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Abstract. Least-squares finite element methods (LSFEMs) for scalar linear partial differential
equations (PDEs) of hyperbolic type are studied. The space of admissible boundary data is identified
precisely, and a trace theorem and a Poincaré inequality are formulated. The PDE is restated as the
minimization of a least-squares functional, and the well-posedness of the associated weak formulation
is proved. Finite element convergence is proved for conforming and nonconforming (discontinuous)
LSFEMs that are similar to previously proposed methods but for which no rigorous convergence
proofs have been given in the literature. Convergence properties and solution quality for discon-
tinuous solutions are investigated in detail for finite elements of increasing polynomial degree on
triangular and quadrilateral meshes and for the general case that the discontinuity is not aligned
with the computational mesh. Our numerical studies found that higher-order elements yield slightly
better convergence properties when measured in terms of the number of degrees of freedom. Stan-
dard algebraic multigrid methods that are known to be optimal for large classes of elliptic PDEs are
applied without modifications to the linear systems that result from the hyperbolic LSFEM formu-
lations. They are found to yield complexity that grows only slowly relative to the size of the linear
systems.
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1. Introduction. We consider scalar linear partial differential equations (PDEs)
of hyperbolic type that are of the form

b · ∇p = f in Ω,(1.1)

p = g on ΓI ,(1.2)

with b(x) a flow field on Ω ⊂ R
d, and

ΓI := {x ∈ ∂Ω: n(x) · b(x) < 0},(1.3)

the inflow part of the boundary of domain Ω. Here, n(x) is the outward unit normal
of ∂Ω.

Equations of this type, often called transport equations or linear advection equa-
tions, arise in many applications in science and engineering, e.g., in fluid dynamics
[22] and in neutron transport [23]. For decades there has been a drive to find in-
creasingly accurate and efficient numerical solution methods for equations of the form
(1.1)–(1.2). Not only do these equations have wide applications by themselves, but
they also form a prototype equation for more general equations of hyperbolic type,
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e.g., systems of nonlinear conservation laws [22] or transport equations in phase space
[23]. Successful numerical methods for (1.1)–(1.2) can often be used as building blocks
for the numerical solution of more complicated hyperbolic PDEs [22].

Linear hyperbolic PDEs allow for discontinuous solutions when the boundary
data is discontinuous. It is difficult to develop numerical methods that offer both
high-order accurate results in regions of smooth solution and sharp discontinuity res-
olution, while avoiding spurious oscillations at discontinuities [3]. For wide classes of
elliptic PDEs, optimal multilevel iterative solution algorithms have been developed
for the discrete linear algebraic systems that require only O(n) operations, where n
is the number of unknowns (see, e.g., [29, 10] and references therein). For hyper-
bolic and mixed elliptic-hyperbolic PDEs, attempts at finding such optimal iterative
solvers have been scarcely successful, even though some promising results have been
reported [30].

The general philosophy behind the approach pursued in this paper is to combine
adaptive least-squares (LS) finite element discretizations on space-time domains with
global implicit solves using optimal iterative methods, in particular algebraic multigrid
(AMG). Our goal is to explore whether such an approach can be competitive with
present-day state-of-the-art techniques, e.g., approaches that rely on explicit time-
marching using discontinuous Galerkin (DG) schemes. Clearly, there are important
difficulties that have to be overcome. Optimal O(n) solvers are still an active research
topic for general hyperbolic and mixed elliptic-hyperbolic PDEs. A strong motivation
for our choice of LS discretizations is that optimal solvers are more easily designed for
the symmetric positive-definite (SPD) matrices that result from LS discretizations.
We intend to remedy the extra smearing at discontinuities that is introduced by LS
methods, as compared with other approaches, by adaptive refinement based on the
natural, sharp error estimator provided by the LS functional; see Remark 3.7. The
research question we seek to answer is whether the resulting adaptive least-squares
finite element methods (LSFEMs), combined with optimal solvers, can be competitive
with other approaches. The scope of the present paper encompasses the theoretical
aspects of the LSFEM for continuous and for discontinuous elements, as well as a
numerical study of AMG performance. Work on the combination of these techniques
with adaptive refinement is the subject of a forthcoming paper. Application of these
methods to linear hyperbolic systems and general systems of nonlinear conservation
laws is also work in progress.

FEMs for (1.1)–(1.2) have been considered before, for example in Galerkin,
streamline-upwind Petrov–Galerkin (SUPG) and residual distribution frameworks
[20, 15, 1]. LS terms have been added to Galerkin methods for stabilization (see
e.g. [17, 2]), and the SUPG method can be written as a linear combination of a
Galerkin method and a LS term [15]. A comparison of Galerkin, SUPG, and LSFEM
for convection problems can be found in [5]. In the present paper, we investigate
pure LS formulations for (1.1)–(1.2). While LSFEMs have been investigated exten-
sively for equations of elliptic type [11, 12, 19, 7], their use for hyperbolic PDEs
has been initiated only recently [13, 6, 17]. LSFEMs are inherently attractive vari-
ational formulations for which well-posedness of the resulting discrete problems can
be proved rigorously. LS finite element formulations lead to SPD linear systems. An-
other advantage of the LSFEM approach is that higher-order accurate methods can
easily be constructed which are linear (for linear or linearized PDEs). As shown in
this paper, these linear higher-order discretizations do not exhibit excessive spurious
oscillations at discontinuities. This is in contrast to most other methods, e.g., DG
methods, where nonlinear limiter functions have to be employed in order to assure
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monotonicity [14]. Linear discretizations are better suited for iterative solution in
global implicit solves. In the case of elliptic PDEs, LSFEMs have been used suc-
cessfully as a starting point for designing multilevel solution techniques with provably
optimal behavior [11, 12, 19, 7]. LS methods naturally provide a sharp error estimator
[4], which can be used advantageously to design adaptive refinement techniques using
composite grids in a multilevel context [25].

Discontinuous FEMs for hyperbolic PDEs, in particular, DG methods [21], have
enjoyed substantial interest in recent years [14, 17]. They have proved to be effec-
tive and versatile high-order methods for nonlinear hyperbolic systems with natural
conservation properties and good monotonicity properties near discontinuities due to
upwinding. They can handle nonmatching grids and nonuniform polynomial approx-
imations, orthogonal bases can be chosen that lead to diagonal mass matrices, and
they are easily parallelized by using block-type preconditioners [14, 17].

The contributions of the present paper are threefold. First, we establish finite ele-
ment convergence of the continuous and discontinuous LSFEM formulations proposed
in this paper. We start out by presenting a trace theorem that precisely identifies the
space of admissible boundary data. Our continuous LSFEM is a modification of the
LSFEM studied by Bochev and Choi [6] for a problem similar to (1.1)–(1.2), in which
(1.1) is replaced by

b · ∇p + c p = f in Ω.(1.4)

Their convergence proof for this modified problem does not carry over to our LSFEM
formulation for (1.1)–(1.2). Our discontinuous LSFEM (DLSFEM) is a slight modifi-
cation of the method proposed by Houston, Jensen, and Süli in [17], which does not
provide a rigorous finite element convergence proof for this method.

