )

1 s o l v e r 1 ⇐ c o n s t r u c t s o l v e r ( k, I,D−1,D,0 , . . . ,DN )
2 s o l v e r 2 ⇐ c o n s t r u c t s o l v e r ( N−k−1, I,DT

N ,DT
N−1, . . . ,DT−1 )

3
4 �k−1⇐ s o l v e r 1 (DT

k−1�
k )

5 �k+1⇐ s o l v e r 2 (Dk�k )
6 h⇐�k−Dk−1�k−1−DT

k �k+1

7
8 re turn �k−1,�k+1,hk

Algorithm 5 demonstrates how the proposed method is used to compute Hodge decompositions
in the special case. Multigrid solvers solver1 and solver2 are constructed for the solution of
linear systems (31) and (32), respectively. In the latter case, the direction of the chain complex is
reversed when being passed as an argument to construct solver. As mentioned in Section
2.8, coarsen complex coarsens the reversed complex with this simple change of arguments.

Using the identity innerproduct, construct solver applies the proposed method recur-
sively to produce a progressively coarser hierarchy of tentative prolongators Pl

k and discrete
derivatives Dl

k . The tentative prolongators are then smoothed by a user-defined function
smoothprolongator to produce the final prolongators Pl and Galerkin products Al+1⇐
PT
l AlPl . Finally, the matrices A0, . . . , ANUM LEVELS and P0, . . . ,PNUM LEVELS−1 determine the

multigrid cycle in a user-defined class MGsolver. Choices for smoothprolongator and
MGsolver are discussed in Section 4.

3.2. General case

The multilevel solver outlined in Section 3.1 can be directly applied to linear system (27) by
passing the innerproduct Mk , instead of the identity, in the arguments to construct solver.
However, a different strategy is needed to solve (28) since M−1

k is generally dense and cannot be
formed explicitly. In the following, we outline a method for computing Hodge decompositions in
the general case.

We first remark that if a basis for the space of Harmonic k-forms, Hk =span{hk0,hk1, . . .hkH },
is known, then the harmonic component of the Hodge decomposition is easily computed by
projecting �k onto the basis elements. Furthermore, since �k−1 in (27) can also be obtained, we
can compute the value of the remaining component (�k−Dk−1�k−1−hk) which must lie in the
range of M−1

k DT
k Mk+1 due to orthogonality of the three spaces.

Therefore, the task of computing general Hodge decompositions can be reduced to computing
a basis for Hk . Sometimes, a basis is known a priori. For instance, H0, which corresponds to
the nullspace of the pure-Neumann problem, is spanned by constant vectors on each connected
component of the domain. Furthermore, if the domain is contractible then Hk ={} for k>0.
However, in many cases of interest we cannot assume that a basis for Hk is known and, therefore,
it must be computed.

Note that decompose special can be used to determine a Harmonic k-form basis for the
identity innerproduct by decomposing randomly generated k-forms until their respective harmonic

components become linearly dependent. We denote this basis {hk0,hk1, . . .hkm} and their span Hk .
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Using these k-forms, a basis for the harmonic k-forms with innerproduct Mk can be produced by
solving

DT
k−1MkDk−1�

k−1
i = DT

k−1Mkhki (34)

hki = hki −Dk−1�
k−1
i (35)

It is readily verified that hk0, . . . ,h
k
m are harmonic

Dkh
k
i = Dkhki −DkDk−1�

k−1
i =0 (36)

M−1
k−1DT

k−1Mkh
k
i = M−1

k−1(D
T
k−1Mkhki −DT

k−1Mkh
k
i Dk−1�

k−1
i )=0 (37)

since DkDk−1=0 and Dkhki =0 by assumption. It remains to be shown that hk0, . . . ,h
k
m are linearly

independent. Supposing hk0, . . . ,h
k
m to be linearly dependent, there exist scalars c0, . . . ,cH not all

zero such that

0=
m∑
i=0

ci h
k
i

=
m∑
i=0

ci (hki −Dk−1�
k−1
i )

=
m∑
i=0

ci hki −
m∑
i=0

ciDk−1�
k−1
i

which is a contradiction, since (
∑N−1

i=0 ci hki )∈Hk
is nonzero and Hk ⊥R(Dk−1). Note that the

harmonic forms hk0, . . . ,h
k
m are not generally the same as the harmonic components of the random

k-forms used to produce hk0, . . .h
k
m .

