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Parallel coarse-grid selection
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SUMMARY

Algebraic multigrid (AMG) is a powerful linear solver with attractive parallel properties. A parallel AMG
method depends on efficient, parallel implementations of the coarse-grid selection algorithms and the
restriction and prolongation operator construction algorithms. In the effort to effectively and quickly select
the coarse grid, a number of parallel coarsening algorithms have been developed. This paper examines
the behaviour of these algorithms in depth by studying the results of several numerical experiments. In
addition, new parallel coarse-grid selection algorithms are introduced and tested. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Engineers and scientists are faced with problems too large for computation on a single processor.
For that reason, parallel linear solvers play a prominent role in solving large, sparse systems.
Multigrid [1, 2] is effective for solving certain classes of problems, but is limited to problems
discretized on logically rectangular grids. Algebraic multigrid (AMG) [1, 3, 4] is designed to solve
problems on unstructured meshes, is effective for certain classes of problems, and various parallel
packages that implement AMG are available [5, 6].

The effectiveness of the AMG solve phase relies on the setup phase algorithms, which are
responsible for selecting coarse grids and building grid transfer operators. A number of parallel
coarse-grid selection algorithms have been developed [7–10]. The focus of this paper is on the
efficiency and scalability of the setup phase algorithms and the quality of their results.
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612 D. M. ALBER AND L. N. OLSON

The contributions in this paper are twofold. First, we introduce new colour-based coarse-grid
selection algorithms. A parallel compatible relaxation algorithm is also introduced. The second
purpose of this paper is to compare and analyse the behaviour of the growing number of parallel
coarsening algorithms. In addition to reporting results from a number of experiments, we develop
new tools to examine the behaviour of the coarsening algorithms beyond global measures like
operator complexity alone. The detailed behaviour of the coarsening algorithms is enlightening
and can be useful in identifying strengths and weaknesses of the methods.

The remainder of this paper is organized as follows. Section 2 contains a brief introduction of
the general AMG algorithm. In Section 3, several coarse-grid selection algorithms are outlined.
Numerical experiments and the results from those experiments are contained in Section 4. Finally,
Section 5 contains conclusions.

2. ALGEBRAIC MULTIGRID

AMG [1, 3, 4] is an iterative method designed to numerically solve problems of the form

Ahuh = fh (1)

where Ah is an n×n matrix. Unlike geometric multigrid, AMG does not operate on a physical
grid, but instead relies only on the algebraic properties of the matrix problem. For conceptual
convenience, the degrees of freedom, uih , are called grid points, and the collection of nodes,
�={u1h, u2h, . . . , unh}, are called a grid.

In a multigrid solver, the error, eh , is composed of two components: high-frequency error and
low-frequency (or smooth) error. In AMG, smooth error is any component of error not reduced
by relaxation on the fine grid. In this case, smooth error is called algebraically smooth error
(as opposed to geometrically smooth error). For convergence, a complementary process called
coarse-grid correction is used to reduce smooth error. Coarse-grid correction is the process of
approximately solving the defect equation Aheh = rh , where rh = fh − Ahuh is the residual, on a
coarse grid and interpolating a correction back to the fine grid.

An AMG user provides only the fine-grid matrix and right-hand side to the solver. However,
AMG produces several additional components before attempting to solve the linear system. Below,
superscripts are used to denote the grid level, where level 1 is the finest level. Therefore, A1= Ah
and �1=�. The components needed by AMG are all created in the setup phase and are defined
as follows.

Grids: �1 ⊃ �2 ⊃ · · · ⊃ �M

Grid operators: A={A1, A2, . . . , AM }
Restriction operators: R={R1, R2, . . . , RM−1}
Interpolation operators: P ={P1, P2, . . . , PM−1}
Smoothers: S={S1, S2, . . . , SM−1}

Algorithm 1 shows the AMG setup phase and how each component is constructed. The ‘stopping
size’ in Line 1 is defined by the designer of the AMG solver and is often as small as one. Line 2
encapsulates the coarse-grid selection step.
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Once the grids, grid operators, grid transfer operators, and smoothers have been constructed,
the AMG algorithm is ready to begin solving the linear system. The actual solution is computed in
the solve phase of AMG, which is given in Algorithm 2. The solve phase is similar to a geometric
multigrid cycle, except the information generated in the setup phase (A, S, R, and P) is used
instead of information that is explicitly known about the grids.

Algorithm 1. AMG SETUP(Ah).
Initialize:

k← 1, Ak← Ah
1. while |�k |> stopping size do
2. Select Ck and Fk : Ck ∪ Fk =�k and Ck ∩ Fk =∅
3. �k+1←Ck

4. Define Pk (interpolation operator from level k + 1 to level k)
5. Define Rk (restriction operator from level k to level k + 1, often Rk = (Pk)T)
6. Ak+1← Rk Ak Pk (Galerkin operator)
7. Construct smoother, Sk , if necessary
8. k← k + 1
9. end while
10. M← k

Algorithm 2. AMG-V(A, S, R, P, u, f, k).
1. if M = k then {k is the coarsest level}
2. Solve Aku= f
3. return u
4. else
5. Apply smoother Sk to Aku= f , �1 times
6. rk← f − Aku
7. rk+1← Rkrk

8. ek+1← AMG-V(A, S, R, P, 0, rk+1, k + 1)
9. u← u + Pkek+1
10. Apply smoother Sk to Aku= f , �2 times
11. return u
12. end if

3. COARSE-GRID SELECTION

The setup phase of AMG accomplishes three goals:

1. Selection of a hierarchy of coarse grids. Recall a coarse grid is a collection of degrees of
freedom, and the ‘grid’ is the graph of the coarse-level matrix.

2. Construction of transfer operators (restriction and prolongation operators, R and P , respec-
tively) to transfer information from one level to another.