Second, we study the order of convergence of our LSFEM and DLSFEM for dis-
continuous flow solutions in the general case that the discontinuity is not aligned with
the computational mesh. For extensive studies of solution quality and convergence
orders for continuous flows, we refer the reader to [5, 6, 17]. Bochev and Choi [5]
show in numerical LSFEM experiments that no substantial spurious oscillations arise
near discontinuities in the solution. This finding is confirmed in Houston, Jensen, and
Süli [17] for DLSFEMs. Both papers show that for continuous flows the accuracy of
(D)LSFEMs is comparable to (D)G and (D)SUPG results (especially for higher-order
elements and fine grids), while for discontinuous solutions the smearing is substantially
larger in the (D)LSFEM results.

In [5, 17], the order of convergence for discontinuous flow solutions is not inves-
tigated. In the present paper we study numerical convergence of discontinuous flow
solutions for elements of increasing polynomial degree on triangular and quadrilat-
eral meshes. Our numerical study of discontinuous flow simulation with LSFEMs
and DLSFEMs yields interesting results. The smearing of the discontinuity improves,
while the overshoots and oscillations remain contained as we increase the order of the
polynomial degree of the finite elements. We find an increase in the convergence rate
as the polynomial degree increases. We observe similar behavior in the L2 norm and
functional norm for LSFEMs and DLSFEMs and for different scalar flow fields.

Third, we study the performance of a standard AMG method [27], which is known
to be optimal for large classes of elliptic PDEs. We apply AMG to a conforming
LSFEM discretization of the hyperbolic PDE, and we discuss strategies that may
overcome some difficulties encountered. The matrices resulting from (D)LSFEMs are
SPD, which often is advantageous for the convergence of iterative methods. In par-
ticular, the Ruge–Stüben AMG algorithm [27] we use relies on interpolation and
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coarsening heuristics that assume SPD matrices. In this paper we treat simple model
problems for which there is a time-like direction that can also be exploited by explicit
marching schemes. For optimal global implicit solvers, the number of operations per
grid point is bounded, which means that even for this kind of time-like problem they
may be able to compete with explicit marching methods, for which the number of
operations per grid point is bounded as well. This may especially be true when adap-
tive refinement and derefinement is taken into account. Moreover, explicit marching
schemes are limited by time step constraints, which can be severe on adaptively re-
fined grids. Also, efficient parallel implementations have been developed for AMG
solvers [16]. Global implicit solves may be especially competitive for the simulation of
problems for which there is no preferred marching direction, e.g., steady flows with ro-
tation or flows of mixed elliptic-hyperbolic type. In this paper we make an important
first step by investigating whether optimal AMG solvers can be constructed for simple
time-like problems. Optimal global solvers for flows without preferred directions will
be treated in a forthcoming work.

This paper is organized as follows. In the next section, we examine the space
of admissible boundary data (g in (1.2)) and establish a trace theorem and Poincaré
inequality. This leads, in section 3, to the formulation of a minimization principle of
a LS functional with boundary term, from which a weak form is derived. Coercivity
and continuity are proved and a priori estimates are obtained. Well-posedness is also
proved for a slightly modified functional that is suitable for computations. In section 4,
we describe conforming FEMs that are obtained when the LS functional is minimized
over finite dimensional subspaces and error bounds for discontinuous solutions are
discussed. In section 5, a DLSFEM is obtained by minimizing a modified functional
that incorporates jump terms over a discontinuous finite dimensional space. Section 6
presents a numerical study of the convergence behavior of LSFEMs and DLSFEMs
for discontinuous solutions and for elements of increasing polynomial degree on trian-
gular and quadrilateral meshes. The sharpness and monotonicity of the approximate
solution in the neighborhood of discontinuities is investigated. In section 7, we study
the performance of a standard AMG method [27], which is known to be optimal for
large classes of elliptic PDEs. We apply AMG to a conforming LSFEM discretization
of the hyperbolic PDE. Conclusions are formulated in section 8.

2. Admissible boundary data. In this section, we examine the space of ad-
missible boundary data for (1.1)–(1.2) and formulate a Poincaré inequality and a trace
theorem.

Given Ω in (1.1)–(1.2) ⊂ R
d, let b(x) = (b1(x), . . . , bd(x)) be a vector field on Ω.

We make the following assumptions on b: for any x̂ ∈ ΓI , let x(r) = (x1(r), . . . , xd(r))
be a streamline of b, that is, the solution of

dxi(r)

dr
= bi(x(r)), i = 1, . . . , d,(2.1)

with initial condition x(r0) = x̂. In this paper, we limit the discussion to the case
where d = 2, although extensions to higher dimensions can be established [24]. Let
β = |b|, and assume there exist constants β0 and β1 such that 0 < β0 ≤ β ≤ β1 < ∞
on Ω. We assume that there exists a transformation to a coordinate system (r, s) such
that the streamlines are lined up with the r coordinate direction and the Jacobian,
J , of the transformation is bounded. This implies that no two streamlines intersect
and that Ω is the collection of all such streamlines. Furthermore, we assume that
every streamline connects ΓI and ΓO with a finite length �(x̂), where x̂ ∈ ΓI . We
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require partition T h of Ω to be an admissible, quasi-uniform tessellation (see [8, 9]).
We assume the same for T̂ h of Ω̂, the image of T h under the transformation. For our
numerical tests, we use uniform partitions of triangles and quadrilaterals.

We define the boundary norm

‖g‖2
B�

:=

∫
ΓI

�(x(σ))|b̂ · n|g2dσ,(2.2)

where b̂ is the unit vector in the direction b and �(x) is the length of the streamline
of b connecting ΓI to the outflow boundary ΓO. Define the space B� to be the closure
of C∞(ΓI) in the B�-norm (2.2). Assuming f ∈ L2(Ω) in (1.1) and using standard
notation for L2 norms, we define the natural norm (often called the graph norm) as

‖p‖2
V�

:= ‖p‖2
0,Ω + ‖b · ∇p‖2

0,Ω(2.3)

and the solution space as

V� := {p ∈ L2(Ω) : ‖p‖V�
< ∞}.(2.4)

Remark 2.1. Depending on b and Ω, B� can be larger than L2(ΓI).
Lemma 2.2 (trace inequality). If p ∈ V� and p = g on ΓI , then there exists a

constant C, depending on β0 and the transformation Jacobian J , such that

‖g‖2
B�

≤ C
(
‖p‖2

0,Ω + ‖b · ∇p‖2
0,Ω

)
.(2.5)

Proof. We first prove (2.5), assuming b is constant. Let b̄ = 1
|b|b, the unit vector

in the direction of b. For every x̂ ∈ ΓI , let

�(x̂) = |s1(x̂)|,(2.6)

where (0, s1) is the largest interval for which x̂ + sb̂ ∈ Ω for all s ∈ (0, s1). Here,

b̂ = b̄(x̂) generates the unique streamline intersecting the point x̂. Let dσ be the
differential arc length along ΓI and n the outward unit normal on ΓI . Then, for any
p ∈ V�, we have ∫∫

Ω

p(x) dA =

∫
ΓI

∫ s1(x̂)

0

p(x̂ + sb̂) ds |b̄ · n| dσ.(2.7)

For any s ∈ [0, s1(x̂)], we have

p2(x̂ + sb̂) = p2(x̂) +

∫ s

0

b̄ · ∇p2(x̂ + tb̂) dt,(2.8)

so

p2(x̂) ≤ p2(x̂ + sb̂) +

∫ s1(x̂)

0

∣∣∣b̄ · ∇p2(x̂ + tb̂)
∣∣∣ dt.(2.9)

Integrating over (0, s1(x̂)) with length element dt and using the relation �(x̂) =∫ s1(x̂)