4. NUMERICAL RESULTS

We have applied the proposed method to a number of structured and unstructured problems. In all
cases, a multigrid V (1,1)-cycle is used as a preconditioner to conjugate gradient iteration. Unless
stated otherwise, a symmetric Gauss–Seidel sweep is used during pre- and post-smoothing stages.
Iteration on the positive-semidefinite systems

DT
k Dk, DkDT

k , DT
k Mk+1Dk (38)

proceeds until the relative residual is reduced by 10−10. The matrix DT
0M1D0 corresponds to

a Poisson problem with pure-Neumann boundary conditions. Similarly, DT
1M2D1 is an eddy-

current problem (6) with �=0. As explained in Section 3, matrices (38) arise in discrete Hodge
decompositions.

The multigrid hierarchy extends until the number of unknowns falls below 500, at which point
a pseudoinverse is used to perform the coarse level solve. The tentative prolongators are smoothed

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:165–185
DOI: 10.1002/nla



AMG FOR k-FORM LAPLACIANS 181

twice with a Jacobi smoother

S = I − 4

3�max
diag(A)−1A (39)

P = SSP (40)

where �max is an upper bound on the spectral radius of diag(A)−1A. When zero or near zero
values appear on the diagonal of the Galerkin product PTAP , the corresponding rows and columns
are zeroed and ignored during smoothing. We discuss this choice of prolongation smoother in
Section 4.1.

Tables I and II show the result of applying the proposed method to regular quadrilateral and
hexahedral meshes of increasing size. In both cases, the finite element spaces described in [10]
are used to produce the innerproducts Mk . The systems are solved with a random initial value
for x . Since the matrices are singular, the solution x is an arbitrary null vector. Column labels are
explained as follows:

• ‘Grid’—dimensions of the quadrilateral/hexahedral grid.
• ‘Convergence’—geometric mean of residual convergence factors N

√‖rN‖/‖r0‖.
• ‘Work/Digit’—averaged operation cost of 1

10 residual reduction in units of nnz(A).¶

Table I. Two-dimensional scaling results.

System Grid Unknowns Convergence Work/digit Complexity Levels

DT
0D0

2502 63001 0.075 8.172 1.636 4
5002 251001 0.100 9.321 1.661 4

10002 1002001 0.063 7.866 1.686 5

DT
1D1

2502 125500 0.096 8.370 1.506 4
5002 501000 0.103 8.741 1.527 5

10002 2002000 0.085 8.142 1.545 5

D0DT
0

2502 125500 0.124 9.529 1.530 4
5002 501000 0.133 9.932 1.542 5

10002 2002000 0.094 8.550 1.553 5

D1DT
1

2502 62500 0.063 7.664 1.641 4
5002 250000 0.063 7.758 1.664 4

10002 1000000 0.063 7.868 1.687 5

DT
0M1D0

2502 63001 0.043 5.894 1.415 4
5002 251001 0.055 6.480 1.432 4

10002 1002001 0.041 5.963 1.448 5

DT
1M2D1

2502 125500 0.095 8.362 1.506 4
5002 501000 0.103 8.738 1.527 5

10002 2002000 0.085 8.140 1.545 5

¶ Including the cost of conjugate gradient iteration.
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Table II. Three-dimensional scaling results.

System Grid Unknowns Convergence Work/digit Complexity Levels

DT
0D0

253 17576 0.120 7.976 1.268 3
503 132651 0.151 9.118 1.300 3

1003 1030301 0.105 7.960 1.358 4

DT
1D1

253 50700 0.192 10.432 1.296 3
503 390150 0.216 11.587 1.342 4

1003 3060300 0.208 11.849 1.415 4

DT
2D2

253 48750 0.188 9.342 1.156 3
503 382500 0.218 10.447 1.180 3

1003 3030000 0.267 12.350 1.217 4

D0DT
0

253 50700 0.287 13.323 1.246 3
503 390150 0.391 17.594 1.235 4

1003 3060300 0.323 14.811 1.252 4

D1DT
1

253 48750 0.187 10.928 1.389 3
503 382500 0.264 13.855 1.403 4

1003 3030000 0.194 11.630 1.455 4

D2DT
2

253 15625 0.089 7.152 1.302 3
503 125000 0.102 7.649 1.318 3

1003 1000000 0.103 7.949 1.368 4

DT
0M1D0

253 17576 0.037 4.804 1.178 3
503 132651 0.053 5.495 1.200 3

1003 1030301 0.038 5.054 1.241 4

DT
1M2D1

253 50700 0.097 6.838 1.184 3
503 390150 0.113 7.461 1.214 4

1003 3060300 0.088 6.932 1.264 4

DT
2M3D2

253 48750 0.188 9.334 1.156 3
503 382500 0.223 10.585 1.180 3

1003 3030000 0.265 12.294 1.217 4

• ‘Complexity’—total memory cost of multigrid hierarchy relative to ‘System’.
• ‘Levels’—number of levels in the multigrid hierarchy.