3. Construction of coarse-level operators (matrices). The coarse-level operator is typically the
Galerkin operator: RAP .
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The most straightforward way to build a coarse grid is to select a subset of the degrees of
freedom on the fine level to be the unknowns on the coarse level. The algorithms in this paper
build the coarse grid in this way. However, other methods exist, such as aggregation [11, 12]. In
aggregation, several unknowns from the fine level are combined into a single coarse level degree
of freedom.

3.1. Classical coarsening

The first coarse-grid selection algorithm is called Ruge–Stüben (RS) coarsening [3]. A strength
of connection measure is employed to determine if a given node has a strong influence on the
solution at a neighbouring node. This information is used to decide whether a node should be
marked a C-point or an F-point.

This strength of connection measure is based on the size of off-diagonal entries in the matrix.
The set of nodes that node i strongly depends upon, denoted Si , is defined as

Si =
{
j : j �= i,−ai j��max

k �=i (−aik)
}

(2)

where ai j is the entry in row i , column j of matrix A. Often, � is set to 0.25. The set of nodes
that i strongly influences, denoted STi , is defined as the set of nodes that strongly depend on
i : STi ={ j : i ∈ S j }.

Two heuristics are used by RS to select a coarse grid:

H1: For each node j that strongly influences an F-point i , j is either a C-point or strongly
depends on a C-point k that also strongly influences i .

H2: The set of C-points needs to form a maximal independent set in the reduced graph of the
matrix such that no C-point strongly depends on another C-point.

Note that, in general, heuristics H1 and H2 cannot both be satisfied. H1 is required by the RS
interpolation scheme, so it must be satisfied. H2, on the other hand, is used only as a guideline.
The purpose of H2 is to encourage the selection of small, sparse coarse grids.

The RS algorithm proceeds in two sweeps: the first sweep establishes an independent set based
on strength of connection, and the second sweep ensures that each pair of strongly connected F-
points share a common C-point neighbour (H1). RS is outlined in Algorithm 3. In each iteration
of the while loop in Line 6, a single C-point is selected. Therefore, without modification, this
algorithm will not scale well in a parallel environment.

3.2. Parallel coarsening algorithms

The first parallel algorithms developed were variants of the RS algorithm. A straightforward
modification is as follows. First, run RS on each processor’s domain. This works well within each
processor. Along the processor boundaries, however, there are regions where H1 is not satisfied.
The algorithm known as RS3 [7] addresses this problem by doing a third sweep along only the
processor boundaries. Positions where H1 is violated are corrected by assigning an extra node to
the coarse grid.

Although RS3 produces a viable coarse grid (i.e. a coarse grid for which a RS prolongation
operator can be constructed), this method typically has an abundance of C-points along the
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Algorithm 3. RUGE–STÜBEN.
Initialize:

U =�, C =∅, F =∅
1. for all i ∈� do
2. wi←|STi |
3. end for
4. while |U |>0 do {First pass}
5. select i : wi�w j , ∀ j ∈U
6. U←U\{i}
7. C←C ∪ {i}
8. for all j ∈ STi ∩U do
9. U←U\{ j}
10. F = F ∪ { j}
11. for all k ∈ S j ∩U do
12. wk←wk + 1
13. end for
14. end for
15. end while
16. for all i ∈ F do {Second pass}
17. for all j ∈ Si ∩ STi ∩ F do
18. if Si ∩ S j ∩ C = =∅ then
19. make i or j into C-point
20. end if
21. end for
22. end for

processor boundaries. This is undesirable, however, because it demands more communication
between processors.

This observation led to the development of additional parallel coarse-grid selection algorithms.
A taxonomy of the coarse-grid selection algorithms discussed in this paper is shown in Figure 1.
Other classes of coarse-grid selection algorithms, such as subdomain blocking [13] and compatible
relaxation techniques [14–16], are not shown.

The remainder of this section is spent discussing and outlining the parallel coarse-grid selection
algorithms used in the experiments later in the paper. Example output from these algorithms on a
small problem is shown in Figure 2.

3.2.1. Cleary–Luby–Jones–Plassmann. The Cleary–Luby–Jones–Plassmann (CLJP) algorithm [8]
utilizes a parallel independent set algorithm by Luby [17] to concurrently select several C-points
in each iteration. This means unlike RS, CLJP can be run in parallel and will select C-points on
each processor domain in each iteration. Algorithm 4 outlines CLJP coarsening.

Three lines of Algorithm 4 require further clarification: the initial value in Line 2, the selection
of the independent set D in Line 5, and updating wk in Line 9. CLJP implements these lines as
follows.
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CLJP

Falgout HMIS PMIS-c1 PMIS-c2CLJP-c

PMIS

Coarsening Heuristic

Parallel Algorithm

Sequential Algorithm

Dependency

Modified Dependency

LegendH1 H1’

RS

Figure 1. Taxonomy of coarsening algorithms. Algorithms with two incident lines are hybrid algorithms.
For example, Falgout coarsening is a hybrid which uses RS and CLJP. The dashed line from RS to

HMIS signifies that HMIS uses a modified version of RS, which is not subjected to H1.

Algorithm 4. CLJP.
Initialize:

F =∅, C =∅
1. for all i ∈� do
2. wi← initial value
3. end for
4. while |C | + |F | �= n do
5. select independent set D
6. for all j ∈ D do
7. C =C ∪ j
8. for all k in set local to j do
9. update wk
10. if wk = = 0 then
11. F = F ∪ k
12. end if
13. end for
14. end for
15. end while

The initial values of wi are |STi |+rand(i), where |STi | is the number of nodes strongly influenced
by node i and rand(i) is a random number in (0, 1). The purpose of the random number is to give
each node a unique weight w. This random augmentation makes it possible to break ties between
node weights, which allows C-points to be selected concurrently.

The independent set D is selected such that D={i : wi>w j , ∀ j ∈ Si ∪ STi }. This set will be
independent, but is not necessarily maximally independent.

The values of w are updated using two heuristics:

1. Values at C-points are not interpolated; hence, neighbours that strongly influence a C-point
are less valuable as potential C-points themselves.