0
dt, we thus obtain

�(x̂)p2(x̂) ≤
∫ s1(x̂)

0

p2(x̂ + tb̂) dt + �(x̂)

∫ s1(x̂)

0

∣∣∣b̄ · ∇p2(x̂ + tb̂)
∣∣∣ dt.(2.10)
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Integrating along ΓI with length element |b̄ · n|dσ yields∫
ΓI

�(x̂)p2(x̂)|b̄ · n|dσ ≤
∫

ΓI

∫ s1(x̂)

0

p2(x̂ + tb̂) dt |b̄ · n| dσ

+

∫
ΓI

�(x̂)

∫ s1(x̂)

0

∣∣∣b̄ · ∇p2(x̂ + tb̂)
∣∣∣ dt |b̄ · n| dσ.(2.11)

Let D = diam(Ω). Applying the Cauchy–Schwarz and ε inequalities, we thus have

‖p‖2
B�

≤ ‖p‖2
0,Ω + 2D‖(b̄ · ∇)p‖0,Ω‖p‖0,Ω

≤ ‖p‖2
0,Ω + D2‖p‖2

0,Ω + ‖(b̄ · ∇)p‖2
0,Ω(2.12)

≤ C(‖p‖2
0,Ω + ‖(b · ∇)p‖2

0,Ω).

For the general case of variable b(x), the bound (2.5) follows using the assumed
transformation with bounded Jacobian and the fact that p = g on the inflow bound-
ary ΓI .

Remark 2.3. The constants C which appear in Lemma 2.2 and throughout the
rest of the paper are generic and may change value with each occurence but depend
only on β0, ΓI , and Ω.

Lemma 2.4 (Poincaré inequality). Let D = diam(Ω). There exists a constant C,
depending on β0 and the transformation Jacobian J , such that

‖p‖2
0,Ω ≤ C(‖p‖2

B�
+ D2‖b · ∇p‖2

0,Ω).(2.13)

Proof. As in the preceding proof, we derive this Poincaré inequality for constant
b and rely on the transformation with bounded Jacobian to achieve the general result.
Let b̄ = 1

|b|b, and let 0 and s1(x) be as in the proof of Lemma 2.2. For every x̂ ∈ ΓI ,

let �(x̂) = |s1(x̂)|. Also, let b̂ = b̄(x̂) generate the unique streamline intersecting the
point x̂. Notice that for s ∈ [0, s1(x)], we have

p(x̂ + sb̂) = p(x̂) +

∫ s

0

b̄ · ∇p(x̂ + tb̂) dt.(2.14)

Squaring both sides and using the ε and Jensen inequalities yields

|p(x̂ + sb̂)|2 ≤ 2

⎛
⎝|p(x̂)|2 +

(∫ s1(x̂)

0

∣∣∣b̄ · ∇p(x̂ + tb̂)
∣∣∣ dt
)2
⎞
⎠

≤ 2

(
|p(x̂)|2 + �(x̂)

∫ s1(x̂)

0

∣∣∣b̄ · ∇p(x̂ + tb̂)
∣∣∣2 dt

)
.(2.15)

Integrating over (0, s1(x̂)) with dt and using the relation �(x̂) =
∫ s1(x̂)

0
dt we thus

obtain ∫ s1(x̂)

0

∣∣∣p(x̂ + tb̂)
∣∣∣2 dt ≤ 2

(
�(x̂)|p(x̂)|2 + �(x̂)2

∫ s1(x̂)

0

∣∣∣b̄ · ∇p(x̂ + tb̂)
∣∣∣2 dt

)
.(2.16)

Integrating along ΓI with |b̄ · n|dσ and using (2.7) then yields

‖p‖2
0,Ω ≤ 2

(∫
ΓI

�(x̂)p2(x̂)|b̄ · n|dσ + D2‖b̄ · ∇p‖2
0,Ω

)
≤ C

(
‖p‖2

B�
+ D2‖b · ∇p‖2

0,Ω

)
.(2.17)
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The following trace theorem establishes B� as the space of admissible functions
for inflow boundary conditions when the right-hand side, f , in (1.1) is in L2(Ω).

Theorem 2.5 (trace theorem). For p ∈ V� let γ(p) represent the trace of p on
ΓI . Then the map γ : V� → B� is a bounded surjection.

Proof. For any g ∈ B�, we can construct a flat function p such that p = g on
ΓI and b · ∇p = 0 in Ω. From the Poincaré inequality (2.13), it follows that p ∈ V�.
Together with the trace inequality, this yields the trace theorem.

Remark 2.6. Our trace theorem is similar to the theorem proved in [24] for
the more general case of the neutron transport equation in phase space. A different
characterization of the trace space is given in [18] for the general class of Friedrichs
systems, of which (1.1)–(1.2) is a special case. The trace operator defined in [18] is
not surjective. In this sense, in contrast to Theorem 2.5, the trace space identified in
[18] does not provide a sharp trace theorem.

3. LS weak form. In this section, we formulate a LS minimization principle,
derive the weak form of the minimization, and prove existence of a unique p ∈ V�

solving the weak problem. We use the tools developed in the previous section and
coercivity and continuity with respect to the natural norm (2.3) to arrive at these
results.

We define the LS functional

G�(p; f, g) := ‖b · ∇p− f‖2
0,Ω + ‖p− g‖2

B�
.(3.1)

First we note that if p satisfies (1.1)–(1.2), then

p = arg min
p∈V�

G�(p; f, g).

The bilinear form associated with G� (3.1) is

F�(p, q) := 〈b · ∇p, b · ∇q〉0,Ω + 〈p, q〉B�
,

with standard notation for scalar products associated with norms. The weak form of
the minimization is as follows.

Problem 3.1. Find p ∈ V� s.t.

F�(p, q) = F (q) ∀ q ∈ V�,(3.2)

where

F (q) = 〈f, b · ∇q〉0,Ω + 〈g, q〉B�
.

Note that F (q) ∈ V ′
� , the dual space of V�.

The following establishes coercivity and continuity in the V� norm of the bilinear
form, F�(·, ·), defined by (3.2). With these properties the bilinear form, F�(·, ·), is
frequently referred to as V�-elliptic [8].

Theorem 3.2 (coercivity and continuity, existence and uniqueness). There exist
constants c0 and c1 s.t. for every p, q ∈ V�

c0‖p‖2
V�

≤ F�(p, p),(3.3)

F�(p, q) ≤ c1‖p‖V�
‖q‖V�

.(3.4)

Furthermore, for every f ∈ L2(Ω), g ∈ B�, there exists a unique p ∈ V� solving the
weak problem (3.2). Moreover, p also satisfies (1.1)–(1.2).
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Proof. Using the definition of ‖p‖V�
from (2.3) and Poincaré inequality (2.13)

yields

‖p‖2
V�

≤ C(‖p‖2
B�

+ D2‖b · ∇p‖2
0,Ω) + ‖b · ∇p‖2

0,Ω

≤ C(‖p‖2
B�

+ ‖b · ∇p‖2
0,Ω)(3.5)

= CF�(p, p),

which yields (3.3). Similarly, applying the Cauchy–Schwarz inequality followed by
trace inequality (2.5) and Cauchy–Schwarz again, we have

(3.6)

F�(p, q)≤‖b · ∇p‖0,Ω‖b · ∇q‖0,Ω+‖p‖B�
‖q‖B�

≤‖b · ∇p‖0,Ω‖b · ∇q‖0,Ω+C
(
‖p‖2

0,Ω+‖b · ∇p‖2
0,Ω

) 1
2 C
(
‖q‖2

0,Ω+‖b · ∇q‖2
0,Ω

) 1
2

≤C‖p‖V�
‖q‖V�

,

which confirms (3.4).
The trace theorem and the Cauchy–Schwarz inequality imply that, for every f ∈

L2(Ω) and g ∈ B�,

F (q) := 〈f, b · ∇q〉0,Ω + 〈g, q〉B�
(3.7)

is a bounded linear functional on V�. Thus, we can embed the pair (f, g) ∈ L2(Ω)×B�

into V ′
� , the dual space of V�.