For each k, the algorithm exhibits competitive convergence factors while maintaining low oper-
ator complexity. Together, the work per digit-of-accuracy remains bounded as the problem size
increases.

In Table III, numerical results are presented for the unstructured tetrahedral mesh depicted in
Figure 7. As with classical algebraic multigrid methods, performance degrades in moving from
a structured to an unstructured tessellation. However, the decrease in performance for the scalar
problems DT

0D0 and DT
0M1D0 is less significant than that of the other problems.
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Table III. Solver performance on the unstructured tetrahedral mesh in Figure 7.

System Unknowns Convergence Work/digit Complexity Levels

DT
0D0 84 280 0.073 6.601 1.304 3

DT
1D1 554 213 0.378 18.816 1.391 4

DT
2D2 920 168 0.366 15.856 1.186 4

D0DT
0 554 213 0.236 19.848 2.289 4

D1DT
1 920 168 0.390 17.068 1.197 4

D2DT
2 450 235 0.370 14.400 1.043 3

DT
0M1D0 84 280 0.144 8.949 1.304 3

DT
1M2D1 554 213 0.518 29.428 1.483 4

DT
2M3D2 920 168 0.348 15.111 1.187 4

Figure 7. Titan IV rocket mesh.

4.1. Prolongation smoother

On the nonscalar problems considered, we found second degree prolongation smoothers (39)
noticeably more efficient than first degree prolongation smoothers. While additional smoothing
operations generally improve the convergence rate of smoothed aggregation methods, this improve-
ment is typically offset by an increase in operator complexity: therefore, the resultant work per
digit of accuracy is not improved. However, there is an important difference between the tenta-
tive prolongators in the scalar and nonscalar problems. In the scalar case, all degrees of freedom
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Table IV. Comparison of prolongation smoothers.

System Grid Degree Percent zero Convergence Work/digit Complexity

DT
1M2D1 2502

0 66.8 0.697 42.255 1.123
1 66.8 0.357 14.774 1.123
2 22.9 0.096 8.379 1.506
3 0.4 0.063 9.515 2.084
4 0.0 0.063 10.188 2.250

DT
1M2D1 503

0 67.6 0.567 25.043 1.034
1 66.5 0.290 11.497 1.035
2 8.8 0.096 7.460 1.214
3 0.3 0.063 9.011 1.577
4 0.0 0.063 9.074 1.632

DT
2M3D2 503

0 89.63 0.549 23.670 1.034
1 89.63 0.382 14.753 1.034
2 63.93 0.214 10.304 1.180
3 23.77 0.122 9.203 1.481
4 6.48 0.098 8.348 1.487
5 2.07 0.089 10.267 1.953

are associated with a coarse aggregate; therefore, the tentative prolongator has no zero rows.
As described in Section 2.4, the tentative prolongator for nonscalar problems has zero rows for
elements contained in the interior of a nodal aggregate. In the nonscalar case, additional smoothing
operations incorporate a greater proportion of these degrees of freedom into the range of the final
prolongator.

The influence of higher degree prolongation smoothers on solver performance is reported in
Table IV. Column ‘Degree’ records the degree d of the prolongation smoother P=Sd P , whereas
‘Percent zero’ reflects the percentage of zero rows in the first-level prolongator. As expected,
the operator complexity increases with smoother degree. However, up to a point, this increase is
less significant than the corresponding reduction in solver convergence. Second-degree smoothers
exhibit the best efficiency in both instances of the problem DT

1M2D1 and remain competitive
with higher-degree smoothers in the last test. Since work per digit figures exclude the cost of
constructing multigrid transfer operators, these higher-degree smoothers may be less efficient in
practice.

5. CONCLUSION

We have described an extension of Reitzinger and Schöberl’s methodology [14] to higher-
dimensional k-forms with the addition of smoothed prolongation operators. Furthermore, we
have detailed properties of the prolongation operator that arise from this generalized setting.
Specifically, we have identified necessary and sufficient conditions under which commutativity is
maintained. The prolongation operators give rise to a hierarchy of exact finite element sequences.
The generality of the method is appealing since the components are constructed independently of
a particular mimetic discretization. Finally, we have initiated a study of algebraic multigrid for
the Hodge decomposition of general k-forms.
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