2. If k and j both strongly depend on i ∈C and j strongly influences k, then j is less valuable
as a potential C-point since k can be interpolated from i .
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2. Coarse grids selected by various coarsening algorithms on a 25× 25 9-point Laplacian problem.
Two processors were used, and the processor boundary is in the vertical middle of the figures (the processor
boundary is most obvious in the HMIS results). Filled black squares are F-points. Filled grey squares are
C-points. The shifts seen in the results for the pre-coloured methods (CLJP-c, PMIS-c1, and PMIS-c2)
are due to the initial selections made by the colouring algorithms. However, this shift becomes less
apparent on larger problems. A slight change to the algorithm will lead to a more cosmetically appealing
coarse grid: (a) CLJP; (b) Falgout; (c) CLJP-c; (d) PMIS; (e) HMIS; (f) PMIS-c1; and (g) PMIS-c2.

The weight update method depends on using the auxiliary influence matrix, which is defined as

Si j =
{
1 if j ∈ Si
0 otherwise

Copyright q 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 14:611–643
DOI: 10.1002/nla



618 D. M. ALBER AND L. N. OLSON

This means that Si j = 1 if i strongly depends on j . Row i of S gives the strong dependencies of
node i , and column i gives the strong influences of node i . These heuristics are implemented as
shown in Algorithm 5.

Algorithm 5. CLJP-UPDATE-WEIGHTS.
1. for all i ∈ D do
2. for all j : Si j �= 0 do {Heuristic 1}
3. w j←w j − 1
4. Si j← 0
5. end for
6. for all j : S ji �= 0 do {Heuristic 2}
7. S ji← 0
8. for all k : Sk j �= 0 do
9. if Ski �= 0 then
10. w j←w j − 1
11. Sk j← 0
12. end if
13. end for
14. end for
15. end for

For some problems, such as problems on structured grids and problems in three dimensions,
CLJP selects coarse-grid hierarchies with many more C-points than alternative algorithms, such
as Falgout coarsening. Analysis of this behaviour is found in [10].

3.2.2. CLJP in colour. A modified form of CLJP, called CLJP in colour (CLJP-c), was first
presented in [10]. CLJP-c modifies the initialization phase of CLJP to encourage the selection of
a more structured coarse grid. Therefore, all changes for CLJP-c occur in Line 2 of Algorithm 4.
In CLJP-c, a graph colouring algorithm is used to assign a colour such that each node i is painted
a colour that is different than all nodes j ∈ Si ∪ STi . Then, these colours (along with other factors)
are used in a function that assigns each node’s initial weight. Algorithm 6 gives the details of how
the initial weights are assigned in CLJP-c.

Algorithm 6. CLJP-C-INITIALIZATION.

1. Colour graph of S : �i �= � j ∀ j ∈ Si ∪ STi {�i is colour of node i}
2. c�← set of colours {colours are sequential integers beginning at 1}
3. for all c∈ c� do
4. cw(c)← (c − 1)/|c�|
5. end for
6. for all i ∈ V do
7. wi←|STi | + rand(0, 1/|c�|)+ cw(�i )
8. end for

The magnitude of a node’s initial weight depends on three factors. The number of strong
influences is the greatest factor in a node’s initial weight. If two adjacent nodes have the same
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number of strong influences, the node colour will break the tie. Between two adjacent nodes, one
is guaranteed to have the larger weight because two adjacent nodes will not be the same colour.

3.2.3. Parallel Modified Independent Set. The operator complexities for 3D problems generated
by RS-like coarsening algorithms (CLJP, Falgout, and CLJP-c) do not scale well (see Section 4).
To address this, the Parallel Modified Independent Set (PMIS) algorithm was developed [9].

PMIS produces coarse-grid hierarchies with lower operator complexities by using a relaxed
form of H1. This new heuristic, called H1′, only requires each F-point to strongly depend on one
C-point. Recall H1 placed restrictions on strong F–F connections. By no longer requiring any
shared C-points for that case, H1′ enables the selection of sparser coarse grids.

PMIS is similar to CLJP, with the exception that it implements H1′ (see Figure 1). Since RS
prolongation operators cannot be constructed for coarse grids that do not satisfy H1, a modified
form of the RS prolongator is also introduced in [9]. This modifies the operator so that strong
F–F connections are handled when there is no shared strongly connected C-point. The PMIS
algorithm is shown in Algorithm 7.

Algorithm 7. PMIS.
Initialize:

F =∅, C =∅
1. for all i ∈� do
2. wi← STi + rand(0, 1)
3. end for
4. while |C | + |F | �= n do
5. D={i : wi>w j , ∀ j ∈ Si ∪ STi } {select independent set}
6. for all j ∈ D do
7. C =C ∪ j
8. for all k ∈ STj do
9. F = F ∪ k
10. end for
11. end for
12. end while

3.2.4. Hybrid Modified Independent Set. Also introduced in [9] is the HybridModified Independent
Set (HMIS) algorithm. If PMIS is the logical equivalent to CLJP with H1′, then HMIS is most
similar to Falgout coarsening. Besides using H1′ instead of H1, HMIS employs only the first pass
of RS on the interiors of processor domains. As with Falgout coarsening, the purpose of HMIS is
to combine the best aspects of two algorithms, and on regular meshes this pays off in the form of
better convergence factors in the solve phase (see Section 4).

3.2.5. PMIS-c1 and PMIS-c2. In [10], it was suggested that applying the graph colouring idea
from CLJP-c to PMIS might yield positive results. Two new algorithms have come from this idea:
PMIS-c1 and PMIS-c2.

PMIS-c1 is a direct application of the idea from [10]. That is, in PMIS-c1, the reduced graph
of strong connections is coloured such that no two adjacent nodes are assigned the same colour.
A colour priority is formed, and the weights in the initialization phase of PMIS are modified so

Copyright q 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 14:611–643
DOI: 10.1002/nla
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that the colour priority is enforced. This method produces coarse grids similar to those produced
by HMIS. The algorithm is generated by replacing Line 2 of Algorithm 7 with Algorithm 6.