By the Lax–Milgram theorem [8], for all (f, g) ∈ L2(Ω)×B�, there exists a unique
p ∈ V� that satisfies the weak problem (3.2). We now show that p also solves the strong
problem (1.1)–(1.2). It suffices to show that the embedding of L2(Ω) ×B� into V ′

� is
injective.

To do this, pick (f, g) ∈ L2(Ω) ×B� and suppose

F (q) = 〈f, b · ∇q〉0,Ω + 〈g, q〉B�
= 0(3.8)

for every q ∈ V�. Thus, if f = 0 and g = 0, the embedding is injective.
We first show that for (f, g) ∈ L2(Ω) ×B�, there exists ps ∈ V� such that

Lps = (f, g),(3.9)

where L : V� → L2(Ω) ×B� is defined by

b · ∇ps = f in Ω,(3.10a)

ps = g on ΓI .(3.10b)

That is, we must show that L is surjective. Construct ps as follows. Let p1 be a flat
function such that

b · ∇p1 = 0 in Ω,(3.11a)

p1 = g on ΓI .(3.11b)

For x ∈ Ω, let x̂ be the point on ΓI with the same streamline as x. Let β(x) = |b(x̂)|
and b̄ = b(x)

β(x) . Let p2 be given by

p2(x) =

∫ x

x̂

f(x̂ + sb̄(x̂))

β(x̂ + sb̄(x̂))
ds.(3.12)
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Then, p2 satisfies

b · ∇p2 = f in Ω,(3.13a)

p2 = 0 on ΓI .(3.13b)

Writing ps = p1 + p2, we see that ps satisfies (3.10a)–(3.10b). Thus, L is a surjection.
Now since F (q) = 0 and ps ∈ V� satisfies (3.10a)–(3.10b), we have

〈f, f〉0,Ω + 〈g, g〉B�
= 0.(3.14)

Thus, f = 0 and g = 0. It follows that the embedding is injective. This completes
the proof.

The following a priori estimate is a direct consequence of Theorem 3.2. These
bounds are often referred to as stability estimates.

Corollary 3.3 (a priori estimate). There exist constants c3 and c4 such that if
p satisfies (3.2), then

c3‖p‖V�
≤ (‖f‖0,Ω + ‖g‖B�

) ≤ c4‖p‖V�
.(3.15)

Proof. The proof follows directly from Theorem 3.2.
For certain problems, �(x) in (2.2) may not be easily computed, making the LS

formulation intractable. To avoid this difficulty we modify the boundary norm in the
functional to be

‖g‖2
B :=

∫
ΓI

|b̂ · n|g2ds,(3.16)

where b̂ is the unit normal in the direction of b. Let B = {g : ‖g‖B < ∞}, and notice
that B�∩L∞(ΓI) ⊆ B. If Ω is such that ΓI and ΓO remain a bounded distance apart,
then this norm is equivalent to the original norm, ‖ · ‖B�

. If ΓI and ΓO touch, then
there are functions in B� that are not in B. For bounded functions, the B� norm and
B norm are equivalent. That is, if we restrict our attention to bounded boundary
data, then nothing is lost in modifying the functional.

In general, the trace inequality (2.5) does not hold with B� replaced by B, but
the Poincaré inequality (2.13) does. To retain the inequalities and ellipticity results
obtained above, we must include the boundary term in the definition of the norm.
Define the norm

‖p‖2
V := ‖p‖2

0,Ω + ‖b · ∇p‖2
0,Ω + ‖p‖2

B

and the space

V := {p ∈ L2(Ω) : ‖p‖V < ∞}.

The modified functional is then defined as follows: let f ∈ L2(Ω), let g ∈ B, and
define

G(p; f, g) := ‖b · ∇p− f‖2
0,Ω + ‖p− g‖2

B .(3.17)

If p satisfies (1.1)–(1.2), then

p = arg min
p∈V

G(p; f, g).
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The associated bilinear form is

F(p, q) := 〈b · ∇p, b · ∇q〉0,Ω + 〈p, q〉B ,(3.18)

and the weak form of the minimization is as follows.
Problem 3.4. Find p ∈ V s.t.

F(p, q) = F (q) ∀ q ∈ V,(3.19)

where

F (q) = 〈f, b · ∇q〉0,Ω + 〈g, q〉B .(3.20)

With this change, we obtain existence and uniqueness and an a priori estimate as
before.

Theorem 3.5 (coercivity and continuity, existence and uniqueness). There exist
constants c0 and c1 s.t. for every p, q ∈ V

c0‖p‖2
V ≤ F(p, p),

F(p, q) ≤ c1‖p‖V ‖q‖V .

Furthermore, for f ∈ L2 and g ∈ B, there exists a unique p ∈ V solving Problem 3.4.
Corollary 3.6 (a priori estimates). There exist constants c3 and c4 such that

if p satisfies (3.19), then

c3‖p‖V ≤ (‖f‖0,Ω + ‖g‖B) ≤ c4‖p‖V .(3.21)

Remark 3.7. The G norm, defined as

‖ph‖2
G := G(ph, 0, 0),(3.22)

is a natural and computable a posteriori error estimator. To see this, let e = ph − p,
where p solves (1.1)–(1.2). Then

‖e‖G = G(ph − p; 0, 0)

= G(ph; f, g).

LS methods offer the advantage of a convenient a posteriori error indicator. Sharpness
is addressed in [4, 7].

4. Conforming finite elements. In this section we discuss the discrete form of
the minimization. We consider an admissible, quasi-uniform tessellation T h of Ω (cf.
[8]). For a conforming method, we choose the discrete space V h ⊂ V . For example,
in our numerical tests we use uniform partitions of triangles and quadrilaterals and
implement piecewise polynomials with continuity imposed across element edges. Let

V h := Mh
k ∩ C0(Ω),(4.1)

where

Mh
k := {p : p ∈ Pk(τ)∀ τ ∈ T h}.(4.2)

Here, Pk(τ) is the space of polynomials of total degree ≤ k when τ is a triangle and
tensor product polynomials of degree ≤ k in each coordinate direction when τ is a
quadrilateral. We now pose the conforming discrete weak form of the minimization.
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Problem 4.1. Find ph ∈ V h s.t.

F(ph, qh) = F (qh) ∀qh ∈ V h,(4.3)

where F is defined by (3.18) and F is defined by (3.20).
By Ceá’s lemma, we have

‖p− ph‖V ≤ c0
c1

inf
p̂h∈V h

‖p− p̂h‖V ,

where c1 and c0 are the constants from the continuity and coercivity bounds.
In this paper we are interested in discontinuous solutions, p. Suppose g is discon-

tinuous but piecewise smooth. That is, g ∈ H
1
2−ε(ΓI). Then, for smooth f , p has the

same smoothness, p ∈ H
1
2−ε(Ω). In this case it can be shown that, for grid-aligned

flow,

‖p− ph‖V ≤ Ch
1
2−ε‖p‖ 1

2−ε,

where C is some grid-independent constant. The exact bound for the non-grid-aligned
case remains an open question. Still, the theoretical limit for the grid-aligned case and
other results offer some insight. Scott and Zhang describe in [28] an interpolation Ĩh

such that ‖p− Ĩhp‖0,Ω ≤ Ch
1
2−ε‖p‖ 1

2−ε. If we assume that 1
2 is the optimal L2-rate

of convergence for interpolation, then we expect that the L2-rate of convergence for
the FEM will be no better than 1

2 . Note that the Poincaré inequality (2.13) yields
‖p − ph‖0,Ω ≤ C‖p − ph‖V . Thus, the V norm rate of convergence cannot be faster
than the L2-norm rate. In section 6, we discuss our numerical findings regarding
error estimates and present results consistent with the error bounds proposed. We
find that, as we increase the order of the elements, the convergence rate increases and
is bounded by 1

2 in both the L2 norm and G norm. For an extensive analysis of error
bounds and convergence rates for smooth solutions see [5, 6].

5. Nonconforming finite elements. In this section we describe the use of dis-
continuous elements motivated by the case when the flow is grid-aligned. Consider an
example when the characteristics follow the grid and the boundary data is prescribed
such that the discontinuity in the solution follows the element edges aligned with the
characteristics. In (1.1)–(1.2) let f = 0 and prescribe piecewise constant boundary
data with discontinuities only at nodes. If we use the discontinuous space Mh

k defined
by (4.2), the solution to (1.1)–(1.2) is in this space. However, the grids we consider
are generally not aligned with the flow field b(x), and boundary data is often more
general than in this special case. If attention is given to the behavior of the jumps
with respect to the grid, a well-posed formulation of the problem in a discontinuous
LS setting is attainable. To this end, let T h =

⋃
j τj be a tessellation of Ω, and let

Sh := Mh
k be defined as in (4.2). Let Γi,j := τi ∩ τj denote the edge common to

elements τi and τj . Since Sh ⊂ V , we call Sh a nonconforming space [8].
For ph ∈ Sh + V define the element edge functional as

‖ph‖2
Eh :=

∑
i,j

ωi,j

∫
Γi,j

|b · nτ |�ph�2ds.(5.1)

Here, nτ is the outward unit normal to edge Γi,j , ωi,j is a weight to be determined,
and �ph� is the jump in ph across Γi,j . We use the term (5.1) in the LS functional to



42 DE STERCK, MANTEUFFEL, MCCORMICK, AND OLSON

make a distinction between element edges that are closely aligned with the flow and
edges that are not by tying together neighboring elements. This behavior is consistent
with the regularity of the solution. A solution p of (1.1)–(1.2) would be smooth in
the direction of the flow while perpendicular to the flow p is only L2-regular. For
further motivation, consider a non-grid-aligned flow with a typical discontinuity (see
Figure 1). When element edges are nearly aligned with the discontinuity (location
A), the term |b · n| is small in the term (5.1), allowing a larger jump between the
neighboring elements. However, when an element edge is nearly perpendicular to the
flow (location B), |b · n| is large. This enforces a stronger connection between the
elements resulting in a smaller jump.

B

A

Fig. 1. Example of a non-grid-aligned flow and outward normals A and B.

We can now define a nonconforming LS functional similar to (3.17) except for
the use of broken norms and inclusion of the edge functional (5.1). With f ∈ L2(Ω),
g ∈ B, p ∈ Sh + V , define the functional as

Gh(p; f, g) :=
∑
j

‖b · ∇p− f‖2
0,τj + ‖p‖2

Eh + ‖p− g‖2
B .(5.2)

Define the Gh norm as

‖ph‖2
Gh := Gh(ph, 0, 0).(5.3)

If p ∈ V , then Gh(p; f, g) = G(p; f, g).
Let e = ph − p, where ph ∈ Sh and p satisfies (1.1)–(1.2). Notice that

‖e‖Gh = Gh(ph − p; 0, 0)

= Gh(ph; f, g).

Thus, Gh is a natural a posteriori error estimator. The sharpness of LS error estimators
is addressed in [4, 7].

We can now describe the discrete variational problem for our discontinuous ele-
ments.

Problem 5.1. Find ph ∈ Sh s.t.

F(ph, qh) = F (qh) ∀ qh ∈ Sh,

where

F(ph, qh) :=
∑
τi

〈b · ∇ph,b · ∇qh〉0,τi + 〈ph, qh〉Eh + 〈ph, qh〉B ,

F (qh) =
∑
τi

〈f,b · ∇qh〉0,τi + 〈g, qh〉B .
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In the following lemma we find that a uniform Poincaré inequality is satisfied
for weights stronger than ω = c 1

h , where c is a grid-independent constant. We also
show, by example, that weights weaker than ω = c 1

h—e.g., ω = 1 or h—result in a
violation of the uniform Poincaré inequality. Thus, enforcing the connection between
neighboring elements too weakly not only decreases the stability of the solution but
also results in losing a uniform bound on the error in the L2 norm.

Lemma 5.2 (uniform Poincaré inequality). There exists a constant C, indepen-
dent of h, such that for ph ∈ Sh + V and ω ≥ c 1

h , where c is a grid-independent
constant,

‖ph‖0,Ω ≤ C‖ph‖Gh .(5.4)

Furthermore, the above does not hold for ω < c 1
h .

Proof. Similarly to the proof of Lemma 2.4, we derive the uniform Poincaré
inequality for constant b and rely on the transformation with bounded Jacobian to
achieve the general result. As before, let b̄ = 1

|b|b. Let x̂ ∈ ΓI , and let sk be

parameters in (0, sm(x̂)) such that x̂k = x̂ + skb̄(x̂) lies on an element edge, where
(s0, sm) now plays the role of (0, s1) in our previous proofs. Since the flow field b
is constant, we have m(x̂) = O(

√
N), where N is the number of elements in T h,

the tessellation of Ω, and m(x̂) is the number of element edges encountered by the

characteristics generated by b̂ = b̄(x̂) emanating from x̂ ∈ ΓI . For 0 ≤ k < m, we
assume

|sk+1(x̂) − sk(x̂)| < h̃(5.5)

for all x̂ ∈ ΓI , where

h̃ = max
j

{diam τj : τj ∈ T h}.(5.6)

Furthermore, assume h̃ = O( 1√
N

), and let

�(x̂) =
m∑

k=1

|sk(x̂) − sk−1(x̂)|.(5.7)

Let �p(x)� denote the jump in p at x. Using

p(x̂ + sb̂) = p(x̂) +

k∑
j=1

∫ sj

sj−1

b̄ · ∇p(x̂ + tb̂) dt + �p(x̂j)� +

∫ s

sk

b̄ · ∇p(x̂ + tb̂) dt,

(5.8)

taking absolute values, extending the range of integration, and then squaring both
sides, we arrive at

∣∣∣p(x̂ + sb̂)
∣∣∣2 ≤

⎛
⎝|p(x̂)| +

m∑
j=1

∫ sj

sj−1

∣∣∣b̄ · ∇p(x̂ + tb̂)
∣∣∣ dt +

m−1∑
j=1

�p(x̂j)�

⎞
⎠

2

.(5.9)

Using the inequality ⎛
⎝ M∑

j=1

aj

⎞
⎠

2

≤ M

M∑
j=1

a2
j ,(5.10)
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(5.5), and Jensen’s inequality, we obtain

(5.11)

∣∣∣p(x̂ + sb̂)
∣∣∣2 ≤ 3

⎧⎪⎨
⎪⎩|p(x̂)|2 +

⎛
⎝ m∑

j=1

∫ sj

sj−1

∣∣∣b̄ · ∇p(x̂ + tb̂)
∣∣∣ dt
⎞
⎠

2

+

⎛
⎝m−1∑

j=1

�p(x̂j)�

⎞
⎠

2
⎫⎪⎬
⎪⎭

≤ 3

⎧⎨
⎩|p(x̂)|2 + m

m∑
j=1

h̃

∫ sj

sj−1

∣∣∣b̄ · ∇p(x̂ + tb̂)
∣∣∣2 dt + m

m−1∑
j=1

�p(x̂j)�
2

⎫⎬
⎭ .