PMIS-c2 developed from the observation that, when taken to the limit, PMIS can (and will,
given appropriate weights) select a coarse grid such that ‘neighbouring’ C-points are three hops
from one another in the graph. To produce a coarse grid with such sparsity using the graph
colouring framework, a distance two colouring algorithm is used. Now each node is assigned a
colour that is unique from the colours of all nodes within two hops in the graph. After substituting
the graph colouring algorithm, PMIS-c2 proceeds in the same way as PMIS-c1. This algorithm is
written the same as PMIS-c1, with the exception that Line 1 of Algorithm 6 should now read as
follows:
1. Colour graph of S : �i �= � j and �i �= �k ∀ j ∈ Si ∪ STi and ∀k ∈ S j ∪ STj {�i is the colour of

node i}.

3.3. Parallel compatible relaxation

In contrast to the coarsening algorithms discussed thus far, compatible relaxation (CR) [14–16]
does not utilize a strength of connection measure. CR methods instead use the relaxation method
to identify smooth error. This idea is intuitive since algebraically smooth error is defined as the
error remaining when relaxation stalls. Algorithm 8 shows the CR algorithm from [16]. For our
implementation �= 5.

Algorithm 8. COMPATIBLE RELAXATION.
Initialize:

F =�, C =∅,
e(0)= 1+ rand(0, 0.25), �= 0.7

1. repeat
2. Perform � CR iterations on F , where e(0)

f = 0+ (e(0)) f

3. �cr=
‖e(�)

f ‖A f f

‖e(�−1)
f ‖A f f

4. if �cr�� then
5. Form candidate set

U =
{
i : |(e

(�)
f )i |

‖e(�)
f ‖∞

�1− �cr

}

6. D= Independent set of U
7. C =C ∪ D
8. F = F\D
9. end if
10. until �cr<�

The term computed in each iteration (�cr) is the CR rate, which is used to measure the quality
of the tentative coarse grid. A small CR rate signifies the coarse grid is effectively representing
the smooth error in the problem and that the coarsening process on that level can, therefore, be
terminated.
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Theoretical results show that a coarse grid with a fast CR rate has an ‘ideal’ prolongation
operator which when used with that coarse grid leads to a fast multigrid linear solver [18]. This
valuable result motivates the use of the CR coarsening method.

Our contribution to CR is a parallel implementation of the CR algorithm. Most components of
the algorithm already have parallel implementations. For instance, parallel relaxation methods are
already used in parallel AMG codes. Our primary interest was in the independent set algorithms
used to select C-points from the candidate set. Any of the algorithms discussed in Section 3.2 may
be used as the independent set algorithm. For this paper, we used two parallel CR implementations:
one with CLJP as the independent set algorithm, and another with PMIS as the independent set
algorithm.

4. EXPERIMENTS

4.1. Methods

Each problem was tested using nine coarsening algorithms: Falgout, CLJP, CLJP-c, PMIS, HMIS,
PMIS-c1, PMIS-c2, CR (CLJP independent set), and CR (PMIS independent set). Runs were made
with a power of two number of processors ranging from 1 to 512. The strength threshold � (see
Equation (2)) is 0.25 for all coarsening algorithms in these experiments. Note changing � may
affect the complexities, but we expect the overall trends to remain unchanged.

Thunder, a large parallel machine at Lawrence Livermore National Laboratory, was used for
all experiments. Thunder has 1002 quad-processor Itanium2 computing nodes, each with 8-GB
RAM.

4.1.1. Problem generation and partitioning. Problems on regular grids were generated using rou-
tines in hypre [5]. Load balancing and problem partitioning on these types of problems is not
problematic because they are handily partitioned into portions of equal size.

The generation of problems on unstructured grids was done using the aFEM package [19], which
is a scalable, unstructured finite element problem generator. It uses ParMETIS [20] to partition
the problem domain prior to discretization. To test the behaviour of AMG as problem size is
scaled, the amount of work given to each processor should be comparable. Equal-sized partitions
are not guaranteed for unstructured problems. For this reason, the amount of work given to each
processor was monitored in each test. Where the partitioning significantly departs from what is
desired, plots containing information on the partitioning of the problem are provided. Figure 12
contains a plot which reports the partitioning for one of the experiments. The plot contains several
pieces of information. First, the solid black line shows the average nodes per processor. In an ideal
situation, this line would be constant. Surrounding the line is two shaded fields. The light grey
field shows the range of nodes per processor in the middle 90% of the distribution. The dark grey
field shows the range of nodes per processor for all of the processors. Finally, the dashed line is
drawn horizontally from the average nodes per processor on the single processor trial.

4.1.2. Grid and operator complexity. In AMG, complexities are used to measure the size of the
coarse-grid hierarchy. Grid complexity is the number of unknowns (or nodes, in terms of the graph)
on all levels relative to the fine level:

Cgrid=
∑M

�=0 n�

n0
(3)

Copyright q 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 14:611–643
DOI: 10.1002/nla



622 D. M. ALBER AND L. N. OLSON

where M is the number of levels in the grid hierarchy and n� is the number of rows in the matrix
on level �.

Operator complexity is the number of nonzeros in the matrices on all levels relative to the
nonzeros in the fine level matrix:

Cop=
∑M

�=0 nnz�

nnz0
(4)

where nnz� is the number of nonzeros in the matrix on level �. The operator complexity is a
measure on the amount of memory needed, relative to the fine level, to store all of the matrices. It
is also a lower bound on the computation needed since the work done for smoothing on all levels
depends on the number of nonzeros in the matrices.

4.1.3. Convergence factors. Convergence factor results provide information about the overall qual-
ity of the solve phase. For the results in this paper, convergence factors are computed by averaging
the convergence factors from all iterations until the norm of the relative residual is smaller than
10−8. If a relative residual norm of 10−8 is not attained within 100 iterations, the convergence
factors from the first 100 iterations are averaged.