Using the fact that mh̃ ≤ CD, where D = diam(Ω), and integrating over
∫ sm
0

dt, we
have

(5.12)
m∑
j=1

∫ sj

sj−1

∣∣∣p(x̂ + tb̂)
∣∣∣2 dt ≤ 3

{
�(x̂) |p(x̂)|2 + CD�(x̂)

m∑
j=1

∫ sj

sj−1

∣∣∣b̄ · ∇p(x̂ + tb̂)
∣∣∣2 dt

+ m�(x̂)

m−1∑
j=1

�p(x̂j)�
2

}
.

We now integrate according to
∫
ΓI

·|b̄ · n| dσ to get

(5.13)∫
ΓI

m∑
j=1

∫ sj

sj−1

∣∣∣p(x̂ + tb̂)
∣∣∣2 dt

∣∣b̄ · n
∣∣ dσ

≤ 3

{∫
ΓI

�(x̂)(p(x̂))2
∣∣b̄ · n

∣∣ dσ+CD2

∫
ΓI

m∑
j=1

∫ sj

sj−1

∣∣∣b̄ · ∇p(x̂+ tb̂)
∣∣∣2 dt

∣∣b̄ · n
∣∣ dσ

+ m

∫
ΓI

�(x̂)

m−1∑
j=1

�p(x̂j)�
2
∣∣b̄ · n

∣∣ dσ}

≤ 3

{
‖p‖2

B +
CD2

β0

∑
j

‖b · ∇p‖2
0,τj + mD

∑
i,j

∫
Γi,j

�p�2 |b · n| ds
}
.

If ω ≤ c 1
h = O(m), then

‖p‖2
0,Ω ≤ C

⎧⎨
⎩‖p‖2

B +
∑
j

‖b · ∇p‖2
0,τj + ‖p‖2

Eh

⎫⎬
⎭(5.14)

= C‖p‖Gh .

For the general case, bound (5.4) now follows using the assumed transformation with
bounded Jacobian.

To show that c is not grid independent for ω ≤ c 1
h , consider the example of a

“stair-step function.” Let Ω = [0, 1]× [0, 1] and partition T h be a uniform tessellation
of squares. Let b = (1, 0)T and h = 1

N , where N is the number of elements in each
coordinate direction. Define p(x, y) on Ω as

p(x, y) = jh for x ∈ [(j − 1)h, jh) , j = 1, . . . , N.(5.15)
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Then

‖p‖2
0,Ω = O(1)(5.16)

and

‖p‖2
Gh = O(ω · h).(5.17)

So, unless ω ≥ c 1
h , inequality (5.4) is violated for grid-independent c.

Remark 5.3. Once the uniform Poincaré inequality is established, Strang’s second
lemma [8] can be invoked to prove convergence of DLSFEMs. In the absence of
the uniform Poincaré inequality, one cannot guarantee that convergence in the grid-
dependent norm implies finite element convergence, as illustrated by the “stair-step”
example described in the proof above.

Since V h ⊂ Sh, we can also conclude for p̂h ∈ V h that

‖p− ph‖Gh = inf
p̂h∈V h

‖p− p̂h‖Gh .

Thus, in the Gh norm the nonconforming solution is at least as small as the solution
from the conforming space. This might lead one to believe that the discretization
error in the L2 norm for the nonconforming solution would be smaller than the L2

error in the conforming solution. However, our numerical tests show that this is not
the case. Using the weight ω = 1

h for non-grid-aligned flow, we show numerically
that the convergence rates, for both conforming and nonconforming approximations,
appear to be increasing, but to be bounded by 1

2 , in both the L2 norm and Gh norm
as k, the order of the polynomial, increases.

6. Numerical results. In this section we present numerical results in support of
our theoretical error estimates and conjectures of sections 4 and 5, and to demonstrate
properties of the LS solution in terms of oscillations and smearing. Convergence rates
presented in this section are obtained on sequences of grids ranging from h = 2−4 to
2−9 in mesh size depending on the order of the polynomial, k.

Consider (1.1)–(1.2), and let Ω = [0, 1]× [0, 1]. Let b(x) = (cos (θ), sin (θ)), where
θ is the angle the flow makes with the first coordinate axis. The inflow boundary de-
fined by (1.3) is ΓI = ({0}× [0, 1])∪ ([0, 1]×{0})—i.e., the west and south boundaries
of the unit square. Let g(0, y) = 1 and g(x, 0) = 0 so that the exact solution is dis-
continuous with p = 1 above the characteristic emanating from the origin and p = 0
below the characteristic. For the tessellation T h of Ω we choose a uniform partition
of quadrilaterals and a uniform partition of triangles.

Tables 1 and 2 show that we achieve consistent convergence rates in the L2 and
Gh norms both for the quadrilateral and triangular elements. Furthermore, as the
order of the polynomials increases, the convergence rates seem to be increasing but
to be bounded by 1

2 . Figure 2 shows that for increasing degree k the convergence rate
(slope) improves slightly, and higher-order methods exhibit smaller error constants per
degree of freedom. This suggests that a combination of h and p refinement (where p
is the polynomial order) [17] may work well for the kind of discontinuous hyperbolic
flows we consider in this paper.

The nonconforming space Sh discussed in section 5 offers the ability for the ap-
proximation ph to be discontinuous at the element edges, with a possibility of leading
to faster convergence rates for the interior term in the functional. This is indeed the
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Table 1

Convergence rates for θ = π
8

using quadrilaterals.

Conforming (4.1) Nonconforming (4.2) ω = 1
h

k L2 norm G norm L2 norm Gh norm

1 .25 .26 .24 .26

2 .34 .33 .32 .33

3 .36 .37 .36 .34

4 .38 .38 .37 .37

Table 2

Convergence rates for θ = π
8

using triangles.

Conforming (4.1) Nonconforming (4.2) ω = 1
h

k L2 norm G norm L2 norm Gh norm

1 .25 .28 .23 .24

2 .33 .32 .33 .33

3 .39 .37 .38 .42

case, as shown in Table 3. Since the uniform Poincaré inequality (5.4) does not hold
for weaker values of ω, we should expect the Gh norm to outperform the L2 norm for
weak ω. Moreover, we find that the convergence rates for each term in the functional
become less balanced as ω is chosen away from 1

h .
It is also interesting to study the effect of varying the weight of the boundary

functional, e.g., for the continuous LSFEM. Figure 3 shows the convergence order for
the L2 and Gh norms as a function of boundary functional weight. Only for a weight
equal to 1 are the convergence rates in balance, in accordance with our theoretical
results in sections 2 and 3.