4.1.4. Work per digit of accuracy. Neither the convergence factor nor the operator complexity
results are, by themselves, a measure of the work a solve phase must do for convergence. By
combining the convergence factor and cycle complexity, we arrive at a measure for the work
needed per digit of accuracy. Work per digit of accuracy is defined as

Wdigit= − Ccycle

log �
(5)

where � is the convergence factor and cycle complexity is a measure of work in each multigrid
cycle. The cycle complexity is related to the operator complexity and is defined as

Ccycle=
∑M

�=0 nnz� · �� · ��

nnz0
(6)

where nnz� is the number of nonzeros in the matrix on level �, �� is the sum of the pre- and
post-smoothing steps on level �, and � is the cycle index. The cycle index is used in the definition
of the multigrid cycle. For example, �= 1 denotes the V-cycle and �= 2 denotes the W-cycle. All
experiments in this paper use a V(1, 1) cycle, which means the cycle complexity is usually close
to double the operator complexity.

4.1.5. Tower plots. To visualize and examine the properties of the grid hierarchy in more detail,
we introduce tower plots. The tower plot is used to visualize the entire coarse-grid hierarchy,
separated by level. Figure 3 shows a typical tower plot.

Each tower plot contains four pieces of information. First, the height of the rectangle is that
level’s contribution to the operator complexity. For example, the height of level � is nnz�/nnz0.
The total height of the tower is the total operator complexity of the grid level hierarchy. Second,
the width of each level corresponds to that level’s contribution to the grid complexity (i.e. the
number of degrees of freedom on that level relative to the fine level). This can be read in the
plot by determining where the right edge of a level falls on the scale at the bottom. For example,
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Figure 3. An example tower plot. The tower plot represents information about the coarse-grid hierarchy.
Each level in the tower represents a level of the grid hierarchy, with the bottom level being the finest
level. Four pieces of information are represented in each level of the tower: operator complexity, grid

complexity, operator density, and the number of levels in the grid hierarchy.

the third level in the grid level hierarchy in Figure 3 contains approximately 24% of the number
of degrees of freedom of the fine level. Third, the darkness of each block is determined by the
sparsity of the matrix on that level. In most cases, the levels remain white until the very coarsest
levels. The plot indicates the coarsening algorithm used to produce the plot in the title, and the
total number of levels in the grid level hierarchy is shown.

4.2. Fixed problem sizes

The experiments are divided into two broad types of tests. The total size of the problem is fixed in
the first set of tests, regardless of the number of processors used, to demonstrate the behaviour of
the coarsening algorithms on the processor boundaries. By keeping the size of the problem fixed,
the ‘surface area’ of each processor domain increases as the number of processors is increased.
This is not a natural test for performance scalability—in a real-world simulation, the experimenter
would give each processor as much work as could be processed in a reasonable amount of time.
However, this type of test is useful for investigating the behaviour of the coarsening algorithms in
parallel.

4.2.1. 3D 7-point Laplacian. The first problem is a 3D Laplacian:

−�u = 0 on � (�= (0, 1)3)

u = 0 on ��
(7)
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The problem is discretized using finite differences to yield the common 7-point stencil. The domain
in all tests is a 128× 128× 128 grid, which gives approximately two million unknowns.

Some coarsening algorithms are more affected by processor boundaries than others, so the
degradation in the performance in some algorithms as the number of processors is increased is
expected. The algorithms which are most sensitive to this are the hybrids (Falgout, HMIS) and the
graph-colouring-based algorithms (CLJP-c, PMIS-c1, PMIS-c2).

Figure 4 plots setup times, convergence factors, operator complexities, and work per digit of
accuracy for each of the trials in this experiment. The overall trend is for the setup time of
each coarsening algorithm to decrease as the number of processors is increased. CLJP and CR
(CLJP) both experience the greatest performance gains as the number of processors grows. On this
problem, these algorithms both require large amounts of work to build the coarse-level hierarchy.
The amount of work saved by splitting work across processors is much larger than the cost in
communication. On the other hand, several coarsening algorithms initially experience an increase
in setup time because on a single processor they are doing little work for this problem. The
communication time spent on two processors is not offset by savings in computing time, so the
total time increases. In the limit, however, all of the algorithms experience decreases in setup time.

There is a practical limit to gains made through parallelism due to communication across the
processor boundaries. Figure 5 shows the normalized setup times for these trials. The normalized
setup time is the setup time in a trial divided by the setup time in the single processor trial. At
the right side of the plot, some lines are increasing, meaning the savings in computation are no
longer larger than the extra cost in communication. Additionally, the setup phase requires the least
amount of time on 128 processors, where the times are between 2% and 10% of the times on a
single processor.

The preferred outcome for the convergence factors is invariance with the number of processors
because parallelism does not improve the rate of convergence, but rather targets the computational
cost in each iteration. In most cases, the convergence factor is constant across all trials; the largest
exception to this is HMIS.

The increase in the convergence factors for HMIS is due to the large difference in the ‘quality’
of the coarse grid in the interior and the coarse grid on the processor boundary for HMIS. The
interior part of each processor’s piece of the mesh in HMIS is coarsened similarly as in RS,
which performs at least as well as Falgout, in terms of convergence factor. However, the processor
boundary coarse grid is selected using PMIS, and as the plot shows, the PMIS convergence factors
are very large. As the number of processors is increased, the HMIS coarse grids have more nodes
which are coarsened by PMIS, so the performance degrades.