The above results were obtained using θ = π
8 . Table 4 reveals that the convergence

rates were generally relatively independent of the angle θ. Table 5 shows that for very
small angles—e.g., θ ≤ .05—we find convergence rates very close to 1

2 for both the L2

norm and the Gh norm using conforming and nonconforming elements. Furthermore,
as expected, the convergence rates do not exceed 1

2 , and, for the case of grid-aligned
flow, the convergence rates are exactly 1

2 .
Smearing of discontinuities is an important consideration for numerical approxi-

mation of hyperbolic PDEs. In the exact solution of the model problem, the discon-
tinuity on the inflow boundary ΓI is advected to the outflow boundary ΓO without
diffusion. However, in a discrete space over a grid that is not flow aligned, we cannot
exactly resolve the discontinuity and the finite element solution displays smearing
along the characteristic defining the discontinuity.

It is shown in [5, 17] that the (D)LS solution smears the discontinuity substantially
more than the SUPG solution, while the Galerkin solution had the least smearing.
However, the Galerkin solution exhibits the most oscillations. The SUPG solution
exhibits a small amount of oscillation, while the LS solution has almost no oscillation.
Oscillations are an impediment to accurate local adaptive refinements, as they obscure
where the adaptivity is most effective. Figure 4 confirms these results for our LS
methods and also indicates that the smearing decreases for higher-order elements.
Nearly identical plots were obtained using nonconforming elements and have been
omitted for brevity.

Next we evaluate the oscillations arising in the discrete solution and observe the
magnitude of the overshoots. Higher-order elements produce undesirable overshoots
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Fig. 2. Error reductions for (D)LSFEMs of various orders, measured per degree of freedom.
For degree k increasing from 1 to 4 (solid, dotted, dash-dotted, dashed), the convergence rate (slope)
improves slightly, and higher-order methods exhibit smaller error constants per degree of freedom.

Table 3

Convergence rates for θ = π
8

using quadrilaterals and various weights ω.

ω = 1
h2 ω = 1

h
ω = 1 ω = h

k L2 Gh L2 Gh L2 Gh L2 Gh

1 .25 .28 .24 .26 .25 .47 .24 .57

2 .32 .25 .32 .33 .33 .45 .32 .59

3 .36 .37 .36 .34 .38 .44 .37 .52

4 .38 .39 .37 .37 .40 .46 .40 .52

and unacceptable oscillations for many FEMs. However, it was shown in [5, 17] that
these negative effects are small in the LS formulation. Overshoots for these solu-
tions are displayed in Figure 5. Even though the LSFEM solutions are not strictly
monotone and overshoots and undershoots exist, they are contained in a small region
near the discontinuity and do not increase in intensity with increasing polynomial
order. Nonconforming elements produced nearly identical (less smooth) oscillation
and overshoot profiles; see Figure 5. In Figures 4–5 the number of degrees of free-
dom for the conforming and nonconforming approximations are within 1% of each
other.
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Fig. 3. Convergence order for the L2 (squares) and G (circles) norms as a function of boundary
functional weight. For weights stronger than 1, the functional error does not converge well. For
weights weaker than 1, the L2 error does not converge well. Only for a weight equal to 1 are the
convergence rates in balance. This agrees with our theoretical results in sections 2 and 3.

Table 4

Convergence rates for various θ using quadrilaterals.

Conforming (4.1) Nonconforming (4.2) ω = 1
h

θ k L2 norm G norm L2 norm Gh norm

π
20

1 .25 .25 .25 .23

2 .33 .33 .33 .32

3 .35 .35 .35 .35

4 .36 .35 .37 .35

π
12

1 .25 .26 .25 .25

2 .32 .33 .32 .32

3 .36 .36 .35 .36

4 .39 .37 .39 .37

π
8

1 .25 .26 .24 .26

2 .33 .33 .32 .33

3 .36 .37 .36 .35

4 .38 .38 .39 .38

π
6

1 .25 .26 .24 .26

2 .33 .34 .32 .33

3 .37 .37 .37 .37

4 .39 .39 .39 .39

π
4

1 .24 .26 .23 .26

2 .32 .34 .32 .32

3 .36 .38 .34 .36

4 .38 .40 .36 .40
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Table 5

Convergence rates (α) for varying θ using nonconforming linear (k = 1) elements on triangles.

θ 0 0.01 0.02 0.03 0.04 0.1

L2 norm 0.500 0.497 0.485 0.466 0.441 0.304

Gh norm 0.500 0.498 0.492 0.481 0.468 0.389
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Fig. 4. Contour plots for various conforming elements. For varying order k, 24, 12, 8, and 6
elements are used in each coordinate direction, respectively.

7. Multigrid. In this section we address the issues involved in solving the large
linear systems arising from the finite element discretizations given in sections 4 and 5.
Although the minimization problem is not H1 equivalent, a property found in many
elliptic PDEs that is advantageous for multigrid methods, we will focus on iterative
solvers in a multilevel framework employing the techniques of the Ruge–Stüben al-
gebraic multigrid method (AMG) [27]. As we will see, AMG does not fully achieve
optimal convergence factors independent of h.

First, consider the problem in the context of the limit case of an anisotropic
diffusion operator. More specifically, consider the PDE

LAp = f̃ on Ω,

p = 0 in ΓI ,

n · ∇p = 0 in Γ \ ΓI ,

(7.1)
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linear (k=1) quadratic (k=2)

cubic (k=3) quartic (k=4)

Fig. 5. Solution profiles for various conforming elements at slice x = 0.5. Dotted line: con-
forming elements. Solid line: nonconforming elements. Dashed line: location of exact discontinuity.

where

LAp := ∇ · (A∇p),(7.2)

and f̃ ∈ L2(Ω).
If A = I, we can write I = bbT + ddT , where b · b = 1, d · d = 1, and b · d = 0.

When A = bbT + εddT for 0 < ε < 1, the operator LA is an anisotropic diffusion
operator because of the strong connection in a particular direction: b. Efficient
multigrid algorithms have been developed for this class of PDEs, and we would expect
to be able to apply similar algorithms to (1.1)–(1.2).

The Galerkin weak form of (7.1) would be as follows (using standard Sobolev
space notation): Find p ∈ H1(Ω) with p = 0 on ΓI such that

〈b · ∇p, b · ∇q〉0,Ω + ε〈d · ∇p, d · ∇q〉0,Ω = 〈f̃ , q〉0,Ω(7.3)

for every q ∈ H1(Ω) with q = 0 on ΓI . The left-hand side is similar to the left-hand
side of the weak form of our LS formulation, which can be written as

〈b · ∇p,b · ∇q〉0,Ω + 〈p, q〉B = 〈f,b · ∇q〉0,Ω + 〈g, q〉B .(7.4)

We test the convergence of AMG using the example flow described in section 6
with θ = π

6 . Bilinear elements are used for ease of implementation and interpretation
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Table 6

AMG convergence factors, ρ, for various cycles. w: weak boundary conditions, s: strong
boundary conditions.

N ×N V(1, 1)w V(1, 1)s V(2, 2)w V(2, 2)s W(1, 1)w W(1, 1)s

16 × 16 0.510 0.430 0.420 0.290 0.300 0.250

32 × 32 0.610 0.500 0.540 0.430 0.350 0.280

64 × 64 0.700 0.590 0.640 0.530 0.380 0.300

128 × 128 0.770 0.670 0.730 0.630 0.460 0.300

256 × 256 0.840 0.740 0.820 0.710 0.530 0.310

512 × 512 0.910 0.840 0.890 0.810 0.590 0.360

of the work involved. All AMG calculations are done using John Ruge’s FOSPACK
(first order systems least-squares finite element software package) [26]. The relaxation
strategy used in the cycles presented in Table 6 is pointwise Gauss–Seidel. On the
downsweep of a cycle, first fine-grid points and then coarse grid points are relaxed,
while on the upsweep of a cycle, coarse grid points are relaxed before fine-grid points
using a reverse ordering.

The first four convergence columns of Table 6 show the increase in convergence
factors in V(1,1) and V(2,2) cycles as the mesh is refined. These values are the factors
by which the error is reduced on the finest level by performing one cycle and are the
geometric average of convergence factors from one cycle to the next up until the
relative residual has reached a prescribed tolerance. We would like these factors to
be small—i.e., large reduction in error from one cycle to the next—and we would like
these factors to remain constant as the grid is refined. An interesting phenomenon is
revealed in the last column of Table 6, which shows W(1,1)-cycle convergence factors
with strong treatment of the boundary conditions. The functional for this method
is given by the functional in (3.17) without the boundary term ‖u − g‖B . This is
not the functional we ultimately intend to use, but its resulting linear system exposes
some perhaps beneficial aspects of the solver. Notice that the factors are small.
This is a relative and vague rating, but in the multigrid community grid-independent
factors less than 0.5 are generally considered a success. One significant shortcoming of
using the implementation of the strong boundary conditions is that G(ph; 0, 0) fails to
decrease (recall G is a sharp error estimator). The significance of looking at this case
becomes clear when comparing these values to column 6 of Table 6. When we keep
the boundary term in the functional (i.e., weak boundary condition), the convergence
factors fail to remain constant for the W(1,1)-cycle.

As a measure of grid complexity, we compute the work per cycle in terms of
fine-grid relaxation sweeps (or work units) and find growth with n. We compute the
complexity by summing the number of nonzero matrix entries on each level multiplied
by the number of relaxation sweeps performed on that level, divided by the number
of nonzero entries in the fine-grid matrix. This complexity is close to a measure of
the work units per cycle.

In Table 7 we report the approximate number of work units per cycle for the
tests reported in Table 6. In Table 8 we report the number of work units required to
reduce the error by a factor of 10. This “work units per digit” is a measure of the
total relative complexity of the algorithm and is computed as

Wd = − Wc

log ρ
,(7.5)
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Table 7

Work units per cycle: Wc. w: weak boundary conditions, s: strong boundary conditions.

N ×N V(1, 1)w V(1, 1)s V(2, 2)w V(2, 2)s W(1, 1)w W(1, 1)s

16 × 16 3.774 3.824 7.549 7.552 5.431 5.553

32 × 32 4.088 4.098 8.175 8.192 6.890 6.940

64 × 64 4.241 4.253 8.482 8.504 7.792 7.890

128 × 128 4.333 4.329 8.667 8.658 8.597 8.418

256 × 256 4.373 4.373 8.747 8.747 9.101 9.081

512 × 512 4.396 4.394 8.791 8.787 9.537 9.471

Table 8

Work units per digit of accuracy: Wd. w: weak boundary conditions, s: strong boundary
conditions.

N ×N V(1, 1)w V(1, 1)s V(2, 2)w V(2, 2)s W(1, 1)w W(1, 1)s

16 × 16 12.907 10.434 20.036 14.047 10.387 9.223

32 × 32 19.041 13.613 30.549 22.349 15.112 12.553

64 × 64 27.379 18.560 43.763 30.844 18.543 15.090

128 × 128 38.176 24.892 63.410 43.149 25.492 16.099

256 × 256 57.758 33.443 101.489 58.804 33.007 17.854

512 × 512 107.321 58.025 173.710 96.020 41.620 21.346

where Wc is the work units per cycle discussed above and ρ is the convergence factor
presented in Table 6. Notice in Table 8 that the number of work units per digit
for the V(1,1)-cycle appears to be growing slowly with the dimension of the linear
system, which increases by a factor of 4 with each row of the table. Likewise, the
work units per digit for the W(1,1)-cycle with weak boundary conditions appears
to be growing but more slowly, while the work units per digit for the W(1,1)-cycle
with strong boundary conditions appears not to grow substantially. Strong boundary
conditions do not reduce the growth in complexity with grid size much for V-cycles,
while for W(1,1)-cycles the complexity growth is significantly reduced. This shows
that W cycles are necessary (more work needs to be done on coarse grids).

8. Conclusion. In this paper we have studied the LSFEM for scalar linear hy-
perbolic PDEs. We have identified the space of admissible boundary data and have
established a Poincaré inequality for the graph norm. We have presented a well-posed
formulation of the problem based on the minimization of a LS functional. Finite
element solutions were obtained by minimizing the LS functional over a finite dimen-
sional subspace and also by minimizing a similar functional, incorporating a jump
term, over a discontinuous nonconforming finite dimensional space. It was also de-
termined that a weight of ω ≥ c 1

h was required in order for the uniform Poincaré
inequality to hold, where c is a grid-independent constant. Hence, a weight of ω = 1

h
was used in the majority of the computational comparisons.

We found, numerically, several advantages in using higher-order elements for dis-
continuous flow calculation. As the polynomial degree of the finite elements was
increased, an increase in convergence rates in the L2 and the functional norm was ob-
served. The convergence rates were fairly independent of the orientation of the flow,
with the exception of very small angles, where the convergence rates approached the
upper bound of 1

2—the predicted and confirmed rate for grid-aligned flow. These
results were similar for conforming and nonconforming elements and the L2 and the
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functional norms produced nearly identical results. The LS approximations exhibited
substantial smearing but only limited oscillation near discontinuities in the solution.
Increasing the polynomial degree of the approximation, while keeping the number of
degrees of freedom fixed, reduced the smearing with minimal increase in oscillations.
There was no apparent advantage of using discontinuous elements over continuous
elements for our LS approach. This finding is consistent with the numerical results
for DLSFEMs reported in [17]. However, it has to be noted that for other FEMs
and in the context of parallelization and locally p-adaptive methods, discontinuous
variants may have very important advantages over continuous variants. A good ex-
ample is the DG method, which has many advantageous properties as described in
section 1.

A standard AMG solver based on the Ruge–Stüben algorithm was applied to the
linear systems with good results. Nearly grid-independent convergence factors were
observed when W-cycles were used and when the boundary conditions were imposed
strongly. The relative complexity of this algorithm was nearly independent of the
dimension of the linear system. Using the more appropriate formulation involving
weak boundary conditions yielded relative complexity that grew slowly with the size
of the problem.

While strong enforcement of the boundary conditions will not lead to the solution
we seek, the results presented in section 7 suggest a near-optimal numerical scheme for
the solution of the linear system that results from using the weak boundary condition.
If the value of the approximation at the boundary is known, then the solution of the
interior unknowns can be achieved efficiently by solving a system that essentially
invokes strong boundary conditions. Thus, a numerical scheme could alternatively
solve for the boundary values and then the interior values. We will investigate this
approach in a future work.
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