Similar to convergence factor, it is desirable for the coarsening algorithms to have little impact
on the operator complexity as the problem is divided among multiple processors. Both CLJP and
PMIS can be made immune to this test since they have the ability to produce the same coarse-grid
hierarchy independent of the number or processors on which the algorithm is run [8, 9]. The
operator complexity analysed in Figure 4 shows each algorithm produces coarse-grid hierarchies
of similar operator complexities on one processor versus hundreds of processors. The largest
increase occurs with Falgout, which grows from approximately 5 to 6.5. In some cases, the operator
complexity decreased by a small amount as the number of processors increased. Finally, as expected
from previous observations [7, 9, 10], CLJP produces grid hierarchies with operator complexities
so large the algorithm is not viable for this problem. CLJP produces unusually large operator
complexities for problems on structured meshes, but this issue is not apparent with unstructured
meshes.
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Figure 4. Results for the fixed problem size 3D 7-point Laplacian problem (Section 4.2.1). The total
degrees of freedom in the problem is fixed while the number of processors increases. The legend from

the first plot applies to all four plots.
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Figure 5. Normalized setup times for the fixed problem size 3D 7-point Laplacian problem (Section 4.2.1).

Recall work per digit of accuracy is a quantity depending on the cycle complexity and the
convergence factor. As shown in Figure 4, Falgout and CLJP-c are the most cost-effective methods
for this problem because they have the lowest convergence factors and also have operator com-
plexities that are not particularly large, compared to the lowest operator complexities observed.
Despite having a reasonable convergence factor, AMG with CLJP is more expensive than all other
methods, except CR (CLJP), due to its extremely large operator complexity.

The operator complexities for CLJP and CR (CLJP) are very large. The other algorithms have
much lower operator complexities. The tower plots for each coarsening algorithm run on 256
processors are shown in Figure 6. On 256 processors, CLJP selects coarse grids that produce
matrices with a greater number of nonzeros on levels 1–9 than on level 0. Level 9 has more
nonzero entries than level 0, despite having less than 5% the number of unknowns as level 0. The
tower plots illustrate the similarity in complexities of the grid hierarchies selected by HMIS and
PMIS-c1 and reveal that they appear nearly identical in terms of operator and grid complexity.
This is further emphasized by the plots in Figure 4, which show the two methods are producing
AMG solve phases with similar performance. On the other hand, there is little difference between
the tower plots from HMIS and PMIS-c1 on the two processor trial (not shown), despite significant
differences in performance.

4.2.2. 3D unstructured Laplacian. As before, this problem uses a fixed problem size and varies
the number of processors used to solve the problem. The problem continues to be a 3D Laplacian
on the unit cube (7), but is now discretized using finite elements on an unstructured mesh. The
problem was run on up to 512 processors and has approximately 940 000 degrees of freedom.
Figure 7 presents the setup time, convergence factor, operator complexity, and work per digit of
accuracy results.

The setup times are relatively low compared to the previous problem. The CR (CLJP) algorithm
yields the most time-consuming setup phase. The order of the algorithms by setup time is similar
to the previous test, yet some differences are notable—e.g. CLJP is cheaper than both Falgout and
CLJP-c in the problem, whereas in the last problem it was much more expensive. As before, the
setup time as parallelism is increased reaches a minimum before beginning to increase after 128
processors. As Figure 8 shows, the algorithms reach 10% of their single processor cost when run
on 128 processors, in the worst case. Finally, notice that the order of the algorithms by normalized
setup time in Figure 8 is much different from the order in the structured case presented in Figure 5.
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Figure 6. Tower plots for the fixed problem size 3D 7-point Laplacian problem (Section 4.2.1). The towers
shown are for the 256 processor trials. Notice the scale is not the same in each plot.
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Figure 7. Results for the fixed problem size 3D unstructured Laplacian problem discretized on the unit
cube (Section 4.2.2). The total degrees of freedom in the problem is fixed while the number of processors

increases. The legend from the first plot applies to all four plots.
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Figure 8. Normalized setup times for the fixed problem size 3D unstructured Laplacian problem discretized
on the unit cube (Section 4.2.2).

The convergence factors and operator complexities exhibit little variance as the problem is
partitioned into more pieces. The convergence factors exhibit little growth, with the exception
of CR (PMIS), which decreases slightly on the largest number of processors. Initially, there
is growth in operator complexity when moving from one processor to two. Subsequently, the
operator complexities remain nearly constant. The operator complexity is much lower for CLJP
in this experiment. Figure 9 contains the tower plots for this problem.

Much less work is needed per digit of accuracy in the unstructured test. The work per digit of
accuracy is growing slightly, in most cases, but the growth is small considering the number of
processors used in the largest test.

The two fixed problem size tests are designed to explore the parallel behaviour of the setup
phase while using a variety of coarse-grid selection algorithms. The performance of AMG is fairly
insensitive to the number of processors used. The operator complexities in AMG show little change
regardless of the number of processors, even for the structured problem, which is highly impacted
by coarse grids that do not maintain the structure of the fine grid. The operator complexities should
begin to degrade if a sufficiently large number of processors are used, but at 512 processors, this
test is already a departure from practical conditions.

4.3. Scaled problem sizes

The fixed problem size tests are designed to give insight into how the coarse-grid selection
algorithms work as the parallelism is increased. However, tests of that design do not model the
conditions under which AMG will typically be used. In particular, it is expected that any AMG
user will aim to utilize as few processors as necessary to solve their problem.

The remainder of the experiments in this paper are on problems where the size of the problem
is scaled to match the number of processors used. That is, the number of unknowns per processor
is kept as close as possible to the number of unknowns on a single processor. We believe this
allows the setup phase algorithms to be observed under more natural conditions.

4.3.1. 3D 7-point Laplacian. The structured problem (7) is now readdressed, except the prob-
lem size is scaled as the number of processors increases. On one processor, the problem is on
a 50×50×50 grid, for a total of 125 000 unknowns. On 256 processors, the problem is on a
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Figure 9. Tower plots for the fixed problem size 3D unstructured Laplacian problem on the unit cube
(Section 4.2.2). The towers shown are for the 512 processor trials.
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400×400×200 grid, which makes 32 million unknowns. Such small problem sizes were necessary
in order to have sufficient memory to run the algorithms which produce high operator complexi-
ties. The results for normalized setup time, convergence factor, operator complexity, and work per
digit of accuracy are given in Figure 10. The plots reveal very different results than the plots of
Section 4.2.1.

The figure illustrates that some algorithms are not performing near optimal in terms of setup
time. In particular, CLJP, CLJP-c, and Falgout are each exhibiting large growths in their setup
times. CLJP is growing much less than the other two, but its growth is still significant. In terms of
actual time (not shown), CLJP is more expensive than CLJP-c or Falgout at the largest problem
size, but if the trend continues, CLJP will require less time than both methods for a problem
run on 1024 processors. This is interesting because the operator complexities of the grid hi-
erarchies generated by CLJP are extremely large. This creates large numbers of edges in the
coarse-level graphs, which requires large amounts of time for CLJP to update node weights. Nei-
ther CLJP-c nor Falgout are producing such large operator complexities, so the extra cost for
these algorithms is not for the same reason. We believe some of this setup time cost is due to
implementation and data structure issues, and this is something that will be investigated in the
future.

The convergence factor results grow for all problem sizes and coarsening algorithms. At
512 processors, the convergence factors are growing at approximately the same rate as at two
processors. Notice the PMIS-like algorithms (PMIS, HMIS, PMIS-c1, and PMIS-c2) are the
slowest to converge. In the case of PMIS and PMIS-c2, the sparsity of the coarse grids se-
lected and also the lack of preservation of the structure of the grid by PMIS lead to the slow
convergence factors. Both methods produce coarse grids with good CR rates, which implies
there is an interpolation operator that gives a fast multigrid method. Since slow results are
observed, the prolongation operator currently used for these methods is inadequate to com-
pensate for the sparse coarse grids. Our planned future work includes research on improved
parallel prolongation methods. CLJP-c and Falgout yield the fastest convergence factors be-
cause these methods produce coarse grids that work well for structured problems such as this
one.

The PMIS-like algorithms all produce grid hierarchies with much lower operator complexities
than other methods, and the operator complexities display little or no growth as the problem size
is increased. The performance of CLJP and CR (CLJP) is degraded for this problem because it is
discretized on a logically rectangular grid. The growth of the operator complexities produced by
these two methods is much larger than that of the other methods. The tower plots in Figure 11
illustrate the grid hierarchies for this problem.

The work per digit of accuracy will grow since all tests resulted in growing convergence factors.
Despite producing relatively large operator complexities, CLJP-c and Falgout both create much
cheaper AMG methods for this problem than any of the other methods. This is a result of their
convergence factors being much lower than the PMIS-like methods and their operator complexities
are much lower than CLJP.

4.3.2. 3D unstructured Laplacian. In this section, results are reported for the 3D unstructured
Laplacian problem (7). The problem size on a single processor is approximately 211 000 unknowns.
The largest problem is on 512 processors and has about 100 million unknowns, which gives an
average of 198 000 unknowns per processor. The partition size data for this problem are shown
in Figure 12. The partition sizes fluctuate, and these fluctuations are reflected in the results,
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Figure 10. Results for the scaled 7-point Laplacian problem (Section 4.3.1). The legend from the
first plot applies to all four plots.
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Figure 11. Tower plots for the scaled 7-point Laplacian problem (Section 4.3.1). The towers shown are
for the 512 processor trials. Notice the scale is not the same in each plot.
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Figure 12. Partition size data for the scaled 3D unstructured Laplacian problem (Section 4.3.2) and the
scaled 3D anisotropic problem (Section 4.3.3).

especially in the operator complexity plot. Normalized setup times, convergence factors, operator
complexities, and work per digit of accuracy are reported in Figure 13.

As in the structured problem, the setup times for the RS-like algorithms are observed to be
growing as the problem size grows. A 20 time increase in setup time from one processor to 512
processors is observed, and as before, the PMIS-like algorithm setup times are growing, but at a
much slower rate than the RS-like algorithms.

The convergence factor plot looks similar to the convergence factors from the previous test
with one major difference. Both CLJP and PMIS perform better on unstructured meshes than on
structured meshes. In the previous problem, several groups of lines were present in the plot. Now
two groups appear in the plot: one for the RS-like algorithms and one for the PMIS-like algorithms,
meaning CLJP and PMIS both perform as well as algorithms related to them. Finally, notice the
RS-like algorithms converged more slowly for this unstructured problem than the structured prob-
lem from before. In all cases, the convergence factors increased as the problem size
increased.

The operator complexity results demonstrate the PMIS-like methods produce grid hierarchies
with extremely low operator complexities which do not grow as the problem size grows. There
is little variation in the operator complexities produced by each of those algorithms, and little
variation is apparent in the tower plots in Figure 14. The RS-like algorithms, on the other hand,
produce operator complexities that are both much larger and increase as the problem size grows.
For this problem, Falgout coarsening produces operator complexities consistently and significantly
larger than those produced by CLJP and CLJP-c.

The work per digit of accuracy results show CLJP to be the cheapest method available for
this problem, once again highlighting the large difference in CLJP performance on structured
versus unstructured grids. PMIS-c2 is the most expensive method, but is comparable to the other
PMIS-like algorithms.
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Figure 13. Results for the scaled 3D unstructured Laplacian problem (Section 4.3.2). The legend from
the first plot applies to all four plots. The final data point for the Falgout line was removed from the final

two plots because the operator complexity data were corrupted by overflow.
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Figure 14. Tower plots for the scaled 3D unstructured Laplacian problem (Section 4.3.2). The towers
shown are for the 256 processor trials.
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Figure 15. Results for the 3D unstructured anisotropic problem (Section 4.3.3). The legend from the first
plot applies to all four plots.
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Figure 16. Tower plots for the 3D unstructured anisotropic problem (Section 4.3.3). The towers shown
are for the 256 processor trials.
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Figure 17. The problem domain for the 3D Laplacian holes test problem (Section 4.3.4). The right image
is a close-up view of one of the holes.

4.3.3. 3D unstructured anisotropic problem. This test is on a 3D unstructured anisotropic problem
defined as follows:

−(0.01uxx + uyy + 0.0001uzz)= 0 on � (�= (0, 1)3)

u = 0 on ��
(8)

The problem sizes are identical to the sizes in the 3D unstructured Laplacian. On one processor,
the problem has approximately 211 000 unknowns. On 512 processors, the problem has about 100
million unknowns, which gives an average of 198 000 unknowns per processor. Figure 15 plots
the observed normalized setup times, convergence factors, operator complexities, and work per
digit of accuracy for this experiment. The effects of the non-uniform partitioning is most clear in
this problem. Compare the pattern of growth in setup time in Figure 15 with the partition data
in Figure 12. The fluctuations in work per processor appear to affect both the setup time and the
operator complexity.

The normalized setup time results for this problem are similar to the results from the 3D
unstructured Laplacian setup time data. The order of the algorithms by how quickly their cost
grows is very close to the order from the previous problem. Though, the rate of growth is lower in
this problem compared to the isotropic problem. The convergence factors in this problem are higher
than in any other problems tested—in each case, the convergence factors approach one. The operator
complexities for the anisotropic problem are similar, but slightly smaller than the complexities
observed in the isotropic problem. The tower plots in Figure 16 show the complexities on each level
in more detail. Finally, the work needed to get one more digit of accuracy in the residual is large
compared with all other problems examined. This is due to the very slow convergence observed
for this problem. The CR-based methods produce AMG solvers as slow to converge as any of the
other algorithms. Recall theory states that these CR methods select coarse grids that are adequate
to represent the algebraically smooth error. Furthermore, we know there is a prolongation operator
which makes a multigrid method that converges quickly. From the slow convergence, we know the
prolongation operator is not performing nearly as well as the theory-based optimal prolongation
operator, which implies it is possible to construct a prolongation operator leading to a fast multigrid
method on this problem.
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Figure 18. Results for the 3D unstructured Laplacian problem on the holes geometry (Section 4.3.4). The
legend from the first plot applies to all four plots. The final data points have been removed from several
of the lines on the operator complexity and work per digit of accuracy plots due to overflow errors in

computing the operator complexity for those algorithms.
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Figure 19. Tower plots for the 3D unstructured Laplacian problem on the holes geometry (Section 4.3.4).
The towers shown are for the 64 processor trials.
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4.3.4. 3D Laplacian holes. The purpose of this experiment is to examine the effect, if any, on
the performance of the coarsening algorithms on a problem with a more complicated geometry.
In this instance, a thin slab with many holes drilled completely through the material is used as the
problem geometry. With this problem, many more boundaries have been created. Figure 17 shows
a mesh of the geometry used in this problem.

The problem solved on this domain is the Laplacian:

−�u = 0 on �

u = 0 on ��
(9)

On one processor, the problem has approximately 380 000 unknowns. On 512 processors, the
problem has about 167 million unknowns. This gives an average of 327 000 unknowns per processor.
Figure 18 plots the normalized setup time, convergence factor, operator complexity, and work per
digit of accuracy data from these tests. Below, we compare the results obtained to the data from
the 3D unstructured Laplacian on the unit cube (Section 4.3.2). The normalized setup time results
are similar for both tests, except the growth in time is much less in this problem than in the former
case. The RS-like methods experience the greatest increase in setup times.

The convergence factors for this problem are initially lower for each coarsening algorithm than
in the unstructured Laplacian problem. On the largest problems, the convergence factors are nearly
the same as in the previous test. This is a result of the large increase of the interior nodes relative to
the boundary nodes, which makes the two problems more similar for large numbers of unknowns.

The operator complexities in the two problems are very similar, as well. In this problem, the
operator complexities are lower, but the rates of growth and the performance of the algorithms
relative to one another are similar. The tower plots in Figure 19 show significant differences
compared to the tower plots for the problem in Section 4.3.2.

With the complexities and convergence factors behaving similarly between the two problems,
the work per digit of accuracy results are also similar. A clear difference is that this problem is
cheaper to solve than the unstructured Laplacian on the unit cube, due to slightly lower convergence
factors and lower operator complexities. Also, the CR methods both perform differently than before,
compared with their respective groups.

Between this problem and the unstructured Laplacian on the unit cube, the most noticeable
difference is that the problem with holes is cheaper to solve and has less growth in setup time.
Overall, creating a larger ‘surface area’ makes the job of the coarsening algorithms cheaper to
complete, but the general characteristics of the solver’s performance do not change significantly.

5. CONCLUSIONS

In this paper, we introduced two new parallel coarse-grid selection algorithms: PMIS-c1 and
PMIS-c2. The concept behind both algorithms developed from the pre-colouring technique used in
the CLJP-c algorithm [10]. These algorithms join a growing set of parallel coarsening algorithms,
many of which are tested in this paper. In addition to PMIS-c1 and PMIS-c2, two parallel compatible
relaxation algorithms were introduced.

We introduced new coarse-grid hierarchy visualization tools, which help highlight differences
between the algorithms. The tower plot (Figure 3) is used to see the level-by-level contribution to
the grid and operator complexities.
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A series of experiments were used to examine the behaviour of the coarsening algorithms
under different conditions. Run time, convergence factors, operator complexities, and work per
digit of accuracy were reported for all algorithms in every test, revealing unique behaviours. In
general, PMIS-like algorithms always produce grid hierarchies with lower operator complexities,
and RS-like algorithms usually yield methods with faster convergence factors.

In some tests, such as the anisotropic diffusion problem (Section 4.3.3), AMG convergence
was prohibitively slow. From recently developed theory [18], it is known that better prolongation
operators exist for each of the problems where parallel CR was used. Since AMG was slow for
some test problems, the restriction and prolongation operators must not be effectively transferring
information from one level to the next. Recent work has been done on approximations to the ideal
interpolation operator [16]. That work, however, has not focused on producing an effective and
efficient parallel prolongation construction algorithm. This is a goal for our future work.